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Analysis and Design of Algorithms

Classic algo design: solve a worst case instance.

+ Easy domains, have optimal poly time algos.

E.g., sorting, shortest paths &% 2oy

ALGORITHMS

«  Most domains are hard.

E.g., clustering, partitioning, subset selection, auction design, ...

Data driven algo design: use learning & data for algo design.

Suited when repeatedly solve instances of the same algo problem.




Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

» Different methods work better in different settings.

* Large family of methods - what's best in our application?

Prior work: largely empirical.

 Artificial Intelligence:
[Horvitz-Ruan-Gomes-Kautz-Selman-Chickering, UAT 2001]

[Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]

. Compu’ra'l'ional Biology: E.g., [DeBlasio-Kececioglu, 2018]

« (Game Theor'y: E.g., [Likhodedov and Sandholm, 2004]




Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

Different methods work better in different settings.

Large family of methods - what's best in our application?

Prior work: largely empirical.

Our Work: Data driven algos with formal guarantees.

+ Several cases studies of widely used algo families.

* General principles (for distributional & online learning):
push boundaries of algorithm design and machine learning.

Related in spirit to Hyperparameter tuning, AutoML, Metalearning.




Structure of the Talk

« Data driven algo design as batch learning.

e A formal framework.

 Case studies: clustering, partitioning pbs, auction pbs.
* General sample complexity theorem.

 Data driven algo design as online learning.




Example: Clustering Problems
Clustering: Given a set objects organize then into natural groups.

+ E.g., cluster news articles, or web pages, or search results by topic.

Or, cluster images by who is in them.

Often need do solve such problems repeatedly.

+ E.g., clustering news articles (Google news).




Clustering Problems

Clustering: Given a set objects (news articles, customer surveys, web
pages, ...) organize then into natural groups.

Objective based clustering

k-means
Input: Set of objects S, d

QOutput: centers {c,,c,, ..., C} "

To minimize Y., min d*(p, ¢;)
1

Or minimize distance to ground-truth




Algorithm Design as Distributional Learning

Goal: given large family of algos, sample of typical instances from domain,
find an algo that performs well on new instances from same domain.

[Gupta-Roughgarden, ITCS'16 &SICOMP'17]

Dynamic Programming

Large family F of algorithms

Greedy| + | Farthest Location

Sample of i.i.d. typical inputs

Input 1: =\ Input 2: Input m:
Facility P AN N
location: B | e — A ——\/ ’
Clustering: Input 1: rm Input 2: B, Input m:

Input m:




Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Approach: ERM, find A near optimal algorithm over the set of samples.

Key Question: Will A do well on future instances?

[ 4
lﬁ
Seen: % o o

New:

—
g
R cas

Sample Complexity: How large should our sample of typical instances be
in order to guarantee good performance on new instances?




Statistical Learning Approach to AAD

Sample Complexity: How large should our sample of typical instances be
in order to guarantee good performance on new instances?

m = O(dim(F) /e?) instances suffice to ensure generalizability

Challenge: "nearby” algos can have drastically different behavior.

Revenue

2nd
highest
bid
_ Reserve r
2nd Highest
highest bid
bid




Algorithm Design as Distributional Learning

Prior Work: [6upta-Roughgarden, ITCS'16 &SICOMP17] proposed model; analyzed
greedy algos for subset selection pbs (knapsack & independent set).

Our results: New algorithm classes for a wide range of problems.

Clustering: Parametrized Linkage Parametrized Lloyds

[Balcan-Nagarajan-Vitercik-White, COLT 2017] [Balcan-Dick-White, NeurIPS 2018]
[Balcan-Dick-Lang, 2019]

dim(F) = 0(logn) | dim(F) = O(k logn)

CLUSTERING

Alignment pbs (e.g., string alignment): parametrized dynamic prog.

[Balcan-DeBlasio-Dick-Kingsford-Sandholm-Vitercik, 2019]




Algorithm Design as Distributional Learning

Our results: New algorithm classes for a wide range of problems.

* Partitioning pbs via IQPs: SDP + Rounding e

[Balcan-Nagarajan-Vitercik-White, COLT 2017] P e
Eg. Max-Cut, () dim(®)=0Cogn)  fre=as g o

, i , Feasible solution to
Max-2SAT, Correlation Clustering

IQP

MIP instance

v
* MIPs: Branch and Bound Techniques " Croose s egtof hesemcntee |
—Bes -bound _ yepth-firs
[Balcan-Dick-Sandholm-Vitercik, ICML'18] g_‘l_fw#j_t]_
. Chosseavarabetobranchon
Max ¢ - x | Product ”[ e " t-linear I
st. Ax=b ¥

thom d possitle and lerminate if possitie

X € {O,l},Vl €l

+  Automated mechanism design for revenue maximization

Parametrized VCG auctions, posted prices, lotteries.

[Balcan-Sandholm-Vitercik, EC 2018]




Clustering: Linkage + Post-processing
Family of poly time 2-stage algorithms:

1. Greedy linkage-based algo to get hierarchy (tree) of clusters.




Clustering: Linkage + Post-processing
Family of poly time 2-stage algorithms:
1. Greedy linkage-based algo to get hierarchy (tree) of clusters.
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Clustering: Linkage + Post-processing
Family of poly time 2-stage algorithms:
1. Greedy linkage-based algo to get hierarchy (tree) of clusters.
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Linkage Procedures for Hierarchical Clustering

Bottom-Up (agglomerative)

« Start with every point in its own cluster.

* Repeatedly merge the “closest” two
clusters.




Linkage Procedures for Hierarchical ClusTering

Bottom-Up (agglomerative)

Start with every point in its own cluster.

Repeatedly merge the "closest” two
clusters.

Different defs of "closest” give different algorithms.




Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects. @
d(x,y) - distance between x and y (pore) (Fshin)
E.g., # keywords in common, edit distance, etc Goeee)  (romid (o)

* Single linkage: dist(A,B) = min _dist(x,x")

xEA x'EB

» Complete linkage: dist(A,B) = max dist(x,x")

x€EA x'EB

* Parametrized family, a-weighted linkage:

dist,(A,B) = (1—a) min d(xx')+a max d(x x")

x€A x'EB x€EA,x'EB




Clustering: Linkage + Dynamic Programming

Our Results: a-weighted linkage + Post-processing >
Pseudo-dimension is O(log n), ‘R:‘\ ‘@'{

so small sample complexity.

Given sample S, find best algo from this family in poly time.

Input 2: Input m:

n & i
g -

Key Technical Challenge: small changes to the parameters of the algo
can lead to radical changes in the tree or clustering produced.

.
.
W . W

— |

Problem: a single change to an early decision by the linkage algo, can
snowball and produce large changes later on.




Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dim of a-weighted linkage + Post-process is O(log n).

Key fact: If we fix a clustering instance of n pts and vary «, at most
0(n®) switching points where behavior on that instance changes.

fx Al

So, the cost function is piecewise-constant with at most 0(n®) pieces.

a€ER

a€eR




Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dim of a-weighted linkage + Post-process is O(log n).

Key fact: If we fix a clustering instance of n pts and vary «, at most
0(n®) switching points where behavior on that instance changes.

Key idea:
» For a given «, which will merge ' el . A
first, N; and IV, or V5 and IV, ? % % %—%

* Depends on which of «d(p,q) + (1 = 0)d(p',q’) Or ad(r,s) + (1 — ©)d(r,s") is smaller.

a € R

* An interval boundary an equality for 8 points, so 0(n®) interval boundaries.




Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dim of a-weighted linkage + Post-process is O(log n).

Key idea: For m clustering instances of n points, 0(mn®) patterns.

aEII-R‘ : = ’ — =9

AN
Ao

7.

* Pseudo-dim largest m for which 2™ patterns achievable.

» So, solve for 2™ < m n®. Pseudo-dimension is O(log n).




Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dimension of a-weighted linkage + DP is O(log n), so
small sample complexity.

For N = O(logn /e*), w.h.p. expected performance cost of best a over the
sample is e-close to optimal over the distribution

Input 2: Input m:

Eﬂj_npuf 1: n ! & E
n - 33 R '
i I |

Claim: Given sample S, can find best algo from this family in poly time.

Algorithm

« Solve for all a intervals over the sample

R

* Find the « interval with the smallest empirical cost




Learning Both Distance and Linkage Criteria
[Balcan-Dick-Lang, 2019]

» Often different types of distance metrics.

Captioned images, d, image info, d; caption info. ‘ » %

N . 2
"Black Cat” "Bobceat”

Handwritten images: d, pixel info (CNN embeddings), d; stroke info.

Character Image  Stroke Data

-g |

Family of Metrics: Given d, and d;, define

dg(x,x") = (1 — B) - do(x,x") + B - dy (x,X")

Parametrized («a, §)-weighted linkage (« interpolation between single and
complete linkage and 3 interpolation between two metrics):

dista(A, B; d(_;) =(1—a) min dg(x,x')+a max dg(xx’)

xeA x'eB x€A x'eB




Learning Both Distance and Linkage Criteria

Claim: Pseudo-dim. of («,B) -weighted linkage is O(log n).

Key fact: Fix instance of n pts; vary o, B, partition space with 0(n®)
linear, quadratic equations s.t. within each region, get same cluster tree.
-
Key Idea: ’
1. 0(n*) linear sep. s.t. all B, B, in same region, dg, and dg,
agree on order of distances between all n pts.

Given (3, decision whether dg (a,b) greater than dg (a’, b') depends
on which (1 — B)dy(a,b) + Bd,(a,b) or (1 — B)dy(a’,b") + Bd;(a’,b") is greater

2. Fix region, for sets A, B, all B agree on a;,b; = argmindg(a,b), a,, b, = argmaxdg(a,b).
acAbeEB acAbeB
A B

So, disty(A, B; dg) is a quadratic fn of «, f: N

b+

diste(A,B;dg) = (1 — «)[(1 — B)do(ay, by) + Bdy(ay, by)] + al(1 — B)dy(az, by) + Bdy(az, by)]

Given a, decision to merge A, B or A', B’ quadratic boundary, defined by 8 pts.




Clustering Subsets of Omniglot

+

: r ; . ‘ ' Improvement of 9.1%
0.0 0.2 0.4 0.6 0.8 1.0

Stroke Distance g MNIST Features




Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is O(log n), so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic in
= with n boundaries.

S

IQP
objective
value




Data-driven Mechanism Design

+ Similar ideas for sample complex. of data-driven mechanism.

design for revenue maximization. [Balcan-Sandholm-Vitercik, EC 183(}&?5
e T
= (\,, VA

 Pseudo-dim of {revenuey: M € M} for multi-item multi-buyer s‘éﬁmgs

*  Many families: second-price auctions with reserves, posted pricing,
two-part tariffs, parametrized VCG auctions, etc.

« Key insight: dual function sufficiently structured.

* For a fixed set of bids, revenue is piecewise linear fnc of parameters.

2nd-price auction with reserve Posted price mechanisms

Revenue Revenue

2(»’;‘
highest
bid

Reserve r

2 Highest
highest bid
bid




General Sample Complexity via Dual Classes

[Balcan-DeBlasio-Kingsford-Dick-Sandholm-Vitercik, 2019]

«  Want to prove that for all algorithm parameters a:

Tl—IZ‘ES cost, (1) close to E[cost,(I)].

* Function class whose complexity want to control: {cost,: parameter a}.

* Proof takes advantage of structure of dual class {cost;: instances I}.

Theorem: Suppose for each cost;(a) there are < N boundary fns
f, f5, ... € F s. t within each region defined by them, 3 g € G s.1.

cost;(a) = g(a).
Pdim({cost,(I)}) = O((dF* + d¢+) log(dg+ + dg+) + dg= log N)

dg- =VCdim of dual of F, dg+ =Pdim of dual of G.




General Sample Complexity via Dual Classes

Theorem: Suppose for each cost;(«a) there are < N boundary fns
f,, f,, ... € F s. T within each region defined by them, 3 g € G s.t.
costy(a) = g(a).

Pdim({cost,(1)}) = O((dp* + dg+) log(dp+ + dg+) + dg= log N)
dg- =VCdim of dual of F, dg+ =Pdim of dual of G.




Online Algorithm Selection

+  So far, batch setting: collection of typical instances given upfront.

[Balcan-Dick-Vitercik, FOCS 2018], [Balcan-Dick-Pedgen, 2019] online alg. selection.

+ Challenge: scoring fns non-convex, with lots of discontinuities.

Cannot use known techniques.

+ Identify general properties (piecewise Lipschitz fns with
dispersed discontinuities) sufficient for strong bounds.

+ Show these properties hold for many alg. selection pbs.




Dispersion, Sufficient Condition for No-Regret

Piecewise Lipschitz
function

VR
W RN

: T /

Lipschitz within each
piece

{u; (), ...,ur(*)} is (w, k)-dispersed if any ball of radius w contains
boundaries for at most k of the u;.

Not disperse

Many boundaries within interval

Disperse

VS
/

A

Few boundaries within any
interval




Summary and Discussion

+  Strong performance guarantees for data driven algorithm selection
for combinatorial problems.

*  Provide and exploit structural properties of dual class for good
sample complexity and regret bounds.

+  Learning theory: techniques of independent interest beyond
algorithm selection.




Reducing ML Bias using
Truncated Statistics

Constantinos Daskalakis
EECS and CSAIL, MIT




High-Level Goals

) Selection bias in data collection
= train distribution # test distribution

= prediction bias (a.k.a. “ML bias”)

J Our Work: decrease bias, by developing machine learning
methods more robust to censored and truncated samples




High-Level Goals

) Selection bias in data collection

REGRESSION
MODELS
Censored,

Sample Selected,
or Truncated Data

= train distribution # test distribution

RICHARD BREEN

L]

= prediction bias (a.k.a. “ML bias”)

st TR walhadad sl rag e

J Our Work: decrease bias, by developing machine learning TRUKﬁSTED
methods more robust to censored and truncated samples CENSORED
SAMPLES
Truncated Statistics: samples falling outside of observation “window” are o g
hidden and their count is also hidden
Censored Statistics: ditto, but count of hidden data is provided A. Currono Cove

o limitations of measurement devices
o limitations of data collection
o experimental design, ethical or privacy considerations,...




Motivating Example: IQ vs Income
Goal: Regress (IQ, Training, Education) vs Earnings [Wolfle&Smith’56, Hause'71,...]

Data Collection: survey families whose income is smaller than 1.5 times the poverty
line; collect data (x;,y;); where

* x;: (IQ, Training, Education,...) of individual i
* y;:earnings of individual i
Regression: fit some model y = hg(x) + ¢, e.8.y =0"x + ¢

Obvious Issue: thresholding incomes may introduce bias

[t does, as pointed out by [Hausman-Wise, Econometrica’76] debunking prior
results “showing” effects of education are strong, while of IQ and training are not




Motivating Example 2: Height vs Basketball

Goal: Regress Height vs Basketball Performance

Data Collection: use NBA data (x;,y;); where
* x;: height of individual i
* y;: average number of points per game scored by individual i

Regression: fit some model y = hg(x) + ¢

Obvious Issue: by using NBA data, we might infer that height is neutral or even
negatively correlated with performance




What Happened?

Mental Picture:

Vanilla Linear Regression

Truth: y; = 0 - x; + ¢;, for all i




What Happened?

Mental Picture:

Vanilla Linear Regression Data truncated on the Y-axis

Truth: y; = 0 - x; + ¢;, for all i




What Happened?

Mental Picture:

Vanilla Linear Regression

Truth: y; = 0 - x; + ¢;, for all i

Data truncated on the Y-axis




Motivating Eg 3: Truncation on the X-axis

Gender Darker Darker
Classifier Male Female

s

Microsoft 94.0% 79.2%
99.3% 65.5%

88.0% 65.3%

| e!v

Buolamwini, Gebru, FAT 2018

Lighter
Male

100%

99.2%

99.7%

Lighter
Female

98.3%

94.0%

92.9%

Largest
Gap

20.8%

33.8%

34.4%

Explanation: Training data contains
more faces that are of lighter skin tone,
male gender, Caucasian

= Training loss of gender classifier pays
less attention to faces that are of darker
skin tone, female gender, non-Caucasian

= Test loss on faces that are of darker
skin tone, female gender, non-Caucasian
1S WOrse

Classical example of bias in ML
systems




Menu

* Motivation
* Flavor of Models, Techniques, Results
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Problem 1: Truncation on the Y-Axis

(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regression Model:

production of training data

y

W. Pr. W. PI.

1-$() B)

throw (x, y) add(x, y) to
to the trash training set




Motivating Eg 3: Truncation on the X-axis

Gendcr. Darker Darker Lighter Lighter Explanation: Training data Contains
Classifier Male Female Male Female . .

more faces that are of lighter skin tone,
male gender, Caucasian

™

Microsoft 94.0% 79.2% 100% 98.3%

99.3% 65.5% 99.2% 94.0%

880%  65.3% 007%  92.0% = Training loss of gender classifier pays
less attention to faces that are of darker
skin tone, female gender, non-Caucasian

= Test loss on faces that are of darker
skin tone, female gender, non-Caucasian
1S WOrse

Classical example of bias in ML
systems

Buolamwini, Gebru, FAT 2018




Problem 1: Truncation on the Y-Axis
(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regr ession Model: production of training data
* (unknown) distribution D over covariates x

y

* (unknown) response mechanism hg:x =y, 6 € ©
* (unknown) noise distribution N,,, w € ()

* (known) tiltering mechanism ¢:y — p € [0,1]

throw (x, y) add(x, y) to
to the trash _ training set




Problem 1: Truncation on the Y-Axis
(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regression Model: production of training data
X~D

!

throw (x, y) add(x, y) to
to the trash training set




Problem 1: Truncation on the Y-Axis

(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regression Model:

throw (x,y) add(x, y) to
| to the trash | training set

production of training data

x~D

y

W. pr. W. pr.

$0)




Problem 1: Truncation on the Y-Axis
(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regr ession Model: production of training data
* (unknown) distribution D over covariates x

* (unknown) response mechanism hg:x -y, 6 € ©
* (unknown) noise distribution N,,

* (known) tiltering mechanism ¢:y - p € [0,1]

Goal: given filtered data (x;, y;); recover 6 throw (x,y) B add(x,y)to
to the trash _training set |




Problem 1: Truncation on the Y-Axis
(recall: IQ vs Earnings, Height vs Basketball)

Truncated Regr ession Model: production of training data
* (unknown) distribution D over covariates x

* (unknown) response mechanism hg:x -y, 6 € ©
* (unknown) noise distribution N,,

s (known) filtering mechanism (]5: B ¢ A= [0,1] W. pr. W. Pr.
1-$() N\ ¢

Goal: given filtered data (x;, y;); recover 6 throw (x'v) B add(ey) o
to the trash _ training set

Results [w/ Gouleakis, Tzamos, Zampetakis COLT’19, w/ Ilyas, Rao, Zampetakis'19] :
- Practical, SGD-based likelihood optimization framework
- Computationally and statistically efficient recovery of true parameters for
truncated linear/probit*/logistic regression®
- prior work: inefficient algorithms, and error rates exponential in dimension




Comparison to Prior Work On Truncated

Regression _
Asymptotic Analysis of Truncated/Censored o

. Sampie Selected,
Regressmn [ Tobin 1958], [Amemiya 1973], [Hausman, Wise 1976], [Breen or THoncated Data

1996], [Hajivassiliou-McFadden’97], [Balakrishnan, Cramer 2014], Limited
Dependent Variables models, Method of Simulated Scores, GHK Algorithm

Technical Bottlenecks:

* Convergence rates: Oy (%)

* Computationally inefficient algorithms PR

Our work: optimal rates O ( \/%), efficient algorithms,

arbitrary truncation sets




Technical Vignette: Truncated Linear Regression

production of training data

x~D

y

throw (x, y) add(x, y) to
to the trash training set




Comparison to Prior Work On Truncated

Regression _
Asymptotic Analysis of Truncated/Censored moaas ™

. Sampie Selected,
RegreSSIOn [TObin 1958]1 [Amemiya 1973], [Hausman, Wise 1976], [Breen orTrﬁncated lt)ata

1996], [Hajivassiliou-McFadden’97], [Balakrishnan, Cramer 2014], Limited
Dependent Variables models, Method of Simulated Scores, GHK Algorithm

Technical Bottlenecks:

* Convergence rates: Og4 (%)

* Computationally inefficient algorithms At

Our work: optimal rates O ( \/%), efficient algorithms,

arbitrary truncation sets




What Happened?

Mental Picture:

Vanilla Linear Regression Data truncated on the Y-axis

Truth: y; = 0 - x; + ¢;, for all i




Comparison to Prior Work On Truncated

Regression _
Asymptotic Analysis of Truncated/Censored o

. Sampie Selected,
Regr68810n [TObin 1958]/ [Amemlya 1973], [Hausman, Wise ]976], [Breen orTrgncated lt)ata

1996], [Hajivassiliou-McFadden’97], [Balakrishnan, Cramer 2014], Limited
Dependent Variables models, Method of Simulated Scores, GHK Algorithm

Technical Bottlenecks:

* Convergence rates: Oy4 (%)

* Computationally inefficient algorithms o

Our work: optimal rates O ( \/%), efficient algorithms,

arbitrary truncation sets




Technical Vignette: Truncated Linear Regression

production of training data

y

W. PI. W. Pr.

1- @) $O)

throw (x,y) add(x, y) to
to the trash _ training set




Technical Vignette: Truncated Linear Regression

T

(3-07)

2

Data distribution: pg(x,y) = %— -D(x)-e 2

- p(y)

production of training data

!

W. Pr. W. Pr.

1- () $)

throw (x, y) add(x, y) to
to the trash training set




Technical Vignette: Truncated Linear Regression

1 _(y—GTx) . 5
Data distribution: Do (%, y) —_ =+ D(x) -e > . () production of training data
Population Log-Likelihood:
(y—87x)° J
LLEG ) = ]E(x,y)~p§,ia‘" log D(x) — > + log p(y) —logZ
W. pr. W. pr.
1-$0) $G)

throw (x, y) add(x, y) to
to the trash _ training set




Technical Vignette: Truncated Linear Regression

2

) _-87) . .
Data distribution: pg(x,y) = = D(x) -e 2 - p(y) production of training data
Population Log-Likelihood:
(y—6"x)

LL(@) = E train [logD(x) — + log p(y) — logZ]

(x,y)~pg+ 2

Issue: LL(6) involves stuff we don’t know (D), and even if
we did it involves stuff we wouldn't be able to tractably
calculate (Z)

W. pr.

$O)

throw (x,y) add(x, y) to
to the trash | training set




Technical Vignette: Truncated Linear Regression

2

(3-0T)

Data distribution: pg(x,y) = % -D(x) e~ 2 - p(y) production of training data

}

Population Log-Likelihood:
(y—67x)°

2

Issue: LL(6) involves stuff we don’t know (D), and even if
we did it involves stuff we wouldn’t be able to tractably
calculate (Z)

Yet, Stochastic Gradient Descent (SGD) can be performed to the trash JMl training set
on negative log-likelihood

LL(@) = E train [logD(x) — + log dp(y) — logZ]

(X,y)""pe*

W. pr.

o)

In particular, easy to define random variable whose
expectation is the gradient at a given 6, without knowledge
of D and no need to compute Z




Technical Vignette: Truncated Linear Regression

production of training data

x~D

!

— Batch gradient descent
— Mini-batch gradient Descent
-~ Stochastic gradient descent

throw (x, y) add(x, y) to
to the trash | training set

(y—6"x)"

2

LL(6) = E train [lOgD(X) —

(x,¥)~pg+ +logp(y) — logZ

Vg LL(Q) — IE(x’y)Npterxain[—(y = QTX)X] = lE(x'y)Npgain[—(y — 9"'x)x]




Technical Vignette: Truncated Linear Regression

— Batch gradient descent
— Mini-batch gradient Descent
- Stochastic gradient descent

Al
train [logD(X) — (y : X)

LL(6) = E( )t .

+ logp(y) —logZ

Vg LL(Q) — IE(x,y)Npter;am[—(y = 97'X)X] = IE(x’y)Npgain[—(y = 9Tx)x]

Easy to define random variable whose
expectation is the gradient at a given 6, without
knowledge of D and no need to compute Z

Summary: We cannot run or green, but we
can run

Issue 2: this random variable better be efficiently
samplable, have small variance

Requires restricting optimization in
appropriately defined space

Issue 3: for parameter estimation need neg. log-
likelihood to be strongly convex

Requires (anti-)concentration of measure




E.g. Application: Learning Single-layer Relu
Nets

N\
— - = Noisy-Relu = max{0, w' - x + £},
P where e~ (0,1)

Direct corollary: In the realizable setting, given input-

output pairs, obtain O ( \[

input—dimension

= ) error rate




E.g. Application 2: NBA data

NBA player data after year 2000:
x;: height of player i
y;: number of points per game of player i

Uncensored Data - Least Squares

Points per Game are negatively
correlated with height!
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E.g. Application 2: NBA data

NBA player data after year 2000:

x;: height of player i

y;: number of points per game of player i

filtering : look at players with at least 8 points per game

Censored Data - Least Squares

1t Points per Game seem positively

o. .!. ' o .!' : 3 '
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E.g. Application 2: NBA data

NBA player data after year 2000:

x;: height of player i

y;: number of points per game of player i

filtering : look at players with at least 8 points per game

Censored Data - SGD + MLE

Points per Game are negatively
correlated with height!
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Problem 2: (Unknown) Truncation on the X-Axis
(recall: gender classification viz-a-viz skin tone)

Truncated Classification Model: production of training data

* (unknown) distribution D over uncensored
image-label pairs (x,y) ~ D

* (unknown) filtering mechanism ¢,,, w € Q, s.t. (x,y) is W. pr. W. pr.

included in train set with probability ¢, (x) 1= %w),

* (sample access) unlabeled image distribution D, i.e. big throw (x,y) Add(s, y) to
enough test set (Of images) | to the trash | training set

* Goals: given filtered data (x;, y;); and sample access to D, (unfiltered image dist'n)
* find image-to-label classifier minimizing classification loss on uncensored data

* Results: practical, SGD-based likelihood optimization framework [w/
Kontonis, Tzamos,Zampetakis]

e alternative to other domain adaptation approaches




Example Application: Gender Classification 2

Train gender classifier on an adversarially constructed balanced training set of
labeled male-female images, which predominantly contains images that a 95%
accurate gender classifier misclassifies
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Example Application: Gender Classification 2

Train gender classifier on an adversarially constructed balanced training set of

labeled male-female images, which predominantly contains images that a 95%
accurate gender classifier misclassifies:

 use 1000 misclassified males and females, and 100 correctly classified males
and females

Test classifier on a random balanced subset of CelebA dataset




Example Application: Gender Classification 2

Train gender classi = —5 balanced training set of

labeled male-fema tains images that a 95%

accurate gender cle
* use 1000 miscla rrectly classified males
and females

Test classifier on a

(a) A comparison of the accuracy of a classifier trained
using our weighting method vs. a naively trained clas-
sifier on CelebA as a function of the training epochs.




Problem 3: Truncated Density Estimation

Model:

production of training data

' W. Pr.

¢ (x)

W. pr.

1—¢(x)

throw x to add x to
the trash training set




Example Application: Gender Classification 2

Train gender classi = —3 balanced training set of

labeled male-fema tains images that a 95%

accurate gender cle
* use 1000 miscla rrectly classified males
and females

Test classifier on a

(a) A comparison of the accuracy of a classifier trained
using our weighting method vs. a naively trained clas-
sifier on CelebA as a function of the training epochs.




Problem 3: Truncated Density Estimation

Model:

* (unknown) parametric distribution Dy over R¢
* uncensored data-points are vectors x ~ Dy

production of training data

* (known) filtering mechanism ¢: R% — [0,1]
* x included in train set with probability ¢ (x)

: : throw x to add xto |
Goal: given filtered data (x;); recover 6 the trash training set

Results: practical SGD & MLE based framework [w/ Ilyas, Zampetakis]

* Fast rates + rigorous recovery of true parameters for Gaussians and other
exponential families [w/ Gouleakis, Tzamos, Zampetakis FOCS"18]

* Unknown 0/1 filtering: [Kontonis, Tzamos, Zampetakis FOCS"19]




Comparison to Prior Work On Truncated
Density Estimation —

REGRESSION

Learning Truncated/Censored Distributions MODELS

Censored,
Sampie Selected,

[Galton 1897], [Pearson 1902], [Pearson, Lee 1908], [L.ee 1914], or Truncated Data
[Fisher 1931], [Hotelling 1948, [Tukey 1949],...,[Cohen’16]

Technical Bottlenecks:

* Convergence rates: Oy (%)

* Computationally inefficient algorithms

#params

Our work: optimal rates O ( \/ ), efficient algorithms,

n

arbitrary truncation sets




Summary

[ Missing Observations
= train set dist’'n # test set distribution

= prediction bias (a.k.a. “Al bias”)

J Our Work: decrease bias, by developing machine learning methods more
robust to censored and truncated samples

4 General Framework: SGD on Population Log-Likelihood

J End-to-end guarantees: optimal rates and efficient algorithms for truncated
Gaussian estimation, and truncated linear/logistic/probit regression




Summary

 Missing Observations
= train set dist’'n # test set distribution

= prediction bias (a.k.a. “Al bias”)

J Our Work: decrease bias, by developing machine learning methods more
robust to censored and truncated samples

4 General Framework: SGD on Population Log-Likelihood

J End-to-end guarantees: optimal rates and efficient algorithms for truncated
Gaussian estimation, and truncated linear/logistic/probit regression

Thank you!



Towards Explaining the Regularization
Effect of Initial Large Learning Rate

Yuanzhi Li* , Colin Wei *, Tengyu Ma (@)

Stanford University




How do we design faster optimizers for deep learning?

Faster training is not that difficult: just use a smaller learning rate!

error

PpRp——
200 240 300

"
¥  Algorithms can regularize!

+ ¢ The lack of understanding of the generalization hampers
" the study of optimization!

Why does large nitial learning rate help generalization?

[Keskar et al’17, Hoffer et al’18]



Rnalysis Has to Be History-Sensitive --- The Imitial
Learning Rate Makes a Difference

» Linear models do not have this property
»with regularization: strongly convex loss, unique minimizer

»w/o regularization: the distribution of SGD iterates largely depends
on the final learning rate

» Studying the limiting behavior of SGD (as T — ©0) does not suffice
» NTK is almost a linear model with convex optimization in Kernel space

» This work: for a toy data distribution and two-layer neural nets, we
show that SGD learns various patterns in different orders with different
learning rate schedules, which results in different generalizations.




Two Types of Patterns
s P

X 00O
»Pattern 1: hard-to-generalize, easy-to-fit pattern X ‘0O O

» needs only simple model to fit linearly classifiable

» requires many samples ( > dimension) to generalize patterns




Two Types of Patterns

»Pattern 1: hard-to-generalize, easy-to-fit pattern
» needs only simple model to fit

» requires many samples ( > dimension) to generalize

»Pattern 2: easy-to-generalize, hard-to-fit patterns
» requires complex models to fit

» requires few samples to generalize

X 0 O

clustered but not
linearly separable




Learning Order Matters When Data Distribution is

Heterogenous X }
“x iD0
» A toy data distribution with mixed patterns X 0 O
» Adatapoint x = (xq,Xx3), X1 € R4, X3 € R linearly classifiable
» Type |: 20% of examples = (x4, 0), x; ~ pattern 1 patterns

» Type Il: 20% of examples = (0, x,), x, ~ pattern 2
» Type lll: 60% of examples = (xq, x5)

clustered but not
linearly separable




Learning Order Matters When Data Distribution is

Heterogenous X,
X x i00
» A toy data distribution with mixed patterns X ‘0O O
» Adatapoint x = (xq1,X3), X1 € R4, X3 € R¢ linearly classifiable
» Type |: 20% of examples = (x4, 0), x; ~ pattern 1 patterns

» Type ll: 20% of examples = (0, x,), x, ~ pattern 2
» Type lll: 60% of examples = (x4, x5)

clustered but not
linearly separable

» A'g 1:
» First learns pattern 1: best linear fit to type | & lll data

» Then learns pattern 2: non-linear fit to type |l data

» Alg. 2:
» First learns pattern 2: non-linear fit to type Il & Il data
» Then learns pattern 1: best linear fit to type | data




Learning Order Matters When Data Distribution is

Heterogenous X, }
A x i 00
» A toy data distribution with mixed patterns X 0O O
» A datapoint x = (x1, x,), x; € RY, x, € R? linearly classifiable
» Type |: 20% of examples = (x4, 0), x; ~ pattern 1 patterns

» Type ll: 20% of examples = (0, x,), x, ~ pattern 2
» Type lll: 60% of examples = (x4, X>)

clustered but not
linearly separable

» Alg. 1:
» First learns pattern 1: best linear fit to type | & lll data__

» Then learns pattern 2: non-linear fit to type Il data

» Alg. 2:
» First learns pattern 2: non-linear fit to type Il & Ill data 20% of data
» Then learns pattern 1: best linear fit to type | data ——generalize worse

~u80% of data,
generalize better




Learning Order Matters When Data Distribution is

Heterogenous X, }
~x 100
» A toy data distribution with mixed patterns X ‘0O O
» A datapoint x = (x1, x3), X1 € R?, x, € RY linearly classifiable
» Type |: 20% of examples = (x4, 0), x; ~ pattern 1 patterns
» Type ll: 20% of examples = (0, x,), x, ~ pattern 2
. &0 = X @ RX
» Type lll: 60% of examples = (x4, x5)
| clustered but not
S Ale 1 k,,'—| large learning rate + annealing | linearly separable
» RAIg. 1. :
» First learns pattern 1: best linear fit to type | & Ill data__
~.80% of data,

» Then learns pattern 2: non-linear fit to type |l data .
f : | generalize better
> Alg. 2:< ’/’l’ small learning rate |

» First learns pattern 2: non-linear fit to type Il & Il data 20% of data
» Then learns pattern 1: best linear fit to type | data ——generalize worse

» (Note: generalization of pattern 2 is always good
regardless the # samples used to learn it)




Learning Order Matters When Data Distribution is
Heterogenous

History-dependency from logistic loss: once an example is fit with
good confidence, it will not affect much the training later

"l" large learning rate + annealing ‘

> Alg. 1: <
» First learns pattern 1: best linear fit to type | & lll data
» Then learns pattern 2: non-linear fit to type |l data

> Alg. 2:{_,,/|f small learning rate ‘

» First learns pattern 2: non-linear fit to type Il & Il data
» Then learns pattern 1: best linear fit to type | data

» (Note: generalization of pattern 2 is always good
regardless the # samples used to learn it)




Interlude: Experiments on Artificial Datasets
Learning Orders with Synthetic Artificially Easy-to-Generalize Patterns

» Add easy-to-generalize patches to CIFAR images
» Two patches v;, v;’ for each class i

» 20% of examples have no patch
» 20% of examples have only patch
» 60% of examples are mixed
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Interlude: Experiments on Artificial Datasets
Learning Orders with Synthetic Artificially Easy-to-Generalize Patterns

» Add easy-to-generalize patches to CIFAR images
» Two patches v;, v;’ for each class i

» 20% of examples have no patch é L
» 20% of examples have only patch o3
» 60% of examples are mixed
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Interlude: Experiments on Artificial Datasets
Learning Orders with Synthetic Artificially Easy-to-Generalize Patterns
» Add easy-to-generalize patches to CIFAR images

» Two patches v;, v;’ for each class i

» 20% of examples have no patch

» 20% of examples have only patch

» 60% of examples are mixed
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» Large learning rate doesn’t learn the patches

» Learning the patches early hurts the generalization of clean images




A Toy Data Distribution with Theoretical Analysis

A datapoint x = (x4, %,), x; € R%, x, € R?
» Type |: with prob. p, x = (x,0), (x1,y) ~ P

» Type Il: with prob. p, x = (0, x3), (x3,¥) ~ Q

distribution P
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A Toy Data Distribution with Theoretical Analysis

A datapoint x = (x4, %5), x; € RY, x, € R?
» Type |: with prob. p, x = (x4,0), (x1,y) ~ P
» Type Il: with prob. p, x = (0, x,), (x3,¥) ~ Q
» Type lll: with prob. 1 — 2p, x = (xq,x3), (x,y) ~ P, (x5,¥) ~ Q

distribution P distribution @
o — Z .
% Rd Z ( Z 4+ {
% : [©
xX| i O
x x| i |09
X| : |[OQ
e | \“
. \
r_r_wargl\r}_ half spherical small angle
y =1/vd Gaussian




A Toy Data Distribution with Theoretical Analysis

Not linear separable

Classifiable by two layer neural nets

distribution P distribution @
x| | R "
X i |©
xX| i PO
x x| i |09
X| i [OQ
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r_r_largl\r}_ half spherical small angle
y =1/vd Gaussian




Main Theoretical Statement (Informal)
» Model: f(x) = w'relu(Wx,) + v'relu(Vx,) (with wide hidden layer)

» Loss: regularized cross-entropy loss

» Algorithm: gradient descent with spherical Gaussian noise

» A lot of other assumptions on the hyperparameters

» Both algorithms learn pattern 2, and generalize for pattern 2




Main Theoretical Statement (Informal)
» Model: f(x) = w'relu(Wx,) + v'relu(Vx,) (with wide hidden layer)

» Loss: regularized cross-entropy loss
» Algorithm: gradient descent with spherical Gaussian noise

» A lot of other assumptions on the hyperparameters

» Both algorithms learn pattern 2, and generalize for pattern 2
» Alg. 1 (large learning rate + annealing) learns pattern 1 first utilizing (1 —

p) fraction of data; generalization error < \/d/((l — p)n)

» Alg. 2 (small learning rate throughout) learns pattern 1 after pattern 2 is
learned, and thus only utilizes p fraction of data. Whenpn < d/2, no
generalization for pattern 1.




Basic Intuitions

» Small learning rate: the noise from SGD is small (essentially NTK regime)

» Large learning rate: the noise is big; weights change a lot

» Unless a weight vector w defines a hyperplane that separates z — ¢
and z + ¢, the neuron relu(w ' x) behaves as a linear function

relu(w'(z—0)) — 2relu(w'2) + reluiw'(z+ ) =0
» Network behaves like linear functions on distribution Q

distribution @
Zi—iC. ¥ Z24{

/”’s’mall angle




More Technical Intuitions

» Decomposition of weight matrix U under SGD

Ut - Ut + Ut
N—— N—
cumulative contribution cumulative contribution
of the full gradient of randomness (= the

noises and initialization)

» Large learning rate: U, changes fast
» Small learning rate: U, changes slowly

» (This is true even if we re-scale the timescale to take into account that
smaller learning rate trains slower)




More Technical Intuitions (Cont'd)

» Neural network “Taylor expansion”
relu(Uiz) = 1(U;z) © Uiz

= 1(Uiz) © Uz + 1(U,z) © Uz
\— —
~(0.cancellation due to (?', T

_~—

~ 1(Uyz) ® Uz, up to o(||U]])




Mitigation Strateqy

» Theory suggests that large learning rate injects larger noises in activation
patterns, which helps avoid learning the easy-to-generalize pattern

» Empirical strategy: add pre-activation noises
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» Also helps in training clean data with small learning rate

Table 1: Validation accuracies for WideResNet 16 trained and tested on original CIFAR-10 images
without data augmentation.

Method Val. Acc
Large LR + anneal 9041%
Small LR + noise 89.65%

Small LR 84 .93%




Wrap Up

» Large learning rate learns hard-to-generalize, easy-to-fit pattern

» Small learning rate learns easy-to-generalize, hard-to-fit patterns

» How do we identify these patterns in real data?

» Can we make the result more general (instead of only on a contrived
toy example)?




Some Broader Qutlook

» Algorithmic/implicit regularization could be very challenging/subtle to
understand and manipulate

» Not clear what complexity measure the algorithm is regularizing in
our toy case

» Shortcut: could we find explicit regularizers that subsume the
algorithmic/implicit regularization?
» Data-dependent regularization is promising [Wei-M.19]

» Heterogeneous datasets are likely where the interesting phenomenon
occurs, and where practical improvements are easier

» Standard datasets are well-tuned for algorithmic regularization

» [Cao-Wei-Gaidon-Arechiga-M.'19] explicit regularization for imbalanced
datasets: very simple theory with good empirical performance




Some Broader Qutlook

» Algorithmic/implicit regularization could be very challenging/subtle to
understand and manipulate

» Not clear what complexity measure the algorithm is regularizing in
our toy case

» Shortcut: could we find explicit regularizers that subsume the
algorithmic/implicit regularization?
» Data-dependent regularization is promising [Wei-M.19]

» Heterogeneous datasets are likely where the interesting phenomenon
occurs, and where practical improvements are easier

» Standard datasets are well-tuned for algorithmic regularization

» [Cao-Wei-Gaidon-Arechiga-M.'19] explicit regularization for imbalanced
datasets: very simple theory with good empirical performance

Thank you!




