Resource-efficient redundancy
for large-scale data processing and
storage systems

Rashmi Vinayak

Computer Science
Carnegie Mellon University g%cs
arnegie
Mellon,

School of Computer Science

TheSys @ CMU CS

Both theory and systems research

Theory for
systems

Systems
inspired by
theory

TheSys @ CMU CS

Both theory and systems research

Systems
inspired by
theory

Theory for
systems

Formulate & solve theory problems
based on real-world system challenges

TheSys @ CMU CS

Both theory and systems research

Using insights & tools from theory
to build better systems

Systems
inspired by
theory

Theory for
systems

Formulate & solve theory problems
based on real-world system challenges

TheSys @ CMU CS

Both theory and systems research

Theory for
systems

* |Information & Coding Theory
- Erasure codes (aka error-correcting-codes)

* Probability and statistics

TheSys Lab

Both theory and systems research

~ tools from theory
ter systems

Systems
inspired by
theory

e theory problems
d system challenges

Reliability and predictable (tail) performance:

* Distributed storage systems

 Machine learning systems

 Content delivery networks
* Live streaming

Redundancy In large scale systems

« Large scale systems often prone to non-ideal operating
conditions

- Failures, stragglers, load imbalance ...

 Redundancy: a common approach for resilience
- Duplicating queries and/or data

» Cost of redundancy
- Additional hardware resources

- Increase in cost for equipment, energy, cooling, physical
space, operations

This talk: Resource-efficient redundancy

Part 1. Data processing systems Part 2. Data storage systems
Prediction serving systems Distributed storage systems
- Serving ML inference - Large-scale cluster storage

Coding theory, machine learning, data analysis, systems insights

Part 1.

Resource-efficient Redundancy
for Prediction Serving Systems

“Parity Models: Erasure-Coded Resilience for Prediction Serving Systems”

J. Kosaian, K. V. Rashmi, S. Venkataraman
To appear in ACM SOSP 2019.

ArXiv preprints: June 2018, May 2019

Joint work with

Jack Kosaian Shivaram Venkataraman

Carnegie Mellon University University of
Wisconsin-Madison

Machine learning in production systems

Two phases: 1. Training 2. Inference

1. Training

algorithm

Machine learning in production systems

Two phases: 1. Training 2. Inference

queries

2. Inference

predictions “dog”

Prediction serving systems

Platforms that deploy ML models and handle inference

Open Source Cloud Services
l Google Microsoft Google Al

TensorFIow Serving Azure

Amazon @Xnet

Amazon
Sagemaker

Prediction serving system architecture

Multiple copies of model instances on separate nodes
to support high query rates

model
Instances

% o000

node 1 nhode 2

SR

Prediction serving system architecture

queries

Frontend

model
Instances

% o000

node 1 nhode 2

SR

Prediction serving system architecture

queries

Frontend

v
= ==

/

/

w % 00

node 1 hode 2

model
Instances

Prediction serving system architecture

queries predictions

Frontend

model
Instances

—
-
-
-
-
—
-
-
=
-
-
-
-
-
-

node 1 nhode 2

Prediction serving systems

Used as a backend for: % quety %

» User-facing applications -
—
 Production services orediction

model instance
running on a node

* Must meet strict service level objectives

* Must operate with low, predictable latency

Unavailability in prediction serving systems

« Slowdowns and failures (“unavailability”)
- Resource contention, HW/SW failures, runtime slowdowns
- ML-specific events

* Result in inflated tail latency
- Unpredictable latency
- Miss latency SLAs

Minimizing tail latency is critical

Solution 1: Reactive

* First send to one server
« Walt, retry request

query

e

$o8

server 1

Solution 1: Reactive

 First send to one server
« Walt, retry request

query

& '/
slow/ w

failed

server 1

Solution 1: Reactive

* First send to one server
« Walt, retry request

query

z e
slow/ w %

failed

server 1 server 2

Solution 1: Reactive

 First send to one server
» Walt, retry request

&

slow/
failed

prediction
t

o8

ge8

server 1 server 2

Problem: delayed mitigation

Solution 2: Replicative

* Proactively issue duplicate query
» Wait only for first response

query

PN

ge8 o8

server 1 server 2

Solution 2: Replicative

* Proactively issue duplicate query
» Wait only for first response

query

PN

2 388 3%

failed
server 1 server 2

Solution 2: Replicative

* Proactively issue duplicate query
» Wait only for first response

prediction
t

slogw/ % @

failed

server 1 server 2

Problem: requires at least 2x resources

@ Reactive

Recovery Delay
(lower is better)

Resource Overhead
(lower is better)

@ Reactive

Recovery Delay
(lower is better)

@ Replication

Resource Overhead
(lower is better)

@ Reactive

Via
Part 1 of this talk | “Erasure-Coded”
Computation

Recovery Delay
(lower is better)

@ Replication

Resource Overhead
(lower is better)

Quick primer on erasure coding

» Resource efficient redundancy for resilience against
unavailability

* [llustration using data storage application

< gy
D, D,
Disk 1 Disk 2

Goal: Add resilience against single disk failure

Quick primer on erasure coding

Goal: Add resilience against single disk failure

Simplest way of adding redundancy: replication

—

D

=

D
D>

S—

—
D,

S

=T
D,

—_—

Quick primer on erasure coding

Goal: Add resilience against single disk failure

Simplest way of adding redundancy: replication

<
D>

Replication:
At least 50% of the resources consumed for redundancy

Quick primer on erasure coding

Goal: Add resilience against single disk failure
Redundancy via erasure coding: “encode” data into “parities”

D, D, ‘parity” P=D, + D,

> < > D

Quick primer on erasure coding

Goal: Add resilience against single disk failure
Redundancy via erasure coding: “encode” data into “parities”

D, D, ‘parity” P=D, + D,

D, D, P

Quick primer on erasure coding

Goal: Add resilience against single disk failure
Redundancy via erasure coding: “encode” data into “parities”

P=D, +D,

>
P

/’

Quick primer on erasure coding

Goal: Add resilience against single disk failure

Redundancy via erasure coding: “encode” data into “parities”

Erasure codes achieve desired resilience

with much lower resource overhead than replication

D,=P-D,
Only ~33% of the resources consumed for redundancy

Quick primer on erasure coding

In general:

k data units r “parity” units

any k out of (k+r) units original k data units

Quick primer on erasure coding

* Almost all erasure codes used in practice are “linear codes”

 Linear codes:

= Parity units linear combinations of the data units

Coded computation

Multiple copies of a function F computed on different nodes

F(.) F(.)

Coded computation

Multiple copies of a function F computed on different nodes

X, X, inputs
F(.) F(.)

L

: F(X,) F(Xy,): function outputs

Coded computation

Multiple copies of a function F computed on different nodes

X, X inputs

F() slow/
failed

F(X4) function outputs

Coded computation

Multiple copies of a function F computed on different nodes

encoding

parity input

redundant computation

Coded computation

Multiple copies of a function F computed on different nodes

X, X

iy

encoding

parity input

redundant computation

Resilient computation via erasure coding

Codes for storage

S
@ slow/

failed

Goal: recover data

Resilient computation via erasure coding

Codes for storage

e
@ slow/

failed

Goal: recover data

Codes for computation

X, X inputs
il . slow/
l failed

F(X,) F(X,) function outputs

IGoaI: recover function outputs on data

Resilient computation via erasure coding

Codes for storage

Goal: recover data

Resilient computation via erasure coding

Codes for storage Codes for computation
Goal: recover data Goal: recover function outputs on data
D1 D2 X1 X2

F(.)

F(.)

encoding
P

Resilient computation via erasure coding

Codes for storage Codes for computation
Goal: recover data Goal: recover function outputs on data
D1 D2 X1 X2

encoding

o [
F(xvﬁp)
decoding

F(X2)

Resilient computation via erasure coding

Codes for storage Codes for computation

Goal: recover data Goal: recover function outputs on data

When will such a reconstruction using the
computation on parity query work?

= BB = —R—
1 F(P
D P decoding ()
D

F(X2)

2

Linear functions work with linear codes

Linear functions commute with encoding and decoding
operations of linear codes

Example: F(X) = 2X

2X 2X 2X

Linear functions work with linear codes

Linear functions commute with encoding and decoding
operations of linear codes

X1 X2 P = X1 + Xz
Example: F(X) = 2X \
2X 2X 2X

F(W(P)

F(Xz) = F(P) = F(X4)

Linear functions work with linear codes

Linear functions commute with encoding and decoding
operations of linear codes

X1 X2 P = X1 s 5 X2
Example: F(X) = 2X j
2X 2X 2X
F(X4) X F(P)
F(X2)

] I | . |

N N T
+ |
g
T 25
Pe

Key challenge:
Handling general non-linear functions

Challenge in handling non-linear functions

Example: F(X) = eX

X1 X2 F X1 + X2

F(X,) = F(P) — F(X)
= @(X1+X2) _ X1 Incorrect
= griehe- 1) Needed eX2

Related works

« HW-fault tolerant computation: Huang et al. 1984, Jou et al. 1986....

« Lee etal., 2016 introduced coded computation in distributed
setting for tolerating stragglers/failures

- Distributed matrix-vector multiplication

» Large body of recent work

Dutta et al., 2016, Dutta et al., 2017, Karakus et al., 2017, Fahim et al., 2017, Yu et al.,
2017, Reisizadeh and Pedarsani, 2017, Charles et al., 2017, Reisizadeh et al., 2017,
Raviv et al., 2017, Yang et al., 2017, Yu et al., 2018, Baharav et al., 2018, Charles and
Papailiopoulos, 2018, Chen et al., 2018, Dutta et al., 2018, Halbawi et al., 2018,
Haddadpour and Cadambe, 2018, Haddadpour et al., 2018, Jeong et al., 2018, Kiani et
al., 2018, Li et al., 2018, Mallick et al., 2018, Maity et al, 2018, Park et al., 2018, Sheth et
al., 2018, Wang et al., 2018, Yang et al., 2018, Dutta et al., 2019, Fahim and Cadambe,
2019, Gupta et al., 2019, Kadhe et al., 2019, Yang et al., 2019, ...

Coded computation in prediction serving systems

F(X1) F(X2)

Coded computation in prediction serving systems

X1 x2

encoding
| P

o

Encode queries

33
|

F(X4) F(X2)

. Perform redundant
computation

Coded computation in prediction serving systems

X1 x2

encoding
| =

Perform redundant
computation

Encode queries

Challenge

« State-of-the-art models for a variety of tasks are neural networks

Neural network model
Complex

% non-linear function

Coded computation for
general non-linear functions is challenging

Challenge

« EXxisting coded computation schemes applicable only
to limited class of functions:

Linear functions and Polynomials

» Efficient schemes known only for linear functions

- Even polynomials of degree 2 require overhead more than
full replication

Our solution: Use ML + Coding

Learning-based approach to coded computation

encoder

Learn components of
the coded computation il @

framework F(XYF(P)
decoder

F(X2)

"Parity Models: Erasure-Coded Resilience for Prediction Serving Systems”,
J. Kosaian, K. V. Rashmi, S. Venkataraman, to appear in ACM SOSP 2019.

redundant
computation

Two learning-based approaches

1. Learning a code

X1 X2
* Keep redundant computation e
iIdentical to original
* Learn encoder and decoder it @ it
using neural networks F(X,) F(P)
F(X2)

"Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation”,
J. Kosaian, K. V. Rashmi, S. Venkataraman, ArXiv June 2018.

Learning a code

 Redundant computation same as original model
» “Learn” the encoder and decoder

X X encoder
* Using neural networks for enc/dec] : - 98 i
 Encoder: -
- Input: k queries () F(.) E()

- Qutput: r “parity queries - (m x £(p)

* Decoder: %
- Input: k predictions P l
: . decoder
- Qutput: r unavailable predictions
F(X2)

"Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation”,
J. Kosaian, K. V. Rashmi, S. Venkataraman, ArXiv June 2018.

Training encoder and decoder neural networks

* Training dataset same as the original model

« Mimic stragglers/failures by artificially erasing outputs from
the model instances

« Back-propagate through the original model
Example:

* F(.) = image classifier neural network
« k=2, r=1 (single parity query)

encoder

redundant model
decoder

s

encoder

‘/reﬂ\dant model
decoder

s

encoder

\ ‘Mdant m0d9|
decoder

s

|

F(X,) | |

forward pass

encoder

--------’

/m\dantmbdel

-
—
—
-
—
-
-
-
—
—
-—
-—
—

El forward pass
P : SHE——— backward pass
F(X,) | | ! ¢
F(X,) a

Training encoder and decoder neural networks

* Training dataset same as the original model

« Mimic stragglers/failures by artificially erasing outputs from
the model instances

 Back-propagate through the original model

Applicable for
any (numerically) differentiable function F

“Learning a code” approach

 First coded-computation approach to overcome the
challenging barrier of non-linearity

- can handle general non-linear functions (any numerically
differentiable function)

 First work to propose and enable use of coded-computation
for prediction serving systems

- prior works on coded-computation for ML primarily on training

"Learning a Code: Machine Learning for Approximate Non-Linear Coded Computation”,
J. Kosaian, K. V. Rashmi, S. Venkataraman, ArXiv June 2018.

Approach 1. “Learning a code” in action

Frontend

model
Instances

% % o000

server 1 server 2

Approach 1. “Learning a code” in action

queries
Frontend

VY

[\

gER

model
Instances

% 00 %

server 1 server 2

Approach 1. “Learning a code” in action

queries

Frontend

Decoder

\ \

ncoder

model
Instances

@%

server 1 server 2

Approach 1. “Learning a code” in action

*
queries mm predictions
=
4
Frontend :
— =
/ \ s I |
| model w % o6
Instances

server 1 server 2

Approach 1. “Learning a code” in action

queries

*
= predictions
Xy

Frontend

| :
|

T ey - Ncoder . Decoder
L -
> - \
”” \
— \
S \
4”’ \
i \

model
Instances

Downsides of Approach 1

* Need a bulkier frontend
- Neural network computation for encoding/decoding

* Reduced opportunity for improving tail latency
- Redundant path takes longer time
- Neural network encoding and decoding in addition to original model

Approach 2. Learning “parity models”

« Simple encoder and decoder X4 X2
- Generic: E.g., Add/Subtract
- Task-specific: E.g., Downsize le
& concatenate for image
classification F(.)
 Learn a new redundant F(4) mysen C(P)

computation: “parity model”
F(X2)

"Parity Models: A General Framework for Coding-Based Resilience in ML Inference”,
J. Kosaian, K. V. Rashmi, S. Venkataraman, ArXiv May 2019.

Training parity models

* Training dataset same as the original model

« Mimic stragglers/failures by artificially erasing outputs from
the model instances

Example:

* F(.) =image classifier neural network
k=2, r=1(single parity query)
* (Generic encoder/decoder: addition/subtraction

parity model

encoder

-+

o8

parity model

encoder

-+

o5

parity model

encoder

-+

l

o5

’////,//’Tﬁﬁﬁ&rnodel

decoder

l forward pass

encoder

1 +

l

o8

-—--——’

-
—
—
—
—
-
-
-
—
—
-—
. -
—
—

forward pass
PR backward pass

Implementation

* Approach 2 "Parity Models™ (ParM) on top of Clipperl

 Encoder and decoder in Clipper’'s frontend
* Original and parity models:
PyTorch models in Docker containers

Evaluation of Accuracy

Evaluation of Accuracy

* Variety of popular inference tasks

* Image classification, speech recognition, object localization
&YCAT [DOG ,-; " : | ' ' ‘%vy,'" a

» Variety of popular neural network models
 MLP, LeNet-5, VGG-11, ResNet-18, ResNet-152

* Encoder/Decoder:
* Generic: Add/Sub = showing applicability to variety of inference tasks
» Inference-task specific: Downsize and concatenate for image classification

Evaluation of Accuracy

Normal mode Degraded mode

Ao =|(1- fu)Aa

|
|
Degraded mode
accuracy

Overal Fraction Original model i
accuracy available J Fract.lon
accuracy unavailable
Metrics:

* Available vs Degraded-mode accuracy
* Overall accuracy

Evaluation of accuracy: available vs degraded

Parameters: k=2, r=1 = 33% resources for redundancy

Available B ParM Degraded

100-
90+
80
70
60 -
50-
40
30-
20
10+

Better

Accuracy (Percent)

0 , . . , , :
MNIST Fashion Catv.Dog Speech CIFAR-10 CIFAR-100

Evaluation of accuracy: available vs degraded

Parameters: k=2, r=1 = 33% resources for redundancy

1 Available B ParM Degraded

100+
901
80
707
60 -
50-
40
30-
20-
10+

Accuracy (Percent)

Better

MNIST Fashion Catv.Dog Speech CIFAR-lO CIFAR-100

Evaluation of accuracy: available vs degraded

Parameters: k=2, r=1 = 33% resources for redundancy

1 Available B ParM Degraded

0,
100, %%% g, 430% 306y
90- '

80
70
60 -
50-
40
30-
20-
10+

6.13% 6.40%

Better

Accuracy (Percent)

MNIST Fashion Catv.Dog Speech CIFAR-10 CIFAR-100

Accuracy on object localization task

Accuracy on object localization task

- Ground Truth Available — ParM Degraded

Evaluation of Accuracy: Overall accuracy

* Inference task: Image classification on CIFAR 10

o
o

00
ol

Better

Overall Accuracy (Percent)
O
o

o0
o

0.00 0.02 0.04 0.06 0.08 0.10
Fraction of Predictions that are Unavailable

Evaluation of Accuracy: Overall accuracy

Available ~ sreees ParM (k = 2)
—-— ParM (k=3) === ParM (k=4)
100-
B
@
£ 95
Q
=
9
c 90
-
O
i
© 85 -
Better g
O
80- j
0.00 0.02 0.04 0.06 0.08 0.10

Fraction of Predictions that are Unavailable

Evaluation of Accuracy: Overall accuracy

Available ~ sreees ParM (k = 2)

—-— ParM (k=3) === ParM (k=4)
100

Xo)
ol

= B Tustes,
e T SEm—
—

l-o_.

TeE——

= - —I—I—.—.—.—
n—._..

L T —"
--
L T
_~'
--—
_— e
Lo Je—
_

(o)
ol

Better

Overall Accuracy (Percent)
w0
o

o0
o

0.00 0.02 0.04 0.06 0.08 0.10
Fraction of Predictions that are Unavailable

Inference task specific encoder & decoder

Input Images

« Image classification task: Parity Image

- Downsize and concatenate
« Example: k =4, CIFAR-10

* Helps improve accuracy

- Details In: "Parity Models: A General Framework for Coding-Based Resilience in
ML Inference”, J. Kosaian, K. V. Rashmi, S. Venkataraman, ArXiv May 2019.

 Concurrent work: "Collage inference: Tolerating stragglers in distributed neural

network inference using coding", Narra et. al., ArXiv May 2019.
- Builds on top of learning-based coded computation

- Focusing on image classification

Evaluation of Latency

CPU and GPU clusters on EC2

- CPU: 24 model instances
- GPU: 12 model instances

Baseline: “Equal-resources”
- Same number of instances as ParM
- Uses to deploy additional original models
Varying query rates
Varying background traffic
- light inference multi-tenancy to few background transfers

CPU cluster evaluation

Better

—4— Equal-Resources 99.9th --4-- Equal-Resources median
—$— ParM 99.9th --@-- ParM median
225
¥ W
— 175
E
>
2 125
E - —@ & —@ @— -@
7151 @-mmmmenee-e- . SRR Remmmmenmnnas @--nnnmmmmns @ --mmmmmaes -2
120 144 168 192 216 240

CPU cluster evaluation

—4&— Equal-Resources 99.9th --%-- Equal-Resources median

* ~50% reduction in tail latency maintaining same median
* Brings 99.9% percentile 3.5x closer to median

7157 @-emmmenee-- - mmmmmmns Bememmmmnna- @--nnemmna- B-nmmmmanas -8
120 144 168 192 216 240
Rate (qps)

CPU cluster evaluation

—4&— Equal-Resources 99.9th --%-- Equal-Resources median

* ~50% reduction in tail latency maintaining same median
* Brings 99.9t%" percentile 3.5x closer to median

More predictable latency

757 @-emmmenee-- - mmmmmans S SarTEEEEE @--nmmmmna- B-emmmmanas -
120 144 168 192 216 240
Rate (qps)

GPU cluster evaluation

—4— Equal-Resources 99.9th --%-- Equal-Resources median
—¢— ParM 99.9th --®-- ParM median
e
50 T T\L !
E
401
c
Q
3 .\’\k
Better
201 - M= v emennn i oonmmn i eemnmn e feennn frrenans =nn -

Light multi-tenancy background

Better

—4— Equal-Resources 99.9th --4-- Equal-Resources median
—&— ParM 99.9th --@-- ParM median

351 &= 4\“ 75 = ‘T/f]

w
o

Latency (ms)
+
®

N
ol

20- .======i=======.=======.=======’:::::::’::::::=’== ===== .- ______ 8

Summary (Part 1)

Resilient ML inference via coded computation

Challenge: handling non-linearity of neural networks

Our solution: learning-based approach for coded computation
Rich design space: encoder, decoder, parity models

BYCAT £ DOG

Applicable to variety of inference tasks g ")) 4

Implementation on Clipper & evaluation
« Significantly better degraded-mode accuracy; no loss in normal-mode
« More predictable latency: 99.9" tail latency 3.5x closer to median

Future work (Part 1)

* |mprove training strategy for learning-based coded computation
- New learning tasks
- Current: random choice of data samples
- Intelligent choice of samples to combine?

» Explore rich design space of parity models framework
- Design better generic encoder-decoder
- Design task-specific encoder-decoder for various popular tasks
- Explore better choices for parity models

« EXxplore application to other workloads/systems
- Fundamentally a new approach for redundant computation

Part 2.

Resource-efficient Redundancy
In Cluster Storage Systems

“Cluster storage systems gotta have HeART: improving storage efficiency by exploiting
disk-reliability heterogeneity”

Saurabh Kadekodi, K. V. Rashmi, and Greg Ganger
USENIX FAST 2019

Joint work with

Saurabh Kadekodi Greg Ganger

Carnegie Mellon University

Cluster storage systems

« Storage subsystem of distributed systems

¢ Thousands to millions of disks

e Built incrementally according to demand

Cluster storage system reliability

* Failures are common
- Disk failures measured as annualized failure rates (AFR)

- AFR => expected % of disk failures in a year

« Popular fault tolerance mechanism: redundancy
- Full data replication

- Erasure coding

Redundancy in storage systems

Erasure coding example: (n=14, k=10) code

a |lb [lc ||d [le [[f [lg [lh |li []j

a ||b [lc (|d |le (If [lg [th [li |lj [||P1||P2||P3||P4
data blocks parity blocks
distributed on disks
across servers (across failure domains)

I

[p1]) fral[a h deps b @g f g

Redundancy configuration in storage systems

 Amount of redundancy
- Function of the erasure code parameters, “n” and “K”
- Example (n=14, k=10): 1.4x redundancy

* Chosen to meet durability and availability requirements
- Mean Time To Data Loss (MTTDL) & reconstruction constraints
- Based on (average) failure rate across disk fleet

e Chosen at the time when data is erasure coded
- Not modified thereafter

Redundancy configuration in storage systems

 Amount of redundancy
- Function of the erasure code parameters, “n” and “k”
- Example (n=14, k=10): 1.4x redundancy

Current redundancy configuration approaches are

“Static”

« Chosen at the time when data is erasure coded
- Not modified thereafter

However...

The failure rates of disks are *not* static

Disk failure rates are highly variable

* QOur study on failure data from production clusters at Backblaze
« Failures rates vary significantly

Variation across disk families Variation over time as disk ages

4
o > : }

e _ | Infancy ; Useful life ' Wearout

é °\° >:4 »:4

x4 ot : :

= < : :
11 I l E Lower failure rate E
0- 0 ' '

S-4 H-4A H-4B S-8C S-8E S-12E 0 35 Ageofdisk 34
Disk group (make/model) months years

“Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability
heterogeneity”, Saurabh Kadekodi, K. V. Rashmi, and Greg Ganger, USENIX FAST 2019

Failure rate variation over time

14 - — S.4 raw AFR data
12
10+
< 8
(o
(.
<< 6
4 -
2 o
0 ' , :
0 500 1000 1500

Age (days)

Failure rate variation over time

14 - — S.4 raw AFR data
12
104 > o
= - s
2 I 5
< 81 E S
& “§ Useful life §
<< 6 =
4 -
2
0

0 500 1000 1500
Age (days)

Failure rate variation over time

AFR (%)

S N & O O

14+
&
10+

~—— 5.4 raw AFR data

500 1000 1500
Age (days)
14 —— S.8C raw AFR data
121
101
£ g
o
| T
< 6
4
2N
0 . . .
0 500 1000 1500

Age (days)

AFR (%)

AFR (%)

14 - H-4A raw AFR data
121
10
81
6
4
2
% 500 1000 1500
Age (days)
14+ —— S-8E raw AFR data
12
101
8 1
6
4
5
% 500 1000 1500
Age (days)

14
121
101

AFR (%)

o N b O O

141

12

101

AFR (%)

o N S O O

- H-4B raw AFR data

0 500 1000 1500
Age (days)

—— S-12E raw AFR data

0 500 1000 1500

Age (days)

Failure rate variation over time

AFR (%)

S N & O @

144
121
101

14 = H-Wawmdata/——
Depicting bathtub characteristics

4
21
0 .- ~g- ~ oy
0 500 1000
Age (days)
14 ‘ —— S-8E raw AFR data
12|

Yet to reach old

- S.4 raw AFR data
0 500 1000 1500
Age (days)
141 —— S.8C raw AFR data
12
10
£ g
o
T
< 61
4
2 Kk
0 =
0 500

Age (days)

04 .
0 500 1000
Age (days)

144‘ - H-4B raw AFR data

4
21
ol . R
0 500 1000 1500
Age (days)
14'I —— S.12E raw AFR data
12

age

2r\..

0 . v
0 500 1000 1500

Age (days)

We propose a
dynamic approach to redundancy configuration
In cluster storage systems

Key Idea:

exploit reliability heterogeneity for cost savings

by tailoring redundancy levels to observed failure rates
of different disk groups over time

A disk group over time

Q
[—1

A disk group over time

Deployment
(start monitoring)

Time

A disk group over time

Deployment
(start monitoring)

% infant-mortality end wearout start

Time

A disk group over time

Deployment
(start monitoring)

_—

% infant-mortality end wearout start

Time

A disk group over time

Deployment
(start monitoring)

Q
%.g
—

d

infant-mortality end wearout start /decommissione

A disk group over time

I ti. fault = default fault tolerance scheme

Deployment
(start monitoring)

ftdeiault I I ftdezal_xit

infant-mortality end wearout start /decommissioned

Time

A disk group over time

T ti. fault = default fault tolerance scheme

ftaisk—group = disk group specific fault tolerance scheme

Deployment
(start monitoring)

ftdezault I E ftdisk—group a l ftdefal_xi t ?E)
d

%, infant-mortality end wearout start /decommissione

ftaisk-group lower redundancy than ftaefauit while meeting constraints

Heteretogeneity-Aware Redundancy Tuner

HeART

Durability /availability)

' ; Disk health
requirements

monitoring data

a®
a®
a®
a¥®
n®
s ®
....
gt
a®
e ®
a®
‘.
st

- Anomaly detector Change point detector Redundancy Tuner

AFR in useful life: stability & anomalies

« Useful life AFR is typically stable (within reasonable bounds)

» External factors can cause simultaneous bulk failures
- Rack power failure, accidents, human error, etc.

* Such "anomalies” appear like (premature) wearout
- Bulk failures typically don't reflect true HDD failure rate
- Need to handle with other techniques such as placement
- Benefits proportional to length of useful life

AFR in useful life: stability & anomalies

» Useful life AFR is typically stable (within reasonable bounds)

» External factors can cause simultaneous bulk failures
- Rack power failure, accidents, human error, etc.

* Such "anomalies” appear like (premature) wearout

- Bulk failures typically don’t reflect true HDD failure rate
- Need to handle with other techniques such as placement
- Benefits proportional to length of useful life

ftdefault ftdisk— rou ftde ault :
Time

end of true decommissioning
infancy wearout age

AFR in useful life: stability & anomalies

« Useful life AFR is typically stable (within reasonable bounds)

» External factors can cause simultaneous bulk failures
- Rack power failure, accidents, human error, etc.

* Such "anomalies” appear like (premature) wearout

- Bulk failures typically don't reflect true HDD failure rate
« Need to handle with other techniques such as placement
- Benefits proportional to length of useful life

Anomalous
failures

ftdefault ftdisk— rou -ftde ault ftde ault .
- Time

end of premature true decommissioning
infancy wearout wearout age

AFR in useful life: stability & anomalies

14 - —— H-4B raw AFR data
121
10+
S g
o
.
< 61
4 rﬂ,r—‘f
2 .
0

0 500 1000 1500
Age (days)

AFR in useful life: stability & anomalies

14 - —— H-4B raw AFR data
127
10-
< 8
o
.
< 61
4
). c o
0 , . ;
0 500 1000 1500
Age (days)

Spikes due to simultaneous bulk failures

Heteretogeneity-Aware Redundancy Tuner

HeART

Disk health

Durability /availability :
monitoring data

requirements

88

a® ol
""""""""
© x
ne @
......

o Q
2 uw
El a
o I
I @
"""""

‘. .‘

PO
O

- Anomaly detector Change point detector Redundancy Tuner

Change point detection

* Use online change point detectors to
iIdentify change points

Infancy : Useful life 'NNearout
L] b
]

* Reliability target can be missed if:
- Hasty declaration of end of infancy
- Delayed declaration of onset of wearout | Ao abdidR

AFR (%)

1
t Lower failure rate

* Tradeoff between benefits and safety

- Buffer added to estimated AFR as an
additional safety measure

Heteretogeneity-Aware Redundancy Tuner

HeART

Durability /availability : 5 Disk health
requirements @ . monitoring data

a®
"
a®
a¥®
n®
s ®

.....
-

gt

g ®
s "
a®
‘.
at®

- Anomaly detector Change point detector Redundancy Tuner

Chooses the most space efficient erasure code
for the observed useful-life AFR

Evaluation on Backblaze dataset

100K+ HDDs belonging to Backblaze

- 6 drive makes/models with significant number of disks to test
- More than 5 years of failure data

» Methodology
- Leverage off-the-shelf anomaly and change point detectors
- Reliablility target decided by disk group with highest AFR

- flaisk—group is decided with the following constraints:
Tolerate at least as many failures as the default
Have an upper bound on stripe width (“k”)

Evaluation on Backblaze dataset

* S-4 disks have the highest AFR (4.01%) in Backblaze
- Reliability target is MTTDL of ftgerquir on S-4 HDDs

* Upper bound on stripe width = 2X ft;erquit

« Jtaeraur options evaluated:

- (n=9, k=06) erasure code
- (n =14, k = 10) erasure code

HeART in action: H-4A HDDs

14 1— H-4A raw AFR data —
— H-4A auto-curated AFR data
1 - Determined useful life AFR
10+
;\3 , !
< 8{ .«<—Savings region —.
o : :
<< 6

0 500 1000 1500
Age (days)

HeART in action: H-4A HDDs

14{— H-4A raw AFR data ‘ .
— H-4A auto-curated AFR data

121_.—. Determined useful life AFR,

10+
> 81 .«<—— Savings region —
| ;
ol gEnd of infancy AFR + buffer

4

'HeART determined AFR 1.82%

Infant mortality end Old age

~ ©

Storage savings: (n = 9, k = 6) default scheme

« Small storage overhead of only 1.5x

201 12 of 15

(1.25x%)
10 of 13
(1.3x)

Disk space savings (%)
-
o

6 of 9
(1.5x)
O ' ; : -
S-4 H-4A S-8E
Disk groups

ft(n=9,k=6) ftdisk—group ft(n=9,k=6) .
Time
infancy useful life wearout

Storage savings: (n = 14, k = 10) default scheme

» Even smaller storage overhead of only 1.4x

~ 20
> 20 of 24
S (1.2x)
o 17 of 21
b=

>

3 10

Q

Q

©

Q.

7))
B [10 of 14
- (1.4x)

0

5-4 H-4A S-8E
Disk groups

= Time

infancy useful life wearout

Storage savings: (n = 14, k = 10) default scheme

* Even smaller storage overhead of only 1.4x

- 20

* 11% — 16% space savings even in space optimized
storage systems

* Translates to significant cost savings in large scale
systems

(n=14,=10 J tdisk—grou ;14@';;&@ Time

infancy useful life wearout

Summary (Part 2)

* Proposed a dynamic approach for redundancy configuration
In cluster storage systems

- Exploiting disk reliability heterogeneity for cost savings
- By tailoring redundancy levels to observed failure rates

- Evaluation on production dataset from Backblaze
« 11% - 16% savings even in space optimized storage systems

« Established the potential of HeART

* [nterest from industry
- NetApp and Google have shared data

Future work (Part 2)

« Statistical study of AFR curve estimation and bounds
- Statistical analysis for tight bounds on AFR estimation

* Reducing the overhead of redundancy scheme conversions
- Systems: Design of efficient redundancy management

- Theory: A new class of storage codes enabling efficient conversions
« “Convertible codes™

- Lots of open questions to explore

"Convertible Codes: Efficient Conversion of Coded Data in Distributed Storage”,
Francisco Maturana and K.V. Rashmi, Available on arXiv, July 2019.

Thanks!

