Targeting and Privacy in Mobile Advertising

Rafieian and Yoganarasimhan

University of Washington
Mobile Adoption and Usage

- Smartphones are increasingly popular
 - 2 Billion users worldwide
 - Avg. user spends 3.3 hours/day
 - Bulk of usage through apps
 - In 2016, Internet usage via smartphones and tablets exceeded desktop for the first time worldwide

- Mobile advertising
 - Worldwide revenue of 183 billion USD in 2018
 - Predicted to exceed 200 billion USD in 2019
 - Largest share of total digital ad spend
 - Over 68% of total digital ad revenues
In-App Advertising

- Common app monetization strategy
 - App developers can earn money through ads
- Excellent user tracking and targeting properties
 - Advertisers have access to a device ID — IDFA in Apple and AAID in Android
 - Persistent unless re-set by user
 - Used to stitch user data across sessions, apps, and ads
Targeting and Privacy Trade-off

• Better tracking techniques improve behavioral targeting
 • Increased efficiency in the market
 • However, this has led to privacy concerns among users

• Part of broader debate over consumer tracking and privacy
 • Advertisers: fewer protections, behavioral tracking tools
 • Consumers: higher privacy, limits on targeting
 • Regulators: e.g., GDPR by EU — balance profitability motives with consumer protection. Self-regulation?
Revenue-Efficiency Trade-off

- Higher efficiency does not lead to higher revenues
 - Fat-tailed distribution of valuations and thin markets
 - Efficient contracting requires paying large informational rent

- Online ad auctions
 - Conjecture: Narrow targeting can soften the competition and create thin markets [Levin and Milgrom, 2010]
 - More targeting may hurt platform revenues
 - Limited empirical evidence

- What is the optimal level of targeting for the platform?
 - Possibility of self-regulation if the platform limits behavioral targeting
Research Agenda

• Targeting and efficiency
 • How can ad-networks develop targeting policies?
 • How can we evaluate the performance of these policies?

• Value of targeting information
 • How do different pieces of information contribute towards improving targeting ability?
 • Value of contextual (when and where) vs. Behavioral (who)

• Revenue-efficiency trade-off and platform's incentives
 • What is the empirical relationship between efficiency and platform revenues?
 • What is the optimal level of targeting from the perspective of different players?
 • Does the platform have incentives to preserve user privacy?
Key Challenges

• Need counterfactual CTR estimates for ads not shown
 • To develop an efficient targeting policy

• Need a targeting framework with high predictive accuracy
 • To accurately estimate value of each piece of information

• Need an economic model of strategic interactions
 • To provide reliable estimates of market outcomes
 • To examine platform’s incentives to preserve users’ privacy
Our Approach

• Filtering procedure for counterfactual estimates
 • Identify ads in each impression that could have been shown

• Machine learning CTR prediction model
 • High predictive accuracy
 • Feature generation and categorization to capture and measure the value of each piece of information

• Economic model of auctions to determine market outcomes under counterfactual targeting regimes
 • Characterize advertisers’ utility function in targeting scenarios
 • Estimate market outcomes – total surplus and platform revenues
 • Optimal targeting from platform’s and advertisers’ perspectives
Our Approach

• Filtering procedure for counterfactual estimates
 • Identify ads in each impression that could have been shown

• Machine learning CTR prediction model
 • High predictive accuracy
 • Feature generation and categorization to capture and measure the value of each piece of information

• Economic model of auctions to determine market outcomes under counterfactual targeting regimes
 • Characterize advertisers’ utility function in targeting scenarios
 • Estimate market outcomes – total surplus and platform revenues
 • Optimal targeting from platform’s and advertisers’ perspectives
 Coherently combine predictive machine learning models with prescriptive economic models
Related Literature

• CTR estimation and targeting
 • Method
 • Friedman et al. (2000), Friedman (2001), Breiman (2001), Chen and Guesterin (2016)
 • Application
 • McMahan et al. (2013), He et al. (2014), Chapelle et al. (2015)

• Interplay between targeting and privacy
 • Effects of privacy regulation
 • User behavior

• Revenue efficiency trade-off
 • Theoretical
 • Empirical
 • Athey and Nekipelov (2010), Yao and Mela (2010)
Setting and Data
Setting

- Major in-app advertising platform
 - 85% market share
 - Over 50 million impressions served daily
- Only one format of ad
 - Small banner ad in jpg or gif format in the bottom
- Limited targeting provision
 - Advertisers can only target on broad categories
 - App Category, Province, Brand, Connectivity, MSP, ISP
 - No behavioral targeting
- Quasi-proportional auction
 \[\pi_a = \frac{b_a q_a}{\sum_{j \in A} b_j q_j} \]
 -Platform does not personalize or update quality scores
 -Probabilistic allocation rule creates randomization
Data

- Impression-level data from Sep 30 to Oct 30, 2015
 - 1,594,831,699 impressions
 - 14,373,29 clicks
 - 0.0090 CTR

Variables
- Time and date
- App ID
- Device ID
- Ad ID
- Targeting variables
 - App Category, Province, Hour, Brand, Connectivity, MSP, ISP
- Exact location
 - Latitude, Longitude
- Click indicator
Setting

- Major in-app advertising platform
 - 85% market share
 - Over 50 million impressions served daily

- Only one format of ad
 - Small banner ad in jpg or gif format in the bottom

- Limited targeting provision
 - Advertisers can only target on broad categories
 - App Category, Province, Brand, Connectivity, MSP, ISP
 - No behavioral targeting

- Quasi-proportional auction
 \[\pi_a = \frac{b_a q_a}{\sum_{j \in A} b_j q_j} \]
 - Platform does not personalize or update quality scores
 - Probabilistic allocation rule creates randomization
Data

- Impression-level data from Sep 30 to Oct 30, 2015
 - 1,594,831,699 impressions
 - 14,373,29 clicks
 - 0.0090 CTR

- Variables
 - Time and date
 - App ID
 - Device ID
 - Ad ID
 - Targeting variables
 - App Category, Province, Hour, Brand, Connectivity, MSP, ISP
 - Exact location
 - Latitude, Longitude
 - Click indicator
Data Splits and Sampling

- **Data splits**
 - Global data (over 146 million impressions)
 - Training, validation and test (over 27 million impressions)

- **Sampling procedure**
 - Use the full history for sampled users (over 700K users)
 - Data sufficiency is shown for robustness
Data

• Impression-level data from Sep 30 to Oct 30, 2015
 • 1,594,831,699 impressions
 • 14,373,29 clicks
 • 0.0090 CTR

• Variables
 • Time and date
 • App ID
 • Device ID
 • Ad ID
 • Targeting variables
 • App Category, Province, Hour, Brand, Connectivity, MSP, ISP
 • Exact location
 • Latitude, Longitude
 • Click indicator
Data Splits and Sampling

- **Data splits**
 - Global data (over 146 million impressions)
 - Training, validation and test (over 27 million impressions)

- **Sampling procedure**
 - Use the full history for sampled users (over 700K users)
 - Data sufficiency is shown for robustness
Part I

Machine Learning Framework for Targeting
Problem Definition

- **Problem:** How can we estimate the CTR or match value for ad \(a \) in impression \(i \)?

\[
\begin{bmatrix}
 m_{1,1} & m_{1,2} & \cdots & m_{1,A} \\
 m_{2,1} & m_{2,2} & \cdots & m_{2,A} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{N,1} & m_{N,2} & \cdots & m_{N,A}
\end{bmatrix}
\]

- **Goal**
 - Accurately estimate elements of the match value matrix
 - Develop targeting policies that map impressions to ads

- **Challenges**
 - Counterfactual CTR estimation
 - High-dimensional categorical inputs
 - Predictive accuracy
Problem Definition

Problem: How can we estimate the CTR or match value for ad \(a \) in impression \(i \)?

\[
\begin{bmatrix}
m_{1,1} & m_{1,2} & \cdots & m_{1,A} \\
m_{2,1} & m_{2,2} & \cdots & m_{2,A} \\
\vdots & \vdots & \ddots & \vdots \\
m_{N,1} & m_{N,2} & \cdots & m_{N,A}
\end{bmatrix}
\]

\[m_{i,a} = \Pr(y_{i,a} = 1)\]

Goal
- Accurately estimate elements of the match value matrix
- Develop targeting policies that map impressions to ads

Challenges
- Counterfactual CTR estimation
- High-dimensional categorical inputs
- Predictive accuracy
Counterfactual CTR Estimation

• Accuracy of CTR estimates
 • The same joint distribution of covariates and outcome in training and test data
 \[F_{\text{train}}(X, Y) \sim F_{\text{test}}(X, Y) \]
 • Estimates are accurate if the ad *could have been shown* in an impression
 \[\Pr(a_i = a) > 0 \]

• Key requirement: Randomization
 • Limited targeting provision and no behavioral targeting
 • Ads are shown in a broad set of apps, users, and settings
 • Probabilistic allocation rule
 • Counterfactual CTR estimation fails in second-price auctions
Empirical Strategy

- Filtering procedure
 - Identify availability of an ad for an impression
 - Targeting decision (e.g., excluding a specific province)
 - Campaign availability (e.g., budget exhaustion)
 - Filter ads that are not available
 - Only applicable to impressions with no missing variable (Filtered Sample)
 - Focus on top 37 ads (generate over 80% of total traffic)
Problem Definition

Problem: How can we estimate the CTR or match value for ad a in impression i?

$$
\begin{bmatrix}
 m_{1,1} & m_{1,2} & \cdots & m_{1,A} \\
 m_{2,1} & m_{2,2} & \cdots & m_{2,A} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{N,1} & m_{N,2} & \cdots & m_{N,A}
\end{bmatrix}
$$

Impressions

Ads

$m_{i,a} = \Pr(y_{i,a} = 1)$

Goal

- Accurately estimate elements of the match value matrix
- Develop targeting policies that map impressions to ads

Challenges

- Counterfactual CTR estimation
- High-dimensional categorical inputs
- Predictive accuracy
Empirical Strategy

- Filtering procedure
 - Identify availability of an ad for an impression
 - Targeting decision (e.g., excluding a specific province)
 - Campaign availability (e.g., budget exhaustion)
 - Filter ads that are not available
 - Only applicable to impressions with no missing variable (Filtered Sample)
 - Focus on top 37 ads (generate over 80% of total traffic)
Feature Generation Framework

• **Challenge:** High dimensional categorical inputs
 - User, App, Ad, Time

• **Solution:** Functions that map these inputs to meaningful features using the user-level and global history
Feature Generation

- Three types of information
 - Contextual (when and where)
 - App: Gaming app vs. Craigslist app
 - Time of day: At work (10 am) vs. leisure (8 pm)
 - Behavioral (who)
 - Related to the user’s past app usage, ad exposure, and ad response
 - Ad-related
 - Captures information on the relative performance of different ads

- Three types of history
 - Long-term (over a one month period)
 - Short-term (within the last week)
 - Ongoing session-level (within this session)
Feature Categorization

- Behavioral: 31
- Contextual: 18
- Ad-Specific: 45

Overall 160 features
Learning Algorithm

- Log Loss as objective function

\[L_{\text{log loss}}(\hat{M}, y) = -\frac{1}{N} \sum_{i=1}^{N} (y_{i,a_i} \log(\hat{m}_{i,a_i}) + (1 - y_{i,a_i}) \log(1 - \hat{m}_{i,a_i})) \]

- Faster convergence [Rosasco et al., 2004]
- Most commonly used loss function in CTR prediction [Yi et al., 2013]
Learning Algorithm

- Log Loss as objective function
 \[
 \mathcal{L}_{\text{log loss}}(\hat{\mathbf{M}}, \mathbf{y}) = -\frac{1}{N} \sum_{i=1}^{N} (y_{i,a_i} \log (\hat{m}_{i,a_i}) + (1 - y_{i,a_i}) \log (1 - \hat{m}_{i,a_i}))
 \]

 - Faster convergence [Rosasco et al., 2004]
 - Most commonly used loss function in CTR prediction [Yi et al., 2013]

- Validation
 - Hold-out validation set for tuning hyper-parameters

- XGBoost as learning algorithm [Chen and Guesterin, 2016]
 - Fast and scalable version of Boosted Regression Trees
 - Most successful algorithm in Kaggle contests
 - Model comparison for robustness check
 - Least Squares, LASSO, Logistic Regression, Regression Trees, Random Forest
Model Evaluation I

- Relative Information Gain (RIG) as a measure of fit

\[
RIG(\hat{M}, y) = \left[1 - \frac{L_{\log\text{ loss}}(\hat{M}, y)}{L_{\log\text{ loss}}(\tilde{y}, y)} \right] \times 100
\]

\[
\begin{bmatrix}
m_{1,1} & m_{1,2} & \ldots & m_{1,A} \\
m_{2,1} & m_{2,2} & \ldots & m_{2,A} \\
\vdots & \vdots & \ddots & \vdots \\
m_{N,1} & m_{N,2} & \ldots & m_{N,A}
\end{bmatrix}
\]
Model Evaluation I

- Relative Information Gain (RIG) as a measure of fit

$$RIG(M, y) = \left[1 - \frac{L^{\log \text{loss}}(M, y)}{L^{\log \text{loss}}(\tilde{M}, y)} \right] \times 100$$

Test data:

$$\begin{bmatrix}
m_{1,1} & m_{1,2} & \cdots & m_{1,A} \\
m_{2,1} & m_{2,2} & \cdots & m_{2,A} \\
\vdots & \vdots & \ddots & \vdots \\
m_{N,1} & m_{N,2} & \cdots & m_{N,A}
\end{bmatrix}$$

Red elements indicate ads which were actually shown.
Model Evaluation I

- Relative Information Gain (RIG) as a measure of fit

\[RIG(\hat{M}, y) = \left[1 - \frac{\mathcal{L}^{\text{log loss}}(\hat{M}, y)}{\mathcal{L}^{\text{log loss}}(\tilde{y}, y)} \right] \times 100 \]

Test data

\[
\begin{bmatrix}
 m_{1,1} & m_{1,2} & \cdots & m_{1,A} \\
 m_{2,1} & m_{2,2} & \cdots & m_{2,A} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{N,1} & m_{N,2} & \cdots & m_{N,A}
\end{bmatrix}
\]

Red elements indicate ads which were actually shown

- RIG allows us to evaluate model performance based on actual data
- Consistent with our loss function
- Can be used to quantify the gains from different feature categories
- Other evaluation metrics for robustness check
 - MSE, AUC, 0/1 Loss, Confusion Matrix
Model Evaluation II

- Potential improvement in CTR
 - Based on counterfactual outcomes
 - Efficient targeting policy \(\tau^*(i) = \arg \max_a \hat{m}_{i,a} \)

 \[
 \begin{pmatrix}
 m_{1,1} & m_{1,2} & \ldots & m_{1,A} \\
 m_{2,1} & m_{2,2} & \ldots & m_{2,A} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{N,1} & m_{N,2} & \ldots & m_{N,A}
 \end{pmatrix}
 \]

 - Red indicates actual ad shown
 - Green indicates optimal ad based on our model

- Improvement in CTR using efficient targeting policy

\[
\rho(\tau^*, \tau_0; N_F) = \frac{\hat{m}^{\tau^*}}{\hat{m}^{\tau_0}} = \frac{1}{N_F} \sum_{i=1}^{N_F} \hat{m}_{i,\tau^*(i)} \frac{1}{N_F} \sum_{i=1}^{N_F} \hat{m}_{i,\tau_0(i)}
\]
RIG and Value of Information

- Different models
 - Contextual Model: purely contextual + ad-specific features
 - Behavioral Model: purely behavioral + ad-specific features
 - Full Model: all features
RIG and Value of Information

• Different models
 • Contextual Model: purely contextual + ad-specific features
 • Behavioral Model: purely behavioral + ad-specific features
 • Full Model: all features

• Results on predictive accuracy

<table>
<thead>
<tr>
<th>RIG over Baseline</th>
<th>Full Sample</th>
<th>Filtered Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Model</td>
<td>12.14%</td>
<td>14.74%</td>
</tr>
<tr>
<td>Contextual Model</td>
<td>5.25%</td>
<td>6.77%</td>
</tr>
<tr>
<td>Full Model</td>
<td>17.95%</td>
<td>22.45%</td>
</tr>
</tbody>
</table>

No. of Impressions
% of Test Data

9,625,835
100%

4,454,634
46.28%
RIG and Value of Information

- Different models
 - Contextual Model: purely contextual + ad-specific features
 - Behavioral Model: purely behavioral + ad-specific features
 - Full Model: all features

- Results on predictive accuracy

<table>
<thead>
<tr>
<th></th>
<th>RIG over Baseline</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Sample</td>
<td>Filtered Sample</td>
<td></td>
</tr>
<tr>
<td>Behavioral Model</td>
<td>12.14%</td>
<td>14.74%</td>
<td></td>
</tr>
<tr>
<td>Contextual Model</td>
<td>5.25%</td>
<td>6.77%</td>
<td></td>
</tr>
<tr>
<td>Full Model</td>
<td>17.95%</td>
<td>22.45%</td>
<td></td>
</tr>
</tbody>
</table>

- Full model reaches 17.95% RIG over the baseline
- Behavioral information contributes more than contextual
 - While behavioral information impinges on users’ privacy, it also significantly improves targeting efficiency
Part II
Revenue-Efficiency Trade-off
Counterfactual CTR Improvement

- **Average CTR improvement**
 - 66.80% improvement in avg. CTR over the current system
 - Current CTR: 0.66%, Efficient targeting CTR: 1.10%

- **Impression-level improvement**

 ![Histogram of Percentage Improvement in CTR](image)

 - Median improvement is 105.35%
Part II
Revenue-Efficiency Trade-off
Revenue-Efficiency Trade-off

Full Targeting versus No Targeting

Valuation

1 2 1 & 2

Impression

Ad Surplus
Revenue
Ad 1
Ad 2
Revenue-Efficiency Trade-off

More targeting can hurt platform revenues

What is the optimal level of targeting for the platform?
Model of Auction with Targeting

- Ads’ value per impression

\[V = \begin{bmatrix} v_{1,1} & v_{1,2} & \cdots & v_{1,A} \\ v_{2,1} & v_{2,2} & \cdots & v_{2,A} \\ \vdots & \vdots & \ddots & \vdots \\ v_{N,1} & v_{N,2} & \cdots & v_{N,A} \end{bmatrix} \]

- No functional form assumptions on valuations

- Targeting strategy
 - Denotes the platform’s decision to bundle N impressions into L bundles such that \(\mathcal{I} = \{I_1, I_2, \ldots, I_L\} \)
 - Advertiser’s valuation for impressions in a bundle:
 \[\frac{1}{|I_j|} \sum_{k \in I_j} v_{k,a} \]

- Relative granularity of targeting levels
 - Targeting strategy A is at least as granular as B, if two impressions that are distinguishable in B are also distinguishable in A
Analytical Results

- In a second-price auction, as granularity of targeting increases:
 - Total surplus or efficiency increases
 - However, platform revenues can go in either direction

- Four targeting scenarios
 - No targeting: no targeted bidding
 - Contextual targeting: can target at app-time level
 - Behavioral targeting: can target at user-level
 - Full targeting: can target at impression level

- Theoretically:
 - Surplus: $S^F \geq S^C, S^B \geq S^N$
 - Platform revenues: No theoretical guidance

The optimal level of targeting from the platform’s perspective is therefore an empirical question
Problem Definition

- **Problem:** How can we estimate an ad’s valuation for each impression under any targeting level?

\[
\begin{bmatrix}
v_{1,1} & v_{1,2} & \cdots & v_{1,A} \\
v_{2,1} & v_{2,2} & \cdots & v_{2,A} \\
\vdots & \vdots & \ddots & \vdots \\
v_{N,1} & v_{N,2} & \cdots & v_{N,A}
\end{bmatrix}, \quad v_{i,a} = v_a^{(c)} m_{i,a}
\]

- **Goal**
 - Accurately estimate value-per-impression matrix
 - Determine market outcomes – total surplus and platform revenues

- **Challenges**
 - Estimation of advertisers’ click valuations from observed data
 - Estimation of match valuations for any targeting level
Problem Definition

• Problem: How can we estimate an ad’s valuation for each impression under any targeting level?

\[
\begin{bmatrix}
 v_{1,1} & v_{1,2} & \cdots & v_{1,A} \\
 v_{2,1} & v_{2,2} & \cdots & v_{2,A} \\
 \vdots & \vdots & \ddots & \vdots \\
 v_{N,1} & v_{N,2} & \cdots & v_{N,A}
\end{bmatrix}
\]

\[v_{i,a} = v^{(c)_m}_{i,a}\]

• Goal
 - Accurately estimate value-per-impression matrix
 - Determine market outcomes – total surplus and platform revenues

• Challenges
 - Estimation of advertisers’ click valuations from observed data
 - Estimation of match valuations for any targeting level
Estimation of Click Valuations

• Equilibrium for quasi-proportional auction [Mirrokni et al., 2010]

\[\hat{v}_a^{(c)} = b_a^* + \frac{b_a^*}{1 - \pi_a} \]

• If shares are not very high, valuation can be approximated by:

\[\hat{v}_a^{(c)} \approx 2b_a^* \]

• Unique Bayesian equilibrium in pure strategies when cost function is concave and differentiable

• Alternative methods for robustness check
Match Valuations Under Targeting

- Define an arbitrary targeting level
 \[I = \{ I_1, I_2, \ldots, I_L \} \]

- Aggregation over the bundle
 - Match valuations come from the ML targeting framework’s full model
Counterfactual Results

<table>
<thead>
<tr>
<th>Targeting</th>
<th>Total Surplus</th>
<th>Platform Revenue</th>
<th>Advertisers’ Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>9.45</td>
<td>8.35</td>
<td>1.10</td>
</tr>
<tr>
<td>Behavioral</td>
<td>9.18</td>
<td>8.35</td>
<td>0.84</td>
</tr>
<tr>
<td>Contextual</td>
<td>8.99</td>
<td>8.44</td>
<td>0.55</td>
</tr>
<tr>
<td>No targeting</td>
<td>8.36</td>
<td>8.30</td>
<td>0.06</td>
</tr>
</tbody>
</table>

- Surplus has a monotonic relationship with granularity
 - Higher efficiency under behavioral targeting compared to contextual targeting
- Revenue is maximized with contextual targeting
 - Platform has natural incentives to limit behavioral targeting
Counterfactual Results

<table>
<thead>
<tr>
<th>Targeting</th>
<th>Total Surplus</th>
<th>Platform Revenue</th>
<th>Advertisers’ Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>9.45</td>
<td>8.35</td>
<td>1.10</td>
</tr>
<tr>
<td>Behavioral</td>
<td>9.18</td>
<td>8.35</td>
<td>0.84</td>
</tr>
<tr>
<td>Contextual</td>
<td>8.99</td>
<td>8.44</td>
<td>0.55</td>
</tr>
<tr>
<td>No targeting</td>
<td>8.36</td>
<td>8.30</td>
<td>0.06</td>
</tr>
</tbody>
</table>

- Surplus has a monotonic relationship with granularity
 - Higher efficiency under behavioral targeting compared to contextual targeting
- Revenue is maximized with contextual targeting
 - Platform has natural incentives to limit behavioral targeting
- Privacy implications
 - Self regulation can be achieved!
Conclusion

• Contribution
 • Methodological
 • Scalable machine learning framework for targeting that is compatible with counterfactual analysis of auctions in a competitive environment
 • Substantive
 • Extensive comparison of behavioral and contextual targeting

• Implications
 • Managerial
 • Non-monotonic relationship between revenue and targeting granularity
 • Policy
 • Advertising platforms have incentives to self-regulate
Thank You!