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Explaining trends in high-volume data remains
a fundamental challenge for today’s data

analysts

» Example: tracking a mobile app’s user engagement
» Product manager wants to determine why the number of daily active users
for her app declined in the last week

» Has to inspect thousands of possible causes: user demographics, device
and location metadata, temporal/seasonal factors

» All combinations of these, too!

» With traditional OLAP and Bl tools, PM has to manually search
through all possible combos (i.e., series of GROUP BY and CUBE

queries)




Explanation Engines automate this search
Drocess

» MacroBase [SIGMOD 2017]

» Scorpion [VLDB 2013]

» Data X-Ray [SIGMOD 2015]

» [Roy and Suciu, SIGMOD 2014

» [dentify features that are statistically significant in moving a
particular metric that the user cares about

» device make=“Apple”, os version=“9.0.1"7,
app_version=“v50” is 2x more likely to have lower DAU




Today’s Explanation Engines are lacking
two things

1. Interoperability

» Analysts want to search for explanations as part of a larger workflow; the
explanation query is only part of the pipeline (e.g., ETL, traditional OLAP
queries, visualizations)

» Current explanation engines are usually standalone tools

2. Scalability

» Analysts want to their explanation queries to be interactive; explanation
engines don't scale to today’s data volumes



Our work: The DIFF operator

1. Declarative relational operator
» Unifies the core functionality of several explanation engines

» We can capture the semantics of MacroBase/Data X-Ray/Scorpion queries
using a single interface

2. Logical and Physical Optimizations for DIFF

» Use DIFF query plan and apply new query optimization techniques

3. Scalable implementation of DIFF
» Integrate DIFF as an extension to MacroBase—MacroBase SQL
» Single node and Spark implementations



An example workflow using DIFF

Crash Logs
| inestans Lpperion | ice e Lo L
07-21-1900:01 |Phone X false
07-28-19 12:00 V2 Galaxy S9 8.0 true

09-04-18 23:59 v3 HTC One 8.0 false



Analyzing crash logs with DIFF

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash_logs
DIFF

(SELECT * FROM logs WHERE crash
ON app_version, device type, o0s
COMPARE BY risk ratio »>= 2.0, support >= 0.05;

false) success logs
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Analyzing crash logs with DIFF

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash _logs
DIFF

(SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05;

false) success logs

10 5 15%
v2 iPhone X - 7.25 30%

explanation v3 Galaxy S9 11.0 975 20%




Compare week to week using DIFF

SELECT * FROM

(SELECT * FROM logs WHERE crash = true and timestamp
BETWEEN ©8-28- 18 AND 09-04-18) this week

DIFF

(SELECT * FROM logs WHERE crash = true and timestamp
BETWEEN ©08-21- 18 AND 08-28-18) last week

ON app_version, device type, os
COMPARE BY risk ratio »>= 2.0, support >= 0.05;

device_type “

Galaxy S9 75%




DIFF operator has found successful use cases
In many industrial and academic workloads
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Elements of the DIFF operator

SELECT * FROM

(SELECT * FROM logs WHERE crash = true) crash_logs

DIFF

(SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05

false) success logs



Elements of the DIFF operator

SELECT * FROM
testrelation (SELECT * FROM logs WHERE crash
DIFF
control relation (SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05

true) crash logs

false) success logs



Elements of the DIFF operator

SELECT * FROM

SELECT * FROM logs WHERE crash = true) crash logs
5

DIFF

(SELECT * FROM logs WHERE crash = false) success logs
ON app version, device type, 0s dimensions
COMPARE BY risk ratio >= 2.0, support >= 0.05



Elements of the DIFF operator

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash _logs
DIFF

(SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05

difference metrics

false) success logs



Elements of the DIFF operator

SELECT * FROM

(SELECT * FROM logs WHERE crash
DIFF

(SELECT * FROM logs WHERE crash
ON app_version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05 MAX ORDER 3;

difference metrics max order of
combinations

true) crash _logs

false) success logs



Difference metrics allow us to generalize
to other explanation engines

» MacroBase: Risk Ratio, Support

» Data X-Ray: Diagnosis Cost

» Scorpion: Influence

» [Roy and Suciu, SIGMOD 2014 ]: Intervention

» Frequent [temset Mining: Support



Logical Optimizations: DIFF-JOIN
Predicate Pushdown

SELECT * FROM Query Plan

(crash_logs NATURAL JOIN users)
D1FF
(success logs NATURAL JOIN users) _ -
ON app_version, device type, os

COMPARE BY risk ratio >= 2.0,
support >= 0.05;

'~ success_
- logs




|dea: push the DIFF operator below the
JOIN operator

Query Plan




|dea: push the DIFF operator below the

JOIN operator
Query Plan Adaptive DIFF-JOIN Algorithm

1. Evaluate DIFF on foreign key column

— of crash_logs and success_logs to

find candidate keys
OO O¢
logs logs




|dea: push the DIFF operator below the

JOIN operator
Query Plan Adaptive DIFF-JOIN Algorithm

1. Evaluate DIFF on foreign key column
— of crash_logs and success_logs to

find candidate keys

» |f outputis large, abort and use
Q naive approach

 success_

\ logs




|dea: push the DIFF operator below the

JOIN operator
Query Plan Adaptive DIFF-JOIN Algorithm

1. Evaluate DIFF on foreign key column
— of crash_logs and success_logs to

find candidate keys

» |f outputis large, abort and use
ﬂ naive approach
2. Semi-join candidate keys with users
-- succesjs_' to find candidate values
. dogs

3. Evaluate DIFF on candidate values

—

Additional optimization:
prune search space using functional dependencies




Physical Optimizations for DIFF

i

Low-support attribute values pruned, remaining values
dictionary-encoded

Low-cardinality columns bitmap-encoded based on cost
model

Encoded data stored in columnar format for higher
cache locality

Embarrassingly parallel APriori explores feature
combinations for explanations



Implementation in MacroBase SQL

» Single node
» Fork of the original MacroBase repo
» 11.5 K lines of Java code

» DIFF + core subset of ANSI SQL supported: SELECT, WHERE, ORDER BY, JOIN, LIMIT

» Spark
» Integrated with Spark DataFrame API

» For standard SQL queries, MB SQL defers execution to Spark SQL and Catalyst
optimizations

» AllDIFF queries are i) optimized using our custom Catalyst rules, and ii) translated to
equivalent Spark operators (e.g., map, filter, reduce, groupBy)

» Pruning optimization to reduce communication costs
» 1.6K lines of Java code



Implementation in MacroBase SQL

» Single node

» Fork of the original MacroBase repo
» 11.5 K lines of Java code

https://

Open source:
acrobase.stanford.edu/docs

» DIFF + core subset of ANSI SQL supported: SELECT, WHERE, ORDER BY, JOIN, LIMIT

» Spark

» Integrated with Spark DataFrame AP|

» For standard SQL queries, MB SQL defers execution to Spark SQL and Catalyst

optimizations

» AllDIFF queries are i) optimized using our custom Catalyst rules, and ii) translated to
equivalent Spark operators (e.g., map, filter, reduce, groupBy)

» Pruning optimization to reduce communication costs

» 1.6K lines of Java code




Evaluation: Single Node

Censys A 3.6 GB 20M 19.5M
Censys B 2.6 GB 8M 102 8149 M
MS-Telemetry A 17 GB 50M 13 734 M
MS-Telemetry B 13GB 19M 15 1.3B
Center for Medicare Studies 7.7 GB 15M 16 63.8M
» Intel Xeon E5-2690 v4 CPU (Broadwell), 512GB of » For each dataset, execute DIFF query and
RAM measure end-to-end runtime (ingest time
» Benchmarked MacroBase SQL against: omitted)
» MacroBase » When possible, DIFF query obtained
» Postgres from production workflow
» RSExplain » Difference Metrics={Risk Ratio,
» Data X-Ray Support}, MAX ORDER = 3, and
» SPMF Frequent [temset Miners (Apriori, dimensions are always categorical

FPGrowth) features



MB SQL outperforms both MacroBase
and Postgres across DIFF queries

B MacroBase Il Postgres i MB SQL
>24h
Q 5
© 10 7 1.5K*
& ] 988K .. 315K 27.6K
= 5.5K
= 10415
O
> !
€ 10’ -
= 26
T 135
10° | = Vi § .
MS-T MS-T Censys Censys CMS

A B A B
Risk Ratio + Support



MB SQL also outperforms Frequent
ltemset Miners

B SPMF Apriori i SPMF FPGrowth © MB SQL
>24h
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MB SQL generalizes to other Explanation
Engines—with good performance
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Adaptive Predicate Pushdown works for a
broad range of DIFF-JOIN queries
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Adaptive Predicate Pushdown works for a
broad range of DIFF-JOIN queries

~N 0

2X runtime
improvement
when applied to
MS-Telemetry B
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Evaluation: Spark

Censys 75 GB
MS-Telemetry A 60 GB 175M 13 132 M
» Sparkv2.2.1

» GCP cluster comprised of n1-highmem-4 instances

» Eachworker: 4 vCPUs, 2.2GHz Intel E5 v4 (Broadwell) processor, 26GB of
RAM

» Benchmarked MacroBase SQL against:
» Spark MLIib library (Apriori and FPGrowth implementations)



MB SQL in Spark exhibits near-linear scale
up

Censys: Risk Ratio + Support
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MB SQL in Spark exhibits near-linear scale
up

Censys: Risk Ratio + Support
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< 20 minutes on a day’s worth of anonymous data used
by a production service at Facebook
(benchmarked on Facebook’s production cluster)
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» The DIFF operator captures the core semantics of several recent
explanation engines—a singular relational interface that interoperates with
traditional OLAP SQL

» DIFF generalizes to many industrial and academic use cases

» DIFF presents new opportunities for adaptive query optimization; what
other SQL operators can we co-design with DIFF?

» We show that DIFF can be implemented in an efficient manner, both for the
single-node and distributed cases. What are the limits of this scalability?
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