DIFF: A Relational Interface
for Large-Scale Data
Explanation

Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu,
Atul Shenoy, Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu,
Jeff Naughton, Peter Bailis, Matei Zaharia

STANFORD

DAWN n Go g|e =




Explaining trends in high-volume data remains
a fundamental challenge for today’s data

analysts

» Example: tracking a mobile app’s user engagement
» Product manager wants to determine why the number of daily active users
for her app declined in the last week

» Has to inspect thousands of possible causes: user demographics, device
and location metadata, temporal/seasonal factors

» All combinations of these, too!

» With traditional OLAP and Bl tools, PM has to manually search
through all possible combos (i.e., series of GROUP BY and CUBE

queries)




Explanation Engines automate this search
Drocess

» MacroBase [SIGMOD 2017]

» Scorpion [VLDB 2013]

» Data X-Ray [SIGMOD 2015]

» [Roy and Suciu, SIGMOD 2014

» [dentify features that are statistically significant in moving a
particular metric that the user cares about

» device make=“Apple”, os version=“9.0.1"7,
app_version=“v50” is 2x more likely to have lower DAU




Today’s Explanation Engines are lacking
two things

1. Interoperability

» Analysts want to search for explanations as part of a larger workflow; the
explanation query is only part of the pipeline (e.g., ETL, traditional OLAP
queries, visualizations)

» Current explanation engines are usually standalone tools

2. Scalability

» Analysts want to their explanation queries to be interactive; explanation
engines don't scale to today’s data volumes



Our work: The DIFF operator

1. Declarative relational operator
» Unifies the core functionality of several explanation engines

» We can capture the semantics of MacroBase/Data X-Ray/Scorpion queries
using a single interface

2. Logical and Physical Optimizations for DIFF

» Use DIFF query plan and apply new query optimization techniques

3. Scalable implementation of DIFF
» Integrate DIFF as an extension to MacroBase—MacroBase SQL
» Single node and Spark implementations



An example workflow using DIFF

Crash Logs
| inestans Lpperion | ice e Lo L
07-21-1900:01 |Phone X false
07-28-19 12:00 V2 Galaxy S9 8.0 true

09-04-18 23:59 v3 HTC One 8.0 false



Analyzing crash logs with DIFF

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash_logs
DIFF

(SELECT * FROM logs WHERE crash
ON app_version, device type, o0s
COMPARE BY risk ratio »>= 2.0, support >= 0.05;

false) success logs



Analyzing crash logs with DIFF

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash_logs
DIFF

(SELECT * FROM logs WHERE crash
ON app_version, device type, 0s

COMPARE BY risk ratio >= 2.0, support >= 0.05;

false) success logs

10 5 15%
v2 iPhone X - 7.25 30%

v3 Galaxy S9 11.0 979 20%



Analyzing crash logs with DIFF

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash _logs
DIFF

(SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05;

false) success logs

10 5 15%
v2 iPhone X - 7.25 30%

explanation v3 Galaxy S9 11.0 975 20%




Compare week to week using DIFF

SELECT * FROM

(SELECT * FROM logs WHERE crash = true and timestamp
BETWEEN ©8-28- 18 AND 09-04-18) this week

DIFF

(SELECT * FROM logs WHERE crash = true and timestamp
BETWEEN ©08-21- 18 AND 08-28-18) last week

ON app_version, device type, os
COMPARE BY risk ratio »>= 2.0, support >= 0.05;

device_type “

Galaxy S9 75%




DIFF operator has found successful use cases
In many industrial and academic workloads

Google &=

|crosoft

{, CENSYS n




Elements of the DIFF operator

SELECT * FROM

(SELECT * FROM logs WHERE crash = true) crash_logs

DIFF

(SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05

false) success logs



Elements of the DIFF operator

SELECT * FROM
testrelation (SELECT * FROM logs WHERE crash
DIFF
control relation (SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05

true) crash logs

false) success logs



Elements of the DIFF operator

SELECT * FROM

SELECT * FROM logs WHERE crash = true) crash logs
5

DIFF

(SELECT * FROM logs WHERE crash = false) success logs
ON app version, device type, 0s dimensions
COMPARE BY risk ratio >= 2.0, support >= 0.05



Elements of the DIFF operator

SELECT * FROM
(SELECT * FROM logs WHERE crash

true) crash _logs
DIFF

(SELECT * FROM logs WHERE crash
ON app _version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05

difference metrics

false) success logs



Elements of the DIFF operator

SELECT * FROM

(SELECT * FROM logs WHERE crash
DIFF

(SELECT * FROM logs WHERE crash
ON app_version, device type, o0s
COMPARE BY risk ratio >= 2.0, support >= 0.05 MAX ORDER 3;

difference metrics max order of
combinations

true) crash _logs

false) success logs



Difference metrics allow us to generalize
to other explanation engines

» MacroBase: Risk Ratio, Support

» Data X-Ray: Diagnosis Cost

» Scorpion: Influence

» [Roy and Suciu, SIGMOD 2014 ]: Intervention

» Frequent [temset Mining: Support



Logical Optimizations: DIFF-JOIN
Predicate Pushdown

SELECT * FROM Query Plan

(crash_logs NATURAL JOIN users)
D1FF
(success logs NATURAL JOIN users) _ -
ON app_version, device type, os

COMPARE BY risk ratio >= 2.0,
support >= 0.05;

'~ success_
- logs




|dea: push the DIFF operator below the
JOIN operator

Query Plan




|dea: push the DIFF operator below the

JOIN operator
Query Plan Adaptive DIFF-JOIN Algorithm

1. Evaluate DIFF on foreign key column

— of crash_logs and success_logs to

find candidate keys
OO O¢
logs logs




|dea: push the DIFF operator below the

JOIN operator
Query Plan Adaptive DIFF-JOIN Algorithm

1. Evaluate DIFF on foreign key column
— of crash_logs and success_logs to

find candidate keys

» |f outputis large, abort and use
Q naive approach

 success_

\ logs




|dea: push the DIFF operator below the

JOIN operator
Query Plan Adaptive DIFF-JOIN Algorithm

1. Evaluate DIFF on foreign key column
— of crash_logs and success_logs to

find candidate keys

» |f outputis large, abort and use
ﬂ naive approach
2. Semi-join candidate keys with users
-- succesjs_' to find candidate values
. dogs

3. Evaluate DIFF on candidate values

—

Additional optimization:
prune search space using functional dependencies




Physical Optimizations for DIFF

i

Low-support attribute values pruned, remaining values
dictionary-encoded

Low-cardinality columns bitmap-encoded based on cost
model

Encoded data stored in columnar format for higher
cache locality

Embarrassingly parallel APriori explores feature
combinations for explanations



Implementation in MacroBase SQL

» Single node
» Fork of the original MacroBase repo
» 11.5 K lines of Java code

» DIFF + core subset of ANSI SQL supported: SELECT, WHERE, ORDER BY, JOIN, LIMIT

» Spark
» Integrated with Spark DataFrame API

» For standard SQL queries, MB SQL defers execution to Spark SQL and Catalyst
optimizations

» AllDIFF queries are i) optimized using our custom Catalyst rules, and ii) translated to
equivalent Spark operators (e.g., map, filter, reduce, groupBy)

» Pruning optimization to reduce communication costs
» 1.6K lines of Java code



Implementation in MacroBase SQL

» Single node

» Fork of the original MacroBase repo
» 11.5 K lines of Java code

https://

Open source:
acrobase.stanford.edu/docs

» DIFF + core subset of ANSI SQL supported: SELECT, WHERE, ORDER BY, JOIN, LIMIT

» Spark

» Integrated with Spark DataFrame AP|

» For standard SQL queries, MB SQL defers execution to Spark SQL and Catalyst

optimizations

» AllDIFF queries are i) optimized using our custom Catalyst rules, and ii) translated to
equivalent Spark operators (e.g., map, filter, reduce, groupBy)

» Pruning optimization to reduce communication costs

» 1.6K lines of Java code




Evaluation: Single Node

Censys A 3.6 GB 20M 19.5M
Censys B 2.6 GB 8M 102 8149 M
MS-Telemetry A 17 GB 50M 13 734 M
MS-Telemetry B 13GB 19M 15 1.3B
Center for Medicare Studies 7.7 GB 15M 16 63.8M
» Intel Xeon E5-2690 v4 CPU (Broadwell), 512GB of » For each dataset, execute DIFF query and
RAM measure end-to-end runtime (ingest time
» Benchmarked MacroBase SQL against: omitted)
» MacroBase » When possible, DIFF query obtained
» Postgres from production workflow
» RSExplain » Difference Metrics={Risk Ratio,
» Data X-Ray Support}, MAX ORDER = 3, and
» SPMF Frequent [temset Miners (Apriori, dimensions are always categorical

FPGrowth) features



MB SQL outperforms both MacroBase
and Postgres across DIFF queries

B MacroBase Il Postgres i MB SQL
>24h
Q 5
© 10 7 1.5K*
& ] 988K .. 315K 27.6K
= 5.5K
= 10415
O
> !
€ 10’ -
= 26
T 135
10° | = Vi § .
MS-T MS-T Censys Censys CMS

A B A B
Risk Ratio + Support



MB SQL also outperforms Frequent
ltemset Miners

B SPMF Apriori i SPMF FPGrowth © MB SQL
>24h

MS-T MS-T Censys Censys CMS
A B A B

Support



MB SQL generalizes to other Explanation
Engines—with good performance

B RSExplain = MB SQL

53.3K

10‘:

10° -
1073 I

MST MST Censys Censys CMS

Interventlon

B Data X-Ray MB SQL

10000 -

8000 -

6000 -

4000 -

2000

0_.

9415 93594

MS-T
B

Diagnosis Cost



Adaptive Predicate Pushdown works for a
broad range of DIFF-JOIN queries

N O

(o)}

| —e— Naive
1 == DIFF-JOIN w/out Threshold

Query Latency (s)
w BaN (9

N

(-

i ‘__ N' 4(‘—'
e
# of Candidate Foreign Keys




Adaptive Predicate Pushdown works for a
broad range of DIFF-JOIN queries

~N 0

2X runtime
improvement
when applied to
MS-Telemetry B

(@)

| —&— Naive
1 == DIFF-JOIN w/out Threshold

Query Latency (s)
w NaN U

N

=

i ‘__ N f
e
# of Candidate Foreign Keys




Evaluation: Spark

Censys 75 GB
MS-Telemetry A 60 GB 175M 13 132 M
» Sparkv2.2.1

» GCP cluster comprised of n1-highmem-4 instances

» Eachworker: 4 vCPUs, 2.2GHz Intel E5 v4 (Broadwell) processor, 26GB of
RAM

» Benchmarked MacroBase SQL against:
» Spark MLIib library (Apriori and FPGrowth implementations)



MB SQL in Spark exhibits near-linear scale
up

Censys: Risk Ratio + Support

—&— |deal
1 =& Observed Throughput

N w £
= = =

Throughput (rows/sec)

[
=

o

5 10 15 20 25
Servers



MB SQL in Spark exhibits near-linear scale
up

Censys: Risk Ratio + Support

S —@®— |deal
§4M- ~—a&— Observed Throughput
(V)
<
g 3M -
-
a
22M-
(@)
=
_g 1M
'—
0 ; : ; : .
5 10 15 20 25
Servers

< 20 minutes on a day’s worth of anonymous data used
by a production service at Facebook
(benchmarked on Facebook’s production cluster)



STANFORD

A

Recap 5

» The DIFF operator captures the core semantics of several recent
explanation engines—a singular relational interface that interoperates with
traditional OLAP SQL

» DIFF generalizes to many industrial and academic use cases

» DIFF presents new opportunities for adaptive query optimization; what
other SQL operators can we co-design with DIFF?

» We show that DIFF can be implemented in an efficient manner, both for the
single-node and distributed cases. What are the limits of this scalability?

n GO gle Mlcrosoft

https://macrobase.stanford.edu




