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Graphs Are Important & Large . i

Graph processing is everywhere PR
* Web graph, social networks, road networks... SCus < e
* They are increasingly large (scaling from billions to trllhons)
The largest workloads are deployed at massive scales
* Clouds
* Data centers
Large deployments require:
* Robustness
* Ease of programming
* Performance
* Achieving three is difficult



Challenges at Large Scales

* The impact of real-world graph characteristics

* Power-law distribution: the optimal query execution may differ
based on which part of the graph is being processed.

* Dense connectivity: significant duplication.

* The impact of data center characteristics
e Qversubscription
* Link failures
* Background traffic, etc.




GraphRex: Graph Recursive Execution
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GraphRex Overview
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Data Center Background

* Design principles are consistent for most cloud data centers.
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Data Center Background

* Design principles are consistent for most cloud data centers.

* The network is oversubscribed.
 Intentionally designed
* Link degradation/failures ¢
* Background traffic > =

Oversubscribed
Network

Rack Switches

Racks of
Servers
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Global Operators

Operators that are optimized at runtime to minimize communications.
* graph characteristics
* infrastructure characteristics




Global Operators

Operators that are optimized at runtime to minimize communications.
e graph characteristics
* infrastructure characteristics

« SHUFF: efficient shuffle operations

* JOIN: deduplication for binary joins

« ROUT: fine-grained join ordering for multi-way joins
* AGG: efficient aggregation evaluation




Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Basic Shuffling
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Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling
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Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling
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Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling
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Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Data Center-Centric Shuffling
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Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Columnization & Compression

(to be shuffled)




Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Columnization & Compression
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Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Columnization & Compression

VAB Sort VVAB Columnize V A B

1,3,4 < [1,3,4] — [1.1,1,2] [3,1,3,3] [4,2,2,1]
1.4 2] 11 2]
:2'3'1: ;Compress
[1..3. 2]

1.3,2]
23,1 [1.1,1,2] [3,1,3,3] [4.2,2,1]

(to be shuffled) (shuffled with lower overhead)




Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex

Optimization: Hierarchical Network Transfer

Three-Level Hierarchical Network Transfer

for each server S:
workers _1in _a server = getWorkers(S)
LocalShuffle(workers in _a_server)
consolidate messages

for each rack R:
workers_1in_a _rack = getWorkers(R)
LocalShuffle(workers in_a rack)
consolidate messages

globalShuffle(all workers)
D e



Data Center-Centric Optimization

SH U FF encompasses most network communication in GraphRex
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Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - E(X,A), sg(X,Y), e(Y:B)
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Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - e(x:A): Sg(X,Y), e(Y:B)

Order 1: from left to right Order 2: from right to left

D X
7N\ 7N\

g e(@Y,B) e(@X,Y) X
e(@X,A) sg(@X,Y) sg(X,@Y) e(@Y,B)

16
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Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - e(x:A): Sg(X:Y): e(Y:B)

sg(a, b)
Generation Order 1 Order 2
0 [[e > sg] t €] [e > [sg x e]]
- G v
oo o s
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Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A:B) . - E(X,A), sg(X,Y), e(Y:B)

sg(a, b)
° . Order 1 Order 2
0 [[e ba sg] ™ €] [e > [sg o4 e]]
1 _______________________________ G2 Cost: 3 1
2
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Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A)B) . - e(x:A): Sg(x:Y): e(Y:B)

sg(a, b)
Generation Order 1 Order 2
0 [[e > sg] ™ €] [e » [sg o4 e]]
1 G2 Cost: 3 1
2 """""""""""""""""""""" G3 Cost: 1 3




Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

Multi-Way Join
Sg(A)B) . E(X,A), sg(X,Y), e(Y:B)

sg(a, b)
Generation Order 1 Order 2
0 [[e 5] €] [e  [sg ™ e]]
1 G2 Cost: 3 1
S e s W G3 Cost: 1 3
3 """""""""""""""" Total Cost: 4 4

Order 1 and Order 2 are equally bad.
Power-law degree distribution makes them worse.



Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation
0
1 sg(a, @b)
____________________________________ [e x [sg ~ e]]
2
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Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation

0

1 sg(a, @b)
____________________________________ [e x [sg x e]]

2 sg(@c, f) sg(@d,f) so(@e, f)

[le asg] ae] [[emsg] me] [[esg]eae]
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Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation

0

1 sg(a, @b)
____________________________________ [e »a [sg = e]]

2 sg(@c, f) sg(@d, f) sg(@e, f)
___________________________________ [[e xsg] xe] [[exsg]xe] [[exsg]mae]

3 sg(g, @h) sg(g, @) sg(g, @j)

[ex[sgmae]] [ex[sgme]] [ex[sgxe]]

18



Graph-Centric Optimization

RO UT finds the optimal join order at tuple level for multi-way joins

Optimization: Adaptive Join Ordering

Enumerate all possible join orders for each newly generated tuple, and select the minimum-cost order.

Generation sg(a, b)
O --------------------------------- Adaptive Join Ordering
1 ------------------------------- G2: 1
2 G3: 1
3 ..............................

Total: 2




Graph-Centric Optimization

ROUT finds the optimal join order at tuple level for multi-way joins

SG on TwitterTree

2.7
2
1 1
Static Ordering Adaptive Join Ordering

“ Communication

® End-to-End Execution




Evaluation

Setup

20 servers 20 servers

CPU: 1600 threads
Memory: 6.4 Terabytes
Network: 10 Gb/s links (5:1 oversubscription ratio)

21



Evaluation

Setup

Graph #Vertices #Edges Raw Size

Twitter 52.6 millions 2 billions 12 GB
Friendster 65.6 millions 3.6 billions 31 GB
UK2007 105.9 millions 3.7 billions 33 GB
ClueWeb 978.4 millions 42.6 billions 406 GB
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20 servers

CPU: 1600 threads
Memory: 6.4 Terabytes
Network: 10 Gb/s links (5:1 oversubscription ratio)

21



Evaluation

Overall Performance (SSSP): 4X - 54X Speedup
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Evaluation

Multi-Way Join Performance: 3.3X - 688X Speedup
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Evaluation

Robustness (Link Failures & Oversubscription)
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Conclusion

» Communication bottlenecks the performance of large-scale
graph processing.

» Achieving (1) ease of programming, (2) performance and (3)
robustness needs the codesign between interface and

optimizations.

» Efficient large-scale graph query processing requires the
framework to be aware of data center infrastructure and

graph data characteristics.




Future Work

* Query graph streams.

* Resource changes are normal and significant, especially
prominent in streaming processing (long running).

* Failures can happen during query execution.

* No fixed (early-binding) plan is optimal.

* Optimizations have to consider multiple dimensions.
* Workloads
* Infrastructure
« Random changes: both workloads and infrastructure

26



Thank you!

Questions?
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