Battling Demons in Peer Review

Nihar B. Shah

Machine Learning Department and Computer Science Department

Carnegie Mellon University

CHECK IT OUT, I'VE BEEN ASKED TO BE A PAPER REVIEWER FOR NEXT YEAR'S CONFERENCE.

WHOA.

I GUESS THEY CONSIDER ME AN EXPERT IN THE FIELD.

REALLY? WHAT WAS YOUR QUALIFICATION?

BY PEOPLE WHOSE ONLY QUALIFICATION WAS TO BE REVIEWED BY THE PREVIOUS YEAR'S PEOPLE WHOSE ONLY QUALIFICATION WAS...
Challenge across many research fields

• Drummond Rennie (Nature, 2016):

“Peer review ... is a human system. Everybody involved brings prejudices, misunderstandings and gaps in knowledge, so no one should be surprised that peer review is often biased and inefficient. It is occasionally corrupt, sometimes a charade, an open temptation to plagiarists. Even with the best of intentions, how and whether peer review identifies high-quality science is unknown. It is, in short, unscientific.”

• Overwhelming desire for improvement

[surveys by Smith 2006, Ware 2008, Mulligan et al. 2013]
Tremendous growth

Several thousands of submissions, 40% increase per year
Tackle systematic problems in peer review

using principled and practical approaches
Subjectivity
Miscalibration
Biases
Strategic behavior
Noise
Subjectivity

Miscalibration

Biases

Strategic behavior

Noise
Subjectivity

Miscalibration

Biases

Strategic behavior

Noise

Detail

Some detail

Brief overview
Many other applications

- Hiring
- Admissions
- A/B testing
- Online ratings
- Crowdsourcing
- Peer grading
- ...
Subjectivity

with

Ritesh Noothigattu

Ariel Procaccia
Differing opinions about relative importance of criteria

Novelty is not useful unless improvement by at least 10%

Novelty is extremely important
Differing opinions about relative importance of criteria

Novelty is not useful unless improvement by at least 10%

Novel ideas! Improves 4% over existing

Novelty is extremely important
Differing opinions about relative importance of criteria

Novelty is not useful unless improvement by at least 10%

REJECT

Novel ideas!
Improves 4% over existing

ACCEPT

Novelty is extremely important
Differing opinions about relative importance of criteria

Novelty is not useful unless improvement by at least 10%

REJECT

Novel ideas! Improves 4% over existing

ACCEPT

Novelty is extremely important

How to ensure that every paper is judged by the same yardstick?
Problem setting

- Reviewers asked to judge papers on \textbf{k criteria}
 - E.g. (IJCAI 17): Originality, Relevance, Significance, Writing, Technical
- And an \textbf{overall score}
- Reviewer i gives to paper j:
 - Criteria scores $x_{ij} \in [0,1]^k$
 - Overall score $y_{ij} \in [0,1]$
Problem setting

- Reviewers asked to judge papers on **k criteria**
 - E.g. (IJCAI 17): Originality, Relevance, Significance, Writing, Technical
- And an **overall score**
- Reviewer i gives to paper j:
 - Criteria scores $x_{ij} \in [0,1]^k$
 - Overall score $y_{ij} \in [0,1]$
- Each reviewer has a monotonic **(subjective) mapping** from criteria scores in $[0,1]^k$ to overall score in $[0,1]$
Problem setting

- Reviewers asked to judge papers on \textit{k criteria}
 - E.g. (IJCAI 17): Originality, Relevance, Significance, Writing, Technical
- And an \textbf{overall score}
- Reviewer \(i \) gives to paper \(j \):
 - Criteria scores \(x_{ij} \in [0,1]^k \)
 - Overall score \(y_{ij} \in [0,1] \)
- Each reviewer has a monotonic \textbf{(subjective) mapping} from criteria scores in \([0,1]^k\) to overall score in \([0,1] \)

\textbf{Need a common mapping for all papers}
Data-driven approach: Learn a mapping
Data-driven approach: Learn a mapping

- Obtain \((x_{ij}, y_{ij}) \in [0,1]^k \times [0,1]\) for every review \((i,j)\)
Data-driven approach: Learn a mapping

- Obtain \((x_{ij}, y_{ij}) \in [0,1]^k \times [0,1]\) for every review \((i,j)\)
- Learn a mapping \(\hat{f} : [0,1]^k \rightarrow [0,1]\) from this data
Data-driven approach: Learn a mapping

- Obtain \((x_{ij}, y_{ij}) \in [0,1]^k \times [0,1]\) for every review \((i,j)\)
- Learn a mapping \(\hat{f}: [0,1]^k \rightarrow [0,1]\) from this data
- For every \((i,j)\), replace overall score \(y_{ij}\) with \(\hat{f}(x_{ij})\)
Data-driven approach: Learn a mapping

- Obtain $(x_{ij}, y_{ij}) \in [0,1]^k \times [0,1]$ for every review (i,j)
- Learn a mapping $\hat{f}: [0,1]^k \rightarrow [0,1]$ from this data
- For every (i, j), replace overall score y_{ij} with $\hat{f}(x_{ij})$
Problem setting

- Reviewers asked to judge papers on **k criteria**
 - E.g. (IJCAI 17): Originality, Relevance, Significance, Writing, Technical
- And an **overall score**
- Reviewer i gives to paper j:
 - Criteria scores $x_{ij} \in [0,1]^k$
 - Overall score $y_{ij} \in [0,1]$
- Each reviewer has a monotonic **(subjective) mapping** from criteria scores in $[0,1]^k$ to overall score in $[0,1]$

Need a common mapping for all papers
Differing opinions about relative importance of criteria

Novelty is not useful unless improvement by at least 10% REJECT

Novel ideas!
Improves 4% over existing ACCEPT

Novelty is extremely important
Framework

For this talk: Suppose all papers reviewed by all reviewers
For this talk: Suppose all papers reviewed by all reviewers

Framework

Reviewers

Papers

Criteria scores

Reviewers

Papers

Overall scores
For this talk: Suppose all papers reviewed by all reviewers

![Diagram with matrices and criteria scores](image-url)
For this talk: Suppose all papers reviewed by all reviewers

<table>
<thead>
<tr>
<th>Reviewers</th>
<th>Papers</th>
<th>Reviewers</th>
<th>Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>[.8 .9 .9]</td>
<td>[.2 .3 .1]</td>
<td>[.8 .6 .1]</td>
<td>[.9 .4 .6]</td>
</tr>
<tr>
<td>[.4 .1 .4]</td>
<td>[.1 .3 .2]</td>
<td>[.8 .9 .2]</td>
<td>[.4 .6 .6]</td>
</tr>
<tr>
<td>[.9 .5 .4]</td>
<td>[.2 .3 .1]</td>
<td>[.7 .8 .2]</td>
<td>[.4 .6 .9]</td>
</tr>
<tr>
<td>[.3 .2 .1]</td>
<td>[.4 .7 .9]</td>
<td>[.8 .9 .3]</td>
<td>[.2 .3 .8]</td>
</tr>
</tbody>
</table>

Criteria scores

Overall scores
For this talk: Suppose all papers reviewed by all reviewers

\[
\begin{pmatrix}
 f([.8 .9 .9]) & f([.2 .3 .1]) & f([.8 .6 .1]) \\
 f([.9 .1 .4]) & f([.2 .7 .4]) & f([.9 .6 .1]) \\
 f([.4 .1 .4]) & f([.1 .3 .2]) & f([.8 .9 .2]) \\
 f([.9 .5 .4]) & f([.2 .3 .1]) & f([.7 .8 .2]) \\
 f([.3 .2 .1]) & f([.4 .7 .9]) & f([.8 .9 .3])
\end{pmatrix}
=
\begin{pmatrix}
 .9 & .4 & .6 \\
 .2 & .4 & .7 \\
 .4 & .6 & .6 \\
 .4 & .6 & .9 \\
 .2 & .3 & .8
\end{pmatrix}
\]
Framework

For this talk: Suppose all papers reviewed by all reviewers

\[\hat{f} \in \text{argmin}_{f \in \mathcal{F}} \begin{pmatrix} f([.8 .9 .9]) & f([.2 .3 .1]) & f([.8 .6 .1]) \\ f([.9 .1 .4]) & f([.2 .7 .4]) & f([.9 .6 .1]) \\ f([.4 .1 .4]) & f([.1 .3 .2]) & f([.8 .9 .2]) \\ f([.9 .5 .4]) & f([.2 .3 .1]) & f([.7 .8 .2]) \\ f([.3 .2 .1]) & f([.4 .7 .9]) & f([.8 .9 .3]) \end{pmatrix} = \begin{pmatrix} .9 & .4 & .6 \\ .2 & .4 & .7 \\ .4 & .6 & .6 \\ .4 & .6 & .9 \\ .2 & .3 & .8 \end{pmatrix} \]

\[L(p,q) \] loss
For this talk: Suppose all papers reviewed by all reviewers

\[\hat{f} \in \arg\min_{f \in \mathcal{F}} \begin{pmatrix} f([.8 .9 .9]) & f([.2 .3 .1]) & f([.8 .6 .1]) \\ f([.9 .1 .4]) & f([.2 .7 .4]) & f([.9 .6 .1]) \\ f([.4 .1 .4]) & f([.1 .3 .2]) & f([.8 .9 .2]) \\ f([.9 .5 .4]) & f([.2 .3 .1]) & f([.7 .8 .2]) \\ f([.3 .2 .1]) & f([.4 .7 .9]) & f([.8 .9 .3]) \end{pmatrix} \]

\[L(p,q) \text{ loss} \]

\[\mathcal{F} = \text{set of all monotonic functions} \]
Choice of loss function

- $p \in [1, \infty)$, $q \in [1, \infty]$
Choice of loss function

- \(p \in [1, \infty) \), \(q \in [1, \infty) \)

\[
\begin{pmatrix}
 f([.8, .9, .9]) & f([.2, .3, .1]) & f([.8, .6, .1]) \\
 f([.9, .1, .4]) & f([.2, .7, .4]) & f([.9, .6, .1]) \\
 f([.4, .1, .4]) & f([.1, .3, .2]) & f([.8, .9, .2]) \\
 f([.9, .5, .4]) & f([.2, .3, .1]) & f([.7, .8, .2]) \\
 f([.3, .2, .1]) & f([.4, .7, .9]) & f([.8, .9, .3])
\end{pmatrix}
\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad
\begin{pmatrix}
 .9 & .4 & .6 \\
 .2 & .4 & .7 \\
 .4 & .6 & .6 \\
 .4 & .6 & .9 \\
 .2 & .3 & .8
\end{pmatrix}
\]
Choice of loss function

- \(p \in [1, \infty] \), \(q \in [1, \infty] \)

\[
\begin{bmatrix}
 f([.8 .9 .9]) & f([.2 .3 .1]) & f([.8 .6 .1]) \\
 f([.9 .1 .4]) & f([.2 .7 .4]) & f([.9 .6 .1]) \\
 f([.4 .1 .4]) & f([.1 .3 .2]) & f([.8 .9 .2]) \\
 f([.9 .5 .4]) & f([.2 .3 .1]) & f([.7 .8 .2]) \\
 f([.3 .2 .1]) & f([.4 .7 .9]) & f([.8 .9 .3])
\end{bmatrix}
\]

\[L_p \text{ norm} \]

- \(.9 .4 .6 \)
- \(.2 .4 .7 \)
- \(.4 .6 .6 \)
- \(.4 .6 .9 \)
- \(.2 .3 .8 \)
Choice of loss function

- $p \in [1, \infty]$, $q \in [1, \infty]$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0.8 \cdot 0.9)$</td>
<td>$f(0.2 \cdot 0.1)$</td>
<td>$f(0.8 \cdot 0.6)$</td>
</tr>
<tr>
<td>0.9</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0.9 \cdot 0.1)$</td>
<td>$f(0.2 \cdot 0.7)$</td>
<td>$f(0.9 \cdot 0.6)$</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0.4 \cdot 0.1)$</td>
<td>$f(0.1 \cdot 0.3)$</td>
<td>$f(0.8 \cdot 0.9)$</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0.9 \cdot 0.5)$</td>
<td>$f(0.2 \cdot 0.3)$</td>
<td>$f(0.7 \cdot 0.8)$</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0.3 \cdot 0.2)$</td>
<td>$f(0.4 \cdot 0.7)$</td>
<td>$f(0.8 \cdot 0.9)$</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
</tr>
</tbody>
</table>

L_p norm

$L_{p\,\text{norm}}$
Choice of loss function

- \(p \in [1, \infty) \), \(q \in [1, \infty) \)

<table>
<thead>
<tr>
<th>(f(0.8, 0.9, 0.9))</th>
<th>(f(0.2, 0.3, 0.1))</th>
<th>(f(0.8, 0.6, 0.1))</th>
<th>(L_p) norm</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(0.9, 0.1, 0.4))</td>
<td>(f(0.2, 0.7, 0.4))</td>
<td>(f(0.9, 0.6, 0.1))</td>
<td>(L_p) norm</td>
<td>*</td>
</tr>
<tr>
<td>(f(0.4, 0.1, 0.4))</td>
<td>(f(0.1, 0.3, 0.2))</td>
<td>(f(0.8, 0.9, 0.2))</td>
<td>(L_p) norm</td>
<td>*</td>
</tr>
<tr>
<td>(f(0.9, 0.5, 0.4))</td>
<td>(f(0.2, 0.3, 0.1))</td>
<td>(f(0.7, 0.8, 0.2))</td>
<td>(L_p) norm</td>
<td>*</td>
</tr>
<tr>
<td>(f(0.3, 0.2, 0.1))</td>
<td>(f(0.4, 0.7, 0.9))</td>
<td>(f(0.8, 0.9, 0.3))</td>
<td>(L_p) norm</td>
<td>*</td>
</tr>
</tbody>
</table>

- \(L_p \) norm values: \(0.9, 0.4, 0.6 \)
Choice of loss function

- \(p \in [1, \infty] \), \(q \in [1, \infty] \)

\[
\begin{align*}
\text{L}_p \text{ norm} & \quad \text{*} \\
\text{L}_p \text{ norm} & \quad \text{*} \\
\text{L}_p \text{ norm} & \quad \text{*} \\
\text{L}_q \text{ norm} & \quad \text{*} \\
\end{align*}
\]
Choice of loss function

- \(p \in [1, \infty], \ q \in [1, \infty] \)

\(f(1.9 .9 .9) \)	\(f(1.2 .3 .1) \)	\(f(1.8 .6 .1) \)	\(.9 \)	\(.4 \)	\(.6 \)
\(f(1.9 .1 .4) \)	\(f(1.2 .7 .4) \)	\(f(1.9 .6 .1) \)	\(.2 \)	\(.4 \)	\(.7 \)
\(f(1.4 .1 .4) \)	\(f(1.3 .2 .2) \)	\(f(1.8 .9 .2) \)	\(.4 \)	\(.6 \)	\(.6 \)
\(f(1.9 .5 .4) \)	\(f(1.2 .3 .1) \)	\(f(1.7 .8 .2) \)	\(.4 \)	\(.6 \)	\(.9 \)
\(f(1.9 .2 .1) \)	\(f(1.4 .7 .9) \)	\(f(1.8 .9 .3) \)	\(.2 \)	\(.3 \)	\(.8 \)

- Used in many applications
 [e.g., Ding et al. 2006, He and Cichocki 2008, Nie et al. 2010, Kong et al. 2011, Rahimpour et al. 2017...]

- Different \(L(p,q) \) losses used in different applications
Choice of loss function

- \(p \in [1, \infty], \quad q \in [1, \infty] \)

\[
\begin{array}{ccc}
 f(0.9, 0.9) & f(0.2, 0.3, 1) & f(0.8, 0.6, 1) \\
 f(0.9, 1.1) & f(0.2, 0.7, 4) & f(0.9, 0.6, 1) \\
 f(0.4, 1.4) & f(0.1, 3.2) & f(0.8, 0.2) \\
 f(0.9, 5.4) & f(0.2, 3.1) & f(0.7, 8.2) \\
 f(0.3, 2.1) & f(0.4, 7.9) & f(0.8, 9.3) \\
\end{array}
\]

- \(L_p \) norm
- \(L_q \) norm

- Used in many applications
 - e.g., Ding et al. 2006, He and Cichocki 2008, Nie et al. 2010, Kong et al. 2011, Rahimpour et al. 2017...

- Different \(L(p,q) \) losses used in different applications

Which \(L(p,q) \) loss function to use?
Axiomatic approach

- Approach is popular in economics and social choice theory
- Identify scenarios that is easy to reason about
- Establish necessary conditions (or “axioms”)
Axiomatic approach

- Approach is popular in economics and social choice theory
- Identify scenarios that is easy to reason about
- Establish necessary conditions (or “axioms”)

Any paper gets the same criteria scores from all reviewers.

Paper 1: $x_{11} = x_{21} = x_{31} = \ldots := x_1$
Paper 2: $x_{12} = x_{22} = x_{32} = \ldots := x_2$
\vdots
Axiomatic approach

- Approach is popular in economics and social choice theory
- Identify scenarios that is easy to reason about
- Establish necessary conditions (or “axioms”)

Any paper gets the same criteria scores from all reviewers.

\[x_{11} = x_{21} = x_{31} = \ldots := x_1 \]
\[x_{12} = x_{22} = x_{32} = \ldots := x_2 \]
\[\vdots \]

Three natural axioms
Axiom 1: Consensus
For some $x \in [0,1]^k$ and $y \in [0,1]$, if all reviewers map x to y then $\hat{f}(x) = y$.
Axiom 1: Consensus
For some $x \in [0,1]^k$ and $y \in [0,1]$, if all reviewers map x to y then $\hat{f}(x) = y$.

Axiom 2: Dominance
For any papers a and b, if the vector of overall scores received by paper a in sorted order is pointwise \geq the corresponding vector for paper b, then $\hat{f}(x_a) \geq \hat{f}(x_b)$.
Axiom 1: Consensus
For some $x \in [0,1]^k$ and $y \in [0,1]$, if all reviewers map x to y then $\hat{f}(x) = y$.

Axiom 2: Dominance
For any papers a and b, if the vector of overall scores received by paper a in sorted order is pointwise \geq the corresponding vector for paper b, then $\hat{f}(x_a) \geq \hat{f}(x_b)$.

Axiom 3: Strategyproofness
No reviewer can bring the learnt overall scores closer to her/his own opinion by strategic manipulation. For any reviewer i, let $(y_{i1}, ..., y_{im})$ be overall scores she/he gives if honest. Let \hat{f} denote learnt mapping in that case. Let $(y'_1, ..., y'_m)$ be any other overall scores and \hat{g} be the associated learnt mapping. Then we need:
$$\left\| (\hat{f}(x_1), ..., \hat{f}(x_m)) - (y_{i1}, ..., y_{im}) \right\| \leq \left\| (\hat{g}(x_1), ..., \hat{g}(x_m)) - (y_{i1}, ..., y_{im}) \right\|$$
Theorem

$L(1,1)$ is the only $L(p,q)$ loss that satisfies the three axioms.
Theorem

$L(1,1)$ is the only $L(p,q)$ loss that satisfies the three axioms.

- Strategyproofness violated when $q \in (1, \infty]$
- Consensus violated when $p = \infty$ and $q = 1$
- Dominance violated when $p \in (1, \infty)$ and $q = 1$
Theorem

L(1,1) is the only L(p,q) loss that satisfies the three axioms.

- Strategyproofness violated when \(q \in (1, \infty] \)
- Consensus violated when \(p = \infty \) and \(q = 1 \)
- Dominance violated when \(p \in (1, \infty) \) and \(q = 1 \)

Paradoxical!
Dominance violated under $L(2,1)$ loss
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores $x_1 = [\frac{1}{4}, \frac{3}{4}]$, $x_2 = [\frac{3}{4}, 1]$
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores $x_1 = [\frac{1}{4}, \frac{3}{4}], x_2 = [\frac{3}{4}, \frac{1}{4}]

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>z < 1</td>
</tr>
</tbody>
</table>
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores $x_1 = [\frac{1}{4}, \frac{3}{4}]$, $x_2 = [\frac{3}{4}, \frac{1}{4}]$

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Paper 1 dominates paper 2
Dominance violated under $L(2,1)$ loss

- 2 papers, 3 reviewers, $k=2$ criteria
- Criteria scores $x_1 = [\frac{1}{4}, \frac{3}{4}], \ x_2 = [\frac{3}{4}, \frac{1}{4}]

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Paper 1 dominates paper 2

want $\hat{f}(x_1) \geq \hat{f}(x_2)$
Dominance violated under $L(2,1)$ loss

- 2 papers, 3 reviewers, $k=2$ criteria
- Criteria scores $x_1 = \left[\frac{1}{4}, \frac{3}{4} \right]$, $x_2 = \left[\frac{3}{4}, \frac{1}{4} \right]$

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Fermat point of a triangle: Point with smallest total Euclidean distance from the 3 vertices

Paper 1 dominates paper 2

want $\hat{f}(x_1) \geq \hat{f}(x_2)$
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores $x_1 = \left[\frac{3}{4}, \frac{3}{4}\right]$, $x_2 = \left[\frac{3}{4}, \frac{1}{4}\right]$

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Paper 1 dominates paper 2

want $\hat{f}(x_1) \geq \hat{f}(x_2)$

Fermat point of a triangle: Point with smallest total Euclidean distance from the 3 vertices $(\hat{f}(x_1), \hat{f}(x_2))$ is exactly the Fermat point of:

\[(0, z)\] (0,0) (1,0)
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores \(x_1 = [\frac{1}{4}, \frac{3}{4}] \), \(x_2 = [\frac{3}{4}, \frac{1}{4}] \)

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0 (z<1)</td>
<td></td>
</tr>
</tbody>
</table>

Fermat point of a triangle: Point with smallest total Euclidean distance from the 3 vertices

\((\hat{f}(x_1), \hat{f}(x_2))\) is exactly the Fermat point of:

\[(0,z)\]

\(z=1; \) Fermat point: \((.20,.20)\)

Paper 1 dominates paper 2

want \(\hat{f}(x_1) \geq \hat{f}(x_2) \)
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores $x_1 = [\frac{3}{4}, \frac{3}{4}], x_2 = [\frac{3}{4}, \frac{1}{4}]

- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Paper 1 dominates paper 2

want $\hat{f}(x_1) \geq \hat{f}(x_2)$

Fermat point of a triangle: Point with smallest total Euclidean distance from the 3 vertices $\left(\hat{f}(x_1), \hat{f}(x_2)\right)$ is exactly the Fermat point of:

$z=1$; Fermat point: $(.20,.20)$

$z=1$; Fermat point: $(.20,.20)$
Dominance violated under $L(2,1)$ loss

- 2 papers, 3 reviewers, $k=2$ criteria
- Criteria scores $x_1 = [\frac{1}{4}, \frac{3}{4}]$, $x_2 = [\frac{3}{4}, \frac{1}{4}]$
- Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Paper 1 dominates paper 2

want $\hat{f}(x_1) \geq \hat{f}(x_2)$

Fermat point of a triangle: Point with smallest total Euclidean distance from the 3 vertices

$(\hat{f}(x_1), \hat{f}(x_2))$ is exactly the Fermat point of:

$z=1$; Fermat point: $(.20,.20)$

$z=\frac{1}{2}$; Fermat point: $(.12,.15)$
Dominance violated under L(2,1) loss

- 2 papers, 3 reviewers, k=2 criteria
- Criteria scores $x_1 = [\frac{3}{4}, \frac{3}{4}]$, $x_2 = [\frac{3}{4}, \frac{1}{4}]$

Overall scores:

<table>
<thead>
<tr>
<th></th>
<th>Paper 1</th>
<th>Paper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rev. 3</td>
<td>0</td>
<td>$z < 1$</td>
</tr>
</tbody>
</table>

Fermat point of a triangle: Point with smallest total Euclidean distance from the 3 vertices

$(\hat{f}(x_1), \hat{f}(x_2))$ is exactly the Fermat point of:

$z = 1$; Fermat point: $(.20, .20)$

$z = \frac{1}{2}$; Fermat point: $(.12, .15)$

Paper 1 dominates paper 2

want $\hat{f}(x_1) \geq \hat{f}(x_2)$
- **Writing and Relevance**: Really bad - significant downside, really good - appreciated, in between - irrelevant.
• **Writing and Relevance**: Really bad - significant downside, really good - appreciated, in between - irrelevant.

• **Technical quality and Significance**: high influence; the influence is approximately linear.
• **Writing** and **Relevance**: Really bad - significant downside, really good - appreciated, in between - irrelevant.

• **Technical quality and Significance**: high influence; the influence is approximately linear.

• **Originality**: moderate influence.
Miscalibration

with

Jingyan Wang

Best Student Paper Award at AAMAS 2019
Best Paper Nominee
Miscalibration in ratings
Miscalibration in ratings

Mitliagkas et al. 2011

“A raw rating of 7 out of 10 in the absence of any other information is potentially useless.”
Miscalibration in ratings

Mitliagkas et al. 2011
“A raw rating of 7 out of 10 in the absence of any other information is potentially useless.”

Ammar et al. 2012
“The rating scale as well as the individual ratings are often arbitrary and may not be consistent from one user to another.”
Miscalibration in ratings

Mitliagkas et al. 2011
“A raw rating of 7 out of 10 in the absence of any other information is potentially useless.”

Ammar et al. 2012
“The rating scale as well as the individual ratings are often arbitrary and may not be consistent from one user to another.”

Freund et al. 2003
“[Using rankings instead of ratings] becomes very important when we combine the rankings of many viewers who often use completely different ranges of scores to express identical preferences.”
Two approaches in the literature

Assume simplified models for calibration

- Did not work well – NIPS 2016 program chairs.
- Langford (ICML 2012 program co-chair): “We experimented with reviewer normalization and generally found it significantly harmful.”
Two approaches in the literature

1. Assume simplified models for calibration
 - Did not work well – NIPS 2016 program chairs.
 - Langford (ICML 2012 program co-chair): "We experimented with reviewer normalization and generally found it significantly harmful."

2. Use rankings
 - Use rankings induced by ratings or directly collect rankings
 - Commonly believed to be the best option if no assumptions on calibration
Two approaches in the literature

1. Assume simplified models for calibration
 • Did not work well – NIPS 2016 program chairs.
 • Langford (ICML 2012 program co-chair): “We experimented with reviewer normalization and generally found it significantly harmful.”

2. Use rankings
 • Use rankings induced by ratings or directly collect rankings
 • Commonly believed to be the best option if no assumptions on calibration

Is it possible to do better than rankings with essentially no assumptions on the calibration?
Canonical 2x2 setting
Canonical 2x2 setting

\[z_A^* \neq z_B^* \in [0,1] \]
Canonical 2x2 setting

Calibration function: \(f_1 : [0,1] \rightarrow [0,1] \)

Given paper \(i \in \{A, B\} \), outputs \(f_1(z_i^*) \)

\[z_A^* \neq z_B^* \in [0,1] \]
Canonical 2x2 setting

Calibration function: $f_1 : [0,1] \to [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_1(z_i^*)$

Calibration function $f_2 : [0,1] \to [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_2(z_i^*)$

$z_A^* \neq z_B^* \in [0,1]$
Canonical 2x2 setting

Calibration function: $f_1 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_1(z_i^*)$

Calibration function $f_2 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_2(z_i^*)$

- Adversary chooses z_A^*, z_B^* and strictly monotonic f_1, f_2
Canonical 2x2 setting

Calibration function: $f_1 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_1(z_i^*)$

Calibration function $f_2 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_2(z_i^*)$

- Adversary chooses z_A^*, z_B^* and strictly monotonic f_1, f_2
- One paper assigned to each reviewer at random
Canonical 2x2 setting

Calibration function: $f_1 : [0, 1] \rightarrow [0, 1]$

Given paper $i \in \{A, B\}$, outputs $f_1(z_i^*)$

Calibration function $f_2 : [0, 1] \rightarrow [0, 1]$

Given paper $i \in \{A, B\}$, outputs $f_2(z_i^*)$

- Adversary chooses z_A^*, z_B^* and strictly monotonic f_1, f_2
- One paper assigned to each reviewer at random
- Let y_j denote score given by reviewer $j \in \{1, 2\}$
Canonical 2x2 setting

Calibration function \(f_1 : [0,1] \rightarrow [0,1] \)
Given paper \(i \in \{A, B\} \), outputs \(f_1(z_i^*) \)

Calibration function \(f_2 : [0,1] \rightarrow [0,1] \)
Given paper \(i \in \{A, B\} \), outputs \(f_2(z_i^*) \)

- Adversary chooses \(z_A^*, z_B^* \) and strictly monotonic \(f_1, f_2 \)
- One paper assigned to each reviewer at random
- Let \(y_j \) denote score given by reviewer \(j \in \{1, 2\} \)
- **Goal:** Given (assignment, \(y_1, y_2 \)) estimate if \(z_A^* > z_B^* \) or \(z_B^* > z_A^* \)
Canonical 2x2 setting

Calibration function: $f_1 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_1(z_i^*)$

Calibration function $f_2 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_2(z_i^*)$

- Adversary chooses z_A^*, z_B^* and strictly monotonic f_1, f_2
- One paper assigned to each reviewer at random
- Let y_j denote score given by reviewer $j \in \{1, 2\}$

Goal: Given (assignment, y_1, y_2) estimate if $z_A^* > z_B^*$ or $z_B^* > z_A^*$

- Eliciting rankings is vacuous
Theorem

No deterministic estimator has a success probability better than random guessing.
Theorem

No deterministic estimator has a success probability better than random guessing.

Is it possible to do better than random guessing?
Inspirations and connections

- Stein’s phenomenon
- Empirical Bayes
- Cover’s envelope problem
With probability \(\frac{1 + |y_1 - y_2|}{2} \) pick paper which received higher score.

Theorem

The estimator strictly outperforms random guessing.
With probability \[\frac{1 + |y_1 - y_2|}{2} \] pick paper which received higher score.

Theorem

The estimator strictly outperforms random guessing.

- Ratings > rankings even if calibration is arbitrary/adversarial
- Building block for more general applications
Theorem

No deterministic estimator has a success probability better than random guessing.
Canonical 2x2 setting

Calibration function: $f_1 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_1(z_i^*)$

Calibration function $f_2 : [0,1] \rightarrow [0,1]$
Given paper $i \in \{A, B\}$, outputs $f_2(z_i^*)$

- Adversary chooses z_A^*, z_B^* and strictly monotonic f_1, f_2
- One paper assigned to each reviewer at random
- Let y_j denote score given by reviewer $j \in \{1, 2\}$
- **Goal:** Given (assignment, y_1, y_2) estimate if $z_A^* > z_B^*$ or $z_B^* > z_A^*$
 - Eliciting rankings is vacuous
Theorem

No deterministic estimator has a success probability better than random guessing.

Is it possible to do better than random guessing?
Biases

with

Ivan Stelmakh Aarti Singh
Single blind versus double blind

- Gender/race/fame/... biases? Lot of debate!
- "Where is the evidence (of bias in my research community)??"
Single blind versus double blind

- Gender/race/fame/... biases? Lot of debate!
- “Where is the evidence (of bias in my research community)?”

How to rigorously test for biases in peer review (while ensuring “good” review process)?
A remarkable experiment!

WSDM 2017 (Tomkins, Zhang, Heavlin)

Our negative results: We identify a number of issues in the experimental setup and testing procedure which can lead to spurious (false) positives
Testing for biases

False alarm probability specified to be ≤ 0.05

![Graph showing false alarm probability against number of papers with previous work highlighted.](image)
Testing for biases

False alarm probability specified to be ≤ 0.05

![Graph showing the relationship between number of papers and false alarm probability.]

- **Positive results:**
 - A testing setup (with minimal changes to peer review processes)
 - Statistical tests
 - Strong, rigorous guarantees
Testing for biases

False alarm probability specified to be ≤ 0.05

- **Positive results:**
 - A testing setup (with minimal changes to peer review processes)
 - Statistical tests
 - Strong, rigorous guarantees
Testing for biases

False alarm probability specified to be ≤ 0.05

- **Previous work**
- **Our test**

Under natural conditions

- **Probability of detection**

Positive results:
- A testing setup (with minimal changes to peer review processes)
- Statistical tests
- Strong, rigorous guarantees
Testing for biases

- **Positive results:**
 - A testing setup (with minimal changes to peer review processes)
 - Statistical tests
 - Strong, rigorous guarantees
Strategic behavior

with

Han Zhao Yichong Xu Xiaofei Shi
Motivation

Giving lower scores to other papers will improve my own relative score! Ha ha ha ha!
Motivation

Baietti et al. (PNAS, 2016):

“competition incentivizes reviewers to behave strategically, which reduces the fairness of evaluations and the consensus among referees”

Also [Anderson et al. 2007, Langford 2008 (blog), Akst 2010, Thurner and Hanel 2011...]
Motivation

Baietti et al. (PNAS, 2016):

“competition incentivizes reviewers to behave strategically, which reduces the fairness of evaluations and the consensus among referees”

Also [Anderson et al. 2007, Langford 2008 (blog), Akst 2010, Thurner and Hanel 2011...]

How to make peer review strategyproof?
Frame for strategyproof peer review
- For any reviewer, the decisions on papers conflicted with her/him are provably independent of the reviews given by her/him
Strategyproofness

✓ Framework for strategyproof peer review
 - For any reviewer, the decisions on papers conflicted with her/him are provably independent of the reviews given by her/him

✗ Negative results of impossibility
Strategyproofness

✓ Framework for strategyproof peer review
 - For any reviewer, the decisions on papers conflicted with her/him are provably independent of the reviews given by her/him

✗ Negative results of impossibility

ICLR 2016 empirical evaluation

✓ Conditions for strategyproofness are indeed satisfied!
Noise

with

Ivan Stelmakh

Aarti Singh
• Poor reviews due to inappropriate choice of reviewers
Noise

- Poor reviews due to inappropriate choice of reviewers
- Automated assignment: Toronto paper matching system (TPMS) and others
Noise

• Poor reviews due to *inappropriate choice* of reviewers

• Automated assignment: Toronto paper matching system (TPMS) and others
 • Unfair, especially to interdisciplinary or niche papers
 • Assign all very relevant reviewers to one paper and all irrelevant reviewers to another
 • No guarantees on overall process – how well does it help to identify the good papers?
Noise

• Poor reviews due to inappropriate choice of reviewers

• Automated assignment: Toronto paper matching system (TPMS) and others
 • Unfair, especially to interdisciplinary or niche papers
 • Assign all very relevant reviewers to one paper and all irrelevant reviewers to another
 • No guarantees on overall process – how well does it help to identify the good papers?

How to assign reviewers to papers ensuring fairness and accuracy?
Reviewer assignment

PeerReview4All assignment algorithm
Reviewer assignment

PeerReview4All assignment algorithm

Fairness: No paper is disadvantaged in favor of a paper that already has more advantage.
Reviewer assignment

PeerReview4All assignment algorithm

Fairness: No paper is disadvantaged in favor of a paper that already has more advantage.

Accuracy: Optimal recovery of good papers (under standard statistical models for noise in peer review)
Reviewer assignment

PeerReview4All assignment algorithm

Fairness: No paper is disadvantaged in favor of a paper that already has more advantage.

Accuracy: Optimal recovery of good papers (under standard statistical models for noise in peer review)

ICLR 2016

- **Fairness** (assignment quality for worst-off paper) \uparrow 25%
- **Average quality** (TPMS objective quality) \downarrow 2%
Conclusions

• Urgent need to revamp and automate peer review

• Principled and practical approaches
 • Impact!

• Papers available on arXiv and my website
 Short survey: tinyurl.com/PeerReviewCMU
I've been asked to vet my idea with my peers.

To save time, I am willing to stipulate that you hate all ideas that are not your own.

All in favor?

I hate this idea, too.

tinyurl.com/PeerReviewCMU

Thank you!