Optimizing Declarative Graph
Queries at Large Scale

Qizhen Zhang, Akash Acharya, Hongzhi Chen*, Simran Arora, Ang Chen*, Vincent Liu, Boon Thau Loo
University of Pennsylvania, *The Chinese University of Hong Kong, *Rice University

Graphs Are Important

Graph processing is everywhere A e
* Web graph, social networks, road networks... PV IR

Graphs Are Important & Large . i

Graph processing is everywhere PR
* Web graph, social networks, road networks... SCus < e
* They are increasingly large (scaling from billions to trllhons)
The largest workloads are deployed at massive scales
* Clouds
* Data centers
Large deployments require:
* Robustness
* Ease of programming
* Performance
* Achieving three is difficult

Challenges at Large Scales

* The impact of real-world graph characteristics

* Power-law distribution: the optimal query execution may differ
based on which part of the graph is being processed.

* Dense connectivity: significant duplication.

* The impact of data center characteristics
e Qversubscription
* Link failures
* Background traffic, etc.

GraphRex: Graph Recursive Execution

GraphRex

Datalog-like
interface

e

ﬁ

The knowledge
of graphs

N

The knowledge
of data center
networks

(Ease of programming)

(Performance)

(Performance, Robustness)

GraphRex Overview

Worker
Vertex-level

Coordinator

Compiler

Executor
Logical

L----‘

Declarative Interface

Vertex-level
Executor

Specs

w/ Global

Operators
= = == = = = N

Distributed Semi-
naive algorithm

partition 1

Distributed Semi-
naive algorithm

partition k

Runtime Optimizer

Infrastructure

GraphRex Overview

Coordinator

Compiler

Logical

L----‘

Specs

W/ Global l

Operators
— N N N N N N

Infrastructure

Distributed Semi-

Worker naive algorithm

Vertex-level

Executor partition 1

Distributed Semi-
naive algorithm

Vertex-level
Executor

partition k

Runtime Optimizer

GraphRex Overview

Coordinator

Compiler

Logical
Plan J

--“

Static OptimizerjZa
Specs;

Bty

Declarative Interface

Specs

w/ Global '

Operators
— N N N N N N

Infrastructure

Distributed Semi-

Worker naive algorithm
Vertex-level
Executor | partition 1
= Distributed S.er;mi:
naive algorithm
Vertex-level

Executor
partition k

Runtime Optimizer

GraphRex Overview

Coordinator

Query

Compiler

Logical

——————

L----‘

Declarative Interface

Exe
Specs

w/ Global
Operators

-L--

Infrastructure

Worker

Worker

Distributed Semi-

naive algorithm
Vertex-level
Executor partition 1
Y.,
Runtime Optimizer
Distributed Semi-

naive algorithm

Vertex-level
Executor

Runtime Optimizer

partition k

GraphRex Overview

Distributed Semi-

§ Coordinator Worker naive algorithm
= : Vertex-level
g Compiler Erte te re -
£ XECULO partition 1
< Logical
+— ‘.,
— emocny ' e ;
O ! a
3| % - |
l Distributed Semi- '
i Worker Bl algorithm
Vertex-level
Executor ’
W/ Global i ‘ partition k
, Operators . e
Infrastructure PR S—. O— — — Runtime Optimizer

Outline

Data Center Background
Data Center-Centric Optimization
Graph-Centric Optimization

Evaluation

Conclusion

Data Center Background

* Design principles are consistent for most cloud data centers.

Data Center Background

* Design principles are consistent for most cloud data centers.
* The network is oversubscribed.

Network

Data Center Background

* Design principles are consistent for most cloud data centers.

* The network is oversubscribed.
 Intentionally designed
* Link degradation/failures ¢
* Background traffic > =

Oversubscribed
Network

Rack Switches

Racks of
Servers

Outline

Data Center-Centric Optimization
Graph-Centric Optimization

Evaluation

Conclusion

Query Processing

N N\

Compiler, Static Optimizer Execution

‘ I N . . —) Specification

w/ Global
Datalog rules Operators

Global Operators

Operators that are optimized at runtime to minimize communications.
* graph characteristics
* infrastructure characteristics

Global Operators

Operators that are optimized at runtime to minimize communications.
e graph characteristics
* infrastructure characteristics

« SHUFF: efficient shuffle operations

* JOIN: deduplication for binary joins

« ROUT: fine-grained join ordering for multi-way joins
* AGG: efficient aggregation evaluation

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Basic Shuffling

(v1, f1)(v1, f2)] | (v1, f3)(v1, f4) (v1, f5) (v1, f6)| |[(v1, f7) (v1, f8)

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling

")\

(v1, f1)(v1, £2)] | (v1, f3)(v1, f4) (v1, f5) (v1, 6)| [(v1, f7)(v1, f8)

12

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling

(v1, f1)(v1, f2)] | (v1, f3)(v1, f4) (v1, f5) (v1, 6)| |[(v1, f7)(v1, f8)

= de=p = &=p» consolidate
12

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling

(v1, 1) (v1, 2)

(v1, 3) (v1, f4)

Y

LY

A

(v1, f5) (v1, f6)

(v1, f7) (v1, f8)

G

consolidate

12

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling

(v1, f1)(v1, f2) [(v1, £3)(v1, f4) (v1, f5) (v1, f6)| |[(v1, f7) (v1, f8)

consolidate

12

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling

Z-\\ T

(v1, f1)(v1, f2)| | (v1, f3) (v1, f4) (v1, f5)(v1, 16)| |(v1, f7)(v1, f8)

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Columnization & Compression

(to be shuffled)

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Columnization & Compression

VAB Sot VAB

1341134
1 4.2] 11 2]
2.3 [$.3.2
1.3.2] 2.3 1]

(to be shuffled)

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Columnization & Compression

VAB Sort VVAB Columnize V A B

1,3,4 < [1,3,4] — [1.1,1,2] [3,1,3,3] [4,2,2,1]
1.4 2] 11 2]
:2'3'1: ;Compress
[1..3. 2]

1.3,2]
23,1 [1.1,1,2] [3,1,3,3] [4.2,2,1]

(to be shuffled) (shuffled with lower overhead)

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Hierarchical Network Transfer

Three-Level Hierarchical Network Transfer

for each server S:
workers _1in _a server = getWorkers(S)
LocalShuffle(workers in _a_server)
consolidate messages

for each rack R:
workers_1in_a _rack = getWorkers(R)
LocalShuffle(workers in_a rack)
consolidate messages

globalShuffle(all workers)
D e

Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

CC on Twitter
12
9.84

10
o~ 8
s |
@ 6
A

4

2 1.02 1.02

o L N N

Compression Only SHUFF

“Communication ®End-to-End Execution

Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - E(X,A), sg(X,Y), e(Y:B)

e ———————— s S
Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - e(x:A): Sg(X,Y), e(Y:B)

Order 1: from left to right Order 2: from right to left

D X
7N\ 7N\

g e(@Y,B) e(@X,Y) X
e(@X,A) sg(@X,Y) sg(X,@Y) e(@Y,B)

16

- —————| T
Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - e(x:A): Sg(X:Y): e(Y:B)

sg(a, b)
Generation Order 1 Order 2
0 [[e > sg] t €] [e > [sg x e]]
- G v
oo o s

T —————| T e e
Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - E(X,A), sg(X,Y), e(Y:B)

sg(a, b)
° . Order 1 Order 2
0 [[e ba sg] ™ €] [e > [sg o4 e]]
1 _______________________________ G2 Cost: 3 1
2

e ————————| e
Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A)B) . - e(x:A): Sg(x:Y): e(Y:B)

sg(a, b)
Generation Order 1 Order 2
0 [[e > sg] ™ €] [e » [sg o4 e]]
1 G2 Cost: 3 1
2 """""""""""""""""""""" G3 Cost: 1 3

Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A)B) . E(X,A), sg(X,Y), e(Y:B)

sg(a, b)
Generation Order 1 Order 2
0 [[e 5] €] [e [sg ™ e]]
1 G2 Cost: 3 1
S e s W G3 Cost: 1 3
3 """""""""""""""" Total Cost: 4 4

Order 1 and Order 2 are equally bad.
Power-law degree distribution makes them worse.

Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation
0
1 sg(a, @b)
____________________________________ [e x [sg ~ e]]
2

e ————————| T
Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation

0

1 sg(a, @b)
____________________________________ [e x [sg x e]]

2 sg(@c, f) sg(@d,f) so(@e, f)

[le asg] ae] [[emsg] me] [[esg]eae]

e ————————————
Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation

0

1 sg(a, @b)
____________________________________ [e »a [sg = e]]

2 sg(@c, f) sg(@d, f) sg(@e, f)
___________________________________ [[e xsg] xe] [[exsg]xe] [[exsg]mae]

3 sg(g, @h) sg(g, @) sg(g, @j)

[ex[sgmae]] [ex[sgme]] [ex[sgxe]]

18

Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation sg(a, b)
O --------------------------------- Adaptive Join Ordering
1 ------------------------------- G2: 1
2 G3: 1
3

Total: 2

Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

SG on TwitterTree

2.7
2
1 1
Static Ordering Adaptive Join Ordering

“ Communication

® End-to-End Execution

Evaluation

Setup

20 servers 20 servers

CPU: 1600 threads
Memory: 6.4 Terabytes
Network: 10 Gb/s links (5:1 oversubscription ratio)

21

Evaluation

Setup

Graph #Vertices #Edges Raw Size

Twitter 52.6 millions 2 billions 12 GB
Friendster 65.6 millions 3.6 billions 31 GB
UK2007 105.9 millions 3.7 billions 33 GB
ClueWeb 978.4 millions 42.6 billions 406 GB

.) d : J § . J J i : }) J : :

20 servers

CPU: 1600 threads
Memory: 6.4 Terabytes
Network: 10 Gb/s links (5:1 oversubscription ratio)

21

Evaluation

Overall Performance (SSSP): 4X - 54X Speedup

10000 5201.43

“ - 02.01
@ 1000 499 35
E A et
= 293.47 O M 2284
S 8498 &1 %08 =
2 100 ‘ 3.35 | 3
o Kt 1.94 E
X 2.44 i s
2 10 47 O
g 03
& : 5
, O

Twitter (2B) Friendster (3.6B) UK2007 (3.7B) ClueWeb (42.6B)

®BigDatalog ™ Giraph ™PowerGraph GraphRex

Evaluation

Multi-Way Join Performance: 3.3X - 688X Speedup

400 378.48

291.64

120.86
87.25

3462 2516 6.18

0.55 T R 4.6

BiasedTree SynTw Citation

W BigDatalog " Giraph " GraphRex

Evaluation

Robustness (Link Failures & Oversubscription)

600

500

400

300

200

Execution time (s)

100

1

I

BigDatalog
Giraph —¥-

PowerGraph -©-

GR-Baseline -

g GraphRex -l 4
B
A R o
e
L —i- —
10 50 100

Link degradation

Execution time (s)

200

150

100

=

BigDatalog
Giraph —¥%-
PowerGraph -©-
GR-Baseline -
GraphRex -

4 3

#Spine Switches

2

24

Conclusion

» Communication bottlenecks the performance of large-scale
graph processing.

» Achieving (1) ease of programming, (2) performance and (3)
robustness needs the codesign between interface and

optimizations.

» Efficient large-scale graph query processing requires the
framework to be aware of data center infrastructure and

graph data characteristics.

Future Work

* Query graph streams.

* Resource changes are normal and significant, especially
prominent in streaming processing (long running).

* Failures can happen during query execution.

* No fixed (early-binding) plan is optimal.

* Optimizations have to consider multiple dimensions.
* Workloads
* Infrastructure
« Random changes: both workloads and infrastructure

26

Thank you!

Questions?

Future Work

* Query graph streams.

* Resource changes are normal and significant, especially
prominent in streaming processing (long running).

* Failures can happen during query execution.

* No fixed (early-binding) plan is optimal.

* Optimizations have to consider multiple dimensions.
* Workloads
 Infrastructure
« Random changes: both workloads and infrastructure

26

