
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Static TypeScript
An Implementation of a Static Compiler for the TypeScript Language

Thomas Ball
Microsoft Research

Redmond, WA, United States
tball@microsoft.com

Peli de Halleux
Microsoft Research

Redmond, WA, United States
jhalleux@microsoft.com

Michał Moskal
Microsoft Research

Redmond, WA, United States
mimoskal@microsoft.com

Abstract
While the programming of microcontroller-based embed-
dable devices typically is the realm of the C language, such
devices are now finding their way into the classroom for CS
education, even at the level of middle school. As a result, the
use of scripting languages (such as JavaScript and Python)
for microcontrollers is on the rise.

We present Static TypeScript (STS), a subset of TypeScript
(itself, a gradually typed superset of JavaScript), and its com-
piler/linker toolchain, which is implemented fully in Type-
Script and runs in the web browser. STS is designed to be use-
ful in practice (especially in education), while being amenable
to static compilation targeting small devices. A user’s STS
program is compiled to machine code in the browser and
linked against a precompiled C++ runtime, producing an ex-
ecutable that is more efficient than the prevalent embedded
interpreter approach, extending battery life and making it
possible to run on devices with as little as 16 kB of RAM
(such as the BBC micro:bit).

This paper is primarily a description of the STS system
and the technical challenges of implementing embedded
programming platforms in the classroom.

Keywords JavaScript, TypeScript, compiler, interpreter, mi-
crocontrollers, virtual machine

1 Introduction
Recently, physical computing has been making headway in
the classroom, engaging children to build simple interactive
embedded systems. For example, Figure 1(a) shows the BBC
micro:bit [1], a small programmable Arduino-inspired com-
puter with an integrated 5x5 LED display, several sensors
and Bluetooth Low Energy (BLE) radio technology. The de-
vice first rolled out in 2015 to all year 7 students (age 10 to
11) in the UK and has since gone global, with four million
units distributed worldwide to date via the micro:bit Educa-
tion Foundation (https://microbit.org). Figure 1(b) shows a
different educational device featuring RGB LEDs: Adafruit’s
Circuit Playground Express (CPX).
Research suggests that using such devices in computer

science education increases engagement, especially among

MPLR 2019, Under submission,
.

(a) (b)

Figure 1. TwoCortex-M0microcontroller-based educational
devices: (a) the BBC micro:bit has a Nordic nRF51822 MCU
with 16 kB RAM and 256 kB flash; (b) Adafruit’s Circuit Play-
ground Express (https://adafruit.com/products/3333) has an
Atmel SAMD21 MCU with 32 kB RAM and 256 kB flash.

girls, increases confidence in both students and teachers, and
makes lessons more fun [2, 16].

To keep costs low for schools, these devices typically em-
ploy 32 bit ARM Cortex-M microcontrollers (MCUs) with
16-256kB of RAM and are programmed using an external
computer (usually a laptop or desktop). Programming such
devices in a classroom presents a number of technical chal-
lenges:

(1) the selection/design of an age-appropriate program-
ming language and environment;

(2) classroom computers running outdated operating sys-
tems, having intermittent and slow internet connec-
tivity, and locked down by school IT administrators,
which makes native app installation difficult;

(3) the transfer of the student’s program from the com-
puter to the device, where it can run on battery power
(as many projects embed the device in an experiment
or “make”).

With respect to these challenges, there are various embed-
ded interpreters for popular scripting languages, such as
JavaScript (JerryScript [8, 15], Duktape [22], Espruino [23],
mJS [20], and MuJS [19]) and Python (MicroPython [9] and
its fork CircuitPython [12]). The interpreters run directly on
the MCU, requiring just the transfer of program text from the
host computer, but forego the benefits of advanced optimiz-
ing JIT compilers (such as V8) that require about two orders
of magnitude more memory than is available on MCUs.

1

https://microbit.org
https://adafruit.com/products/3333

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

MPLR 2019, Under submission, Thomas Ball, Peli de Halleux, and Michał Moskal

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Figure 2. Three microcontroller-based game handhelds with
160x120 color screens. These boards use ARM’s Cortex-M4F
core: the ATSAMD51G19 (192kB RAM, running at 120Mhz)
and STM32F401RE (96kB RAM, running at 84Mhz).

Unfortunately, such embedded interpreters are between
one and three orders of magnitude slower than V8 (see Sec-
tion 4), affecting responsiveness and battery life. Even more
importantly, due to the representation of objects in memory
as dynamic key-value mappings, the memory footprint can
be several times that of an equivalent C program. This can
severely limit the applications that can be deployed on low-
memory devices such as the micro:bit (16 kB RAM) and CPX
(32 kB RAM).

1.1 Static TypeScript
As an alternative to embedded interpreters, we present Static
TypeScript (STS), a syntactic subset of TypeScript,[3] sup-
ported by a compiler (written in TypeScript) that generates
machine code that runs efficiently on MCUs in the target
RAM range of 16-256kB. The design of STS and its compiler
and supporting runtime were dictated primarily by the above
three challenges. In particular:

• STS eliminates most of the “bad parts” of JavaScript;
following StrongScript [14], STS uses nominal typing
for statically declared classes and supports efficient
compilation of classes using classic techniques for v-
tables.

• the STS toolchain runs offline, once loaded into a web
browser, without the need for a C/C++ compiler – the
toolchain, implemented in TypeScript, compiles STS
to Thumb machine code and links this code against
a pre-compiled C++ runtime in the browser, which
is often the only available execution environment in
schools.

• the STS compiler generates surprisingly efficient and
compact machine code, which unlocks a range of ap-
plication domains such as game programming for low-
resource devices such as those in Figure 2, all of which
were enabled by STS.

Deployment of STS user programs to embedded devices
does not require app or device driver installation, just access
to a web browser. Compiled programs appear as downloads,
which are then transferredmanually by the user to the device,
which appears as a USB mass storage device, via file copy
(or directly through WebUSB, an upcoming standard for
connecting websites to physical devices).
The relatively simple compilation scheme for STS (pre-

sented in Section 3) leads to surprisingly good performance
on a collection of small JavaScript benchmarks, often com-
parable to advanced, state of the art JIT compilers like V8,
with orders of magnitude smaller memory requirements (see
Section 4). It is also at least an order of magnitude faster
than the embedded interpreted approach. A novel aspect of
evaluation is a comparison of different strategies for dealing
with field/method lookup spanning classes, interfaces, and
dynamic maps.

1.2 MakeCode: Easy Embedded for Education
STS is the core language supported by the MakeCode Frame-
work.1 MakeCode enables creation of custom programming
experiences for MCU-based devices. Each MakeCode experi-
ence (we often call them editors, though they also bundle a
simulator, APIs, tutorials, documentation, etc.) targets pro-
gramming of a specific device or device class via STS. [7]
Most MakeCode editors are deployed primarily as web

apps, including a full-featured text editor for developing STS
programs based on Monaco (the editor component of Visual
Studio Code), as well as a graphical programming interface
based on Google’s Blockly framework (STS metadata in com-
ments defines the mapping from STS APIs to Blockly and
MakeCode translates between Blockly and STS).
The MakeCode editors, including the primary coding ex-

periences for BBC micro:bit and for Adafruit CPX,2 have
been used by millions of students and teachers worldwide
to date.

STS supports the concept of a package, a collection of STS,
C++ and assembly files, that also can list other packages as
dependencies. This capability has been used by third parties
to extend the MakeCode editors, mainly to accommodate
hardware peripherals for various boards.3 Notably, most
of the packages avoid pitfalls of unsafe C/C++ completely
and are authored solely in STS, due to the efficiency of the
STS compiler and the availability of low-level STS APIs for

1See https://makecode.com. The framework, along with many editors, is
open source under MIT license, see https://github.com/microsoft/pxt.
2See https://makecode.microbit.org and https://makecode.adafruit.com.
3For example for micro:bit, see https://makecode.microbit.org/extensions

2

https://makecode.com
https://github.com/microsoft/pxt
https://makecode.microbit.org
https://makecode.adafruit.com
https://makecode.microbit.org/extensions

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Static TypeScript MPLR 2019, Under submission,

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Figure 3.MakeCode Arcade editor. The left pane is the simulator for the arcade device; the middle pane is the categories of
APIs available in the editor; the right pane is the Monaco editor with STS user code for a platformer game (https://makecode.
com/85409-23773-98992-33605).

The toggle on top is used switch between Blocks and Static TypeScript (labelled JavaScript for marketing reasons).

accessing hardware via digital/analog pins (GPIO, PWM and
servos) and serial protocols (I2C and SPI).
Figure 3 shows the MakeCode Arcade editor created for

programming the handheld gaming devices from Figure 2
(in fact, the STS program shown in the editor is the one
deployed to the three devices - it is a simple platformer
game). MakeCode Arcade includes a game engine written
almost completely in STS, and thus places high requirements
on code efficiency to achieve pleasing visual effects at high
frame rates. The game engine includes the game loop, stack
of event contexts, physics engine, text and line drawing,
as well as game-specific frameworks (eg., for platformer
games), in all about 10,000 lines of STS code, with only the
most basic image-blitting primitives implemented in C++.
The games built with Arcade run either in the web browser
(on desktop or mobile), or on various models of dedicated
hardware featuring a 160x120 pixel 16 color screen and an
MCU running at around 100MHz with around 100kB of RAM.

The primary contribution of this paper is a description of
a widely deployed system and ways in which it addresses
the classroom-specific problems listed above.

2 Static TypeScript (STS)
TypeScript [3] is a gradually-typed [18] superset of the Java-
Script language. This means that every JavaScript program
is a TypeScript program and that types can be optionally

added, as needed, which enables better IDE support and error
checking for larger JavaScript programs. By design, Type-
Script provides no type soundness guarantees. Object types
provide a unification of maps, functions, and classes; struc-
tural subtyping between object types defines substitutability
and compatibility checks. Type erasure (and minor syntactic
transformations) yields a raw JavaScript program.
STS is a subset of TypeScript that excludes many of the

highly dynamic parts of JavaScript: the with statement, the
eval expression, prototype-based inheritance, the this
pointer outside classes, the arguments keyword, and the
apply method. STS retains features such as dynamic maps,
but keeps them separate from the nominal class abstraction.
Such restrictions are acceptable because most beginners’
programs are quite simple, and there are very few existing
JavaScript or TypeScript libraries in the embedded space, so
the chance of these using JavaScript features such as monkey
patching is small.

Our goal is not to grow STS to the point of supporting all
of TypeScript. Instead, we follow the pragmatic approach of
adding features useful in embedded context, as guided by
user feedback.

In contrast to TypeScript, where all object types are bags
of properties, STS has at runtime four kinds of unrelated
object types:

3

https://makecode.com/85409-23773-98992-33605
https://makecode.com/85409-23773-98992-33605

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

MPLR 2019, Under submission, Thomas Ball, Peli de Halleux, and Michał Moskal

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

1. a dynamic map type has named (string-indexed) prop-
erties that can hold values of any type;

2. a function (closure) type;
3. a class type describes instances of a class, which are

treated nominally, via an efficient runtime subtype
check on each field/method access, as described below;

4. an array (collection) type.

In this sense, STS is much closer to spirit to Java and C# in
their treatment of types as “protectors of abstractions”, unlike
JavaScript which allows a much more freeform treatment of
an object’s role. As discussed in Section 3.4, runtime type
tags are used to distinguish the different kinds of built-in
object types listed above (as well as primitives like boxed
numbers and strings).

As in TypeScript, type casts do not generate any code, and
thus always succeed. Instead, STS protects the nominal class
abstraction at the point of field/method access. Just as x.
f causes a runtime error in JavaScript when x == null,
executing (x as T).f will cause a runtime error in STS
if T is a class with field f, and the dynamic type of x is not
a nominal subtype of T. If T is an interface, any, or some
complex type (eg., union or intersection), then the field will
be looked up by name regardless of dynamic type of x.
Other abstractions are also protected at runtime, as in

JavaScript: for example, making a function call on something
that is not of function type. Currently, it is an error to dy-
namically add a new property to any type other than the
map type. Restrictions to the dynamic JavaScript semantics
may be lifted in the future, depending on user feedback. To
date, these restrictions have generated no concerns among
our user community (both educators and developers).
STS primitive types are treated according to JavaScript

semantics. In particulars, all numbers are logically IEEE 64
bit floating point, but 31-bit signed tagged integers are used
where possible for performance. Implementation of opera-
tors, like addition or comparison, branch on the dynamic
types of values to follow JavaScript semantics, with the fast
integer path hand-implemented in assembly.

The design goal of STS to be both syntactic and semantic
subset of TypeScript, by which we mean that if a program
compiles successfully in STS, it will have the same semantics
as the TypeScript program, or it will crash (in the circum-
stances listed above).

2.1 C++ Interop
STS programs running on MCUs are supported by a runtime
implemented in C++, C, and assembly. The runtime imple-
ments language primitives (operators, collections, support
for classes, dynamicmaps, etc.), as well as allows access to the
underlying device hardware. The runtime can be extended
by packages as explained in Section 2.2.

STS supports calling functions from C++ to STS and vice
versa. To simplify this process, STS uses a simple code-
generation scheme, where a special comment on a C++ func-
tion indicates that it should be exported to STS (//%), as
well as to Blockly (//% block). A build step parses the
C++ code in search of these comments, it also collects the
prototypes (signatures) of these functions, so appropriate
conversions can be generated when calling them. For exam-
ple:
// source C++ code:

namespace control {

/** Register an event handler */

//% block

void onEvent(int eventType, Action handler) {

// arrange for pxt::runAction0(handler)

// to be called when eventType is triggered

}

}

// generated TypeScript:

declare namespace control {

/** Register an event handler */

//% block shim=control::onEvent

function onEvent(eventType: number,
handler: () => void) : void;

}

The C++ namespaces and function names are mapped di-
rectly to their STS equivalents and the documentation com-
ment is copied verbatim. The comment //% block, which
indicates that the function should be exposed as a Blockly
graphical block is also copied. There are many other possi-
ble comments controlling the look and feel of the graphical
equivalent. The STS function also gets an additional shim
annotation, which indicates the name of the corresponding
C++ function (in some cases the STS declaration is written
by hand, and the name of the C++ function does not have to
match the STS function).

The C++ types are mapped to STS types. Since in STS all
numbers are conceptually doubles4, the C++ int is mapped
to STS number. When the C++ function is called, the STS
compiler makes sure to convert the value passed to an integer.
Other C++ integer types (eg., uint16_t) are supported in
a similar way. The C++ Action type represents a reference
to a closure, which can be called with pxt::runAction0
().
While class methods are not supported directly, regular

functions can be used to implement objects. For example:
// C++

typedef BoxedBuffer *Buffer;

namespace BufferMethods {

//%

int getByte(Buffer self, uint32_t i) {

return i < self->len ? self->data[i] : 0;

4There is some support to store numbers as integers of various sizes to save
memory, but it only applies to storage, not intermediate computations.

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Static TypeScript MPLR 2019, Under submission,

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

}

}

// TypeScript

interface Buffer {

//% shim=BufferMethods::getByte

getByte(i: number);
}

All functions in BufferMethods namespace must take
Buffer as first argument and are exposed as members of
the Buffer class on the STS side. When such members
are called, the STS compiler will make sure the first argu-
ment is non-null and a subtype of Foo. These interfaces
are conceptually better understood as non-extensible classes
with opaque representation, that is they cannot be imple-
mented by regular classes, and member resolution is static.
The interface syntax was chosen because TypeScript allows
extending interfaces with newmethods across files. We allow
such additions, provided the new methods have the shim
=... annotation described above, or alternatively an analog
annotation specifying a TypeScript, not C++, replacement
function. This usually only concerns authors of advanced
C++ packages (see below).

2.2 Packages
STS supports multiple input files. It also supports Type-
Script namespace syntax for scoping. Files do not intro-
duce scopes and JavaScript modules are currently not sup-
ported. The input files come from one or more packages.
There is one main package, which can list other packages as
dependencies, which can in turn list further dependencies.
There are multiple ways of specifying versions of packages,
including built-in packages, file paths when operating from
command line, and URLs of GitHub repositories. There can
be only one version for each package (otherwise we would
likely get redefinition errors).

MakeCode editor builders will generally decide to include
a number of built-in packages, which ship with the editor.
These can be further extended with packages coming from
GitHub. The MakeCode web app has support for authoring
and publishing packages to GitHub. Because namespaces are
independent of files, it is easy for packages to extend existing
namespaces. Currently, STS does not enforce any discipline
here.
MakeCode comes with a number of packages that editor

builders can include (common packages). They provide sup-
port for various hardware features (pins, buttons, buzzer,
screen, etc.), as well as higher-level concepts like sprite-
handling game library. Some of these packages come in vari-
ants, sharing interface but with different implementations
(eg., drivers for different screens).

External (GitHub) packages typically provide support for
other hardware peripherals. Users typically do not use too
many external packages at once, so we feel the risk of name

conflicts due to lack of namespace enforcement is low, and it
allows for fitting new APIs naturally in existing namespaces.

3 Compiler and Runtime
The STS compiler and toolchain (linker, etc.) are written
solely in TypeScript. There currently is no support for sepa-
rate compilation of STS files: STS is a whole program com-
piler (with support for caching precompiled packages, which
includes the C++ runtime). The STS device runtime is mainly
written in C++ and includes a bespoke garbage collector. As
mentioned before, it is not a goal to generalize STS to support
full JavaScript.

3.1 Compiler Toolchain
The source TypeScript program is processed by the regular
TypeScript compiler to perform syntactic and semantic anal-
ysis, including type checking. This produces type-annotated
abstract syntax trees (ASTs) that are then checked for con-
structs outside of STS (eval, arguments, etc.). The AST
is then transformed into a custom intermediate represen-
tation (IR) with language constructs desugared to calls to
runtime functions. This IR is later transformed into one of
three forms:

1. continuation passing JavaScript for execution within
the browser (inside of a separate “simulator” IFrame)

2. ARM Thumb machine code, linked with pre-compiled
C++ runtime and executed on bare-metal hardware or
inside of an operating system

3. bytecode for a custom VM interpreter, meant for plat-
forms where where dynamic code loading/generation
is impossible (like XBox or iOS)

Both the ARM Thumb and the custom bytecode are gener-
ated in form of assembly code, and translated to machine
code by a custom assembler. In this section we focus on the
native 32-bit ARM Thumb target (though we compare the
performance of the VM, see Section 4.2).

The regular TypeScript compiler, the STS code generators,
assembler, and linker are all implemented in TypeScript and
run both in the web browser and on command line.

3.2 Linking
The generated machine code is linked to a pre-compiled
C++ runtime. C++ compilation takes place in a cloud service,
with the resulting runtime cached both in the cloud content
delivery network, and in the browser (caching is based on a
strong hash of all the C++ sources, options etc.). Typically,
the C++ runtime does not change while the user is working
on their program, allowing for offline operation.5

5While it could be possible to compile the C++ code locally using Emscripten
or similar technologies, the compilation toolchain, header files, and libraries
would likely require tens of megabytes of download straining offline storage
in the browser.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

MPLR 2019, Under submission, Thomas Ball, Peli de Halleux, and Michał Moskal

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

The generated machine code is generally appended at the
end of the compiled runtime. Depending on the file format
(in particular for ELF) of the target device, the resulting file
needs to be patched slightly. To generate code, the assembler
needs to know addresses of runtime functions. These are
extracted from the runtime binary.

It is also possible for packages to include C++ code that ex-
tends the runtime. Each such combination of C++-containing
packages have to compiled and cached separately. This is
done transparently by the cloud service, and the potential
exponential number of combinations have so far has not
proven to be a problem in practice, as students do not use
many external packages at once, and our experience has
shown that few of the packages written for MakeCode uti-
lize native C++.

3.3 Representation of values
The compiled programs use a regular C++ stack for local
variables, return addresses, and temporary computation. Val-
ues stored on the stack and inside of objects generally use
a uniform, type-independent representation, that is always
32-bits long.
The number n such that −230 ≤ n < 230 is represented

by the 32-bit value 2n + 1, so that the lowest-order bit is set.
Other numbers, are represented as regular objects, specifi-
cally boxed 64 bit doubles.
Special constants, such as true, false, and null are

represented by specific 32-bit values, such that the lowest-
order bit is cleared, and the next to lowest-order is set (there
is encoding space for 230 such values, but only a few are
currently used). The JavaScript undefined is represented
by 0 (in other words, the C++ NULL), since it is the default
value for memory allocation and also for JavaScript fields
and variables.

All other values are represented as pointers to either con-
stant flash-allocated objects or objects allocated on the heap.
All pointers are word-aligned (32 bit), so the lower-order
two bits are cleared. For objects created by the STS runtime
the first word is occupied by a pointer to a virtual table (see
Section 3.4).6

3.4 Virtual table layout
STS classes are compiled similarly to Java or C# with single
inheritance and static memory layout. The first word of an
object points to a virtual table, and subsequent words are
allocated for fields (with fields of the base class, if any, com-
ing first). The virtual table contains object size, a statically
allocated class number (this includes the tags for the builtin
types supported by STS, as well as user-defined types), a

6An alternative representation, where numbers are represented as 2n and
pointers as p + 1 would be problematic since ARM Thumb only has word-
loading instructions with offsets that are multiples of 4.

pointer to the interface table and interface hash (see below),
followed by pointers to methods.
The first four method slots are pre-allocated for runtime

and GC-related functions related to object marking and de-
allocation, which follow C++ calling conventions. The re-
maining functions follow STS calling convention. First of
STSmethod pointers is toString() if defined7. Next there
are methods from the base class if any, followed by methods
of the current class. If a method is never called with dynamic
dispatch (for example, because it is never overridden, or
never called), it is not included in the table (for example, in
the MakeCode Arcade game engine only 13% of methods use
dynamic dispatch).
The interface table contains descriptors for all fields and

methods of the class in order of definition. Each descriptor
contains the member index (assigned globally to all member
names in the program) and a function pointer. Field descrip-
tors also contain the offset of the field within the class. The
descriptors are used in member lookup and also when iter-
ating over object properties (eg., using Object.keys()).
The descriptors are indexed by a simple hash table, where
the keys are computed by multiplying the member index by
the interface hash multiplier (computed per-class at compile
time) fetched from the virtual table.

STS employs three methods of member lookup:
• when the receiver is statically of a class type C , the
compiler generates a runtime subtype check against
C (which may fail, as the dynamic type may not be a
subtype of C) and then uses a direct offset into either
the virtual table for methods, or into the object itself
for field accesses;

• otherwise, if the receiver is dynamically of a class type
(statically it could be an interface, any, or some more
complex structural type), the member descriptor is
looked up in the interface table using the member
index and the interface hash key;

• otherwise, it is a type-specific function for objects
implemented in the C++ runtime, in particular the
dynamic map used when compiling object literals or
new Object().

Section 4.3 compares the performance of the three methods.

3.5 Arithmetic operators
For some arithmetic operators, the fast integer path is written
in assembly for speed. For example, here is the implementa-
tion of arithmetic +:
_numops_adds:

ands r2, r0, r1 ; r2 := r0 & r1

ands r2, #1 ; r2 &= 1

beq .boxed ; last bit clear?

subs r2, r1, #1 ; r2 := r1 - 1

7toString() and valueOf() play special role in JavaScript runtime
conversion semantic. valueOf() is currently not supported.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Static TypeScript MPLR 2019, Under submission,

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

adds r2, r0, r2 ; r2 := r0 + r2

bvs .boxed ; overflow?

mov r0, r2 ; r0 := r2

bx lr ; return

.boxed:

mov r4, lr ; save return address

bl numops::adds ; call into runtime

bx r4 ; return

Other operators with specialized implementations are -,
|, &, ^ and conversion to integer (used when calling C++
runtime functions). This specialized assembly gives about
2x speedup compared to always calling the C++ function,
which we do for example for multiplication (see Section 4.3).
Other operators are implemented in C++ as functions taking
abstract values with branches for integers, boxed numbers,
and other types.

3.6 Representation of built-in objects
Arrays are similar to C++ standard vectors, but with more
conservative growing strategy. Sparse arrays are not sup-
ported. Simple array accesses are implemented directly in
assembly, including range checking. Cases that involve con-
versions of indices or growing the array are handled by the
C++ runtime.
Buffers are simply continuous chunks of memory, with

assembly byte accessors, and a number of additional utility
methods implemented in C++.

Strings come in four different representations, each with
a v-table pointer at the beginning. All strings are currently
limited to 65,535 bytes. ASCII strings (where all characters
are in range 0-127) are represented using a length prefix
followed by NUL-terminated character data (there can still
be NUL characters inside, but the final NUL is added for
convenience of C++ functions). Short Unicode strings are
represented similarly, using UTF-8 and length expressed in
bytes, but with a different v-table. The indexing methods
decode the UTF-8 on the fly.
Longer Unicode strings are represented as the length of

the string in characters, the size of the string in bytes, and
a pointer to data, that contains the actual character data in
UTF-8 (again, NUL-terminated), and a skip list that contains
a byte offset for every character offset divisible by 16. Index-
ing methods start at closest preceding skip list offset and
decode UTF-8 data from there. This encoding is used instead
of standard UTF-16 to save space. It also ensures that all
strings (except for temporary ones described below) contain
a valid UTF-8 NUL-terminated string, making it easier for the
C++ runtime functions to handle them without additional
conversions.
Finally, cons-strings are allocated when two long strings

are concatenated together. They consist of two pointers to
strings (which themselves can be cons-strings). When a cons-
string is indexed, it is transformed in-place into a skip-list

string (they are both 12 bytes). This makes string concatena-
tion, which is fairly common in JavaScript, a constant time
operation. This is an established optimization technique [4],
used in all major JavaScript engines.

The first three kind of strings are emitted by the compiler
in flash, while all four can be constructed dynamically.

Closures are represented as a pointer to static code of the
function followed by read-only locals captured from outer
scopes (top-level globals are not included). If a variable can
be written after capture, it is transformed (in all scopes) into
a pointer to a heap object that holds its value. A specific reg-
ister is statically allocated to hold the pointer to the closure
object, during closure execution.

Functions that are used as values, but do not capture any-
thing, are allocated statically in the above format in the flash.

Dynamic maps are simply two vectors, one of keys and
one of values. Lookup is linear.

3.7 Peep-hole optimizations
After code generation, the resulting assembly is run through
a simple peep-hole optimizer. The particular instructions
sequences to be optimized were identified by a script run
on large piece of generated code. The script would identify
2-3 instruction sequences and sort them by number of oc-
currence. The top ones were then inspected by hand to see
if they could be simplified. Typical peep-hole rules are as
follows:
push {lr}; push {X, ...} -> push {lr, X, ...}

pop {X, ...}; pop {pc} -> pop {X, ..., pc}

push {rX}; pop {rX} -> nothing

push {rX}; pop {rY} -> mov rY, rX

pop {rX}; push {rX} -> ldr rX, [sp, #0]

push {rX}; ldr rX, [sp, #0] -> push {rX}

push {rX}; movs rY, #V; pop {rX} ->

movs rY, #V (when X != Y)

For branches, the compiler always generates a fully gen-
eral, but cumbersome instruction sequence, which is then
simplified by the peep-hole optimizer, eg. when X is in short
jump range:
beq .skip; b X; .skip: -> bne X

In fact, the b itself also has limited range and sometimes
needs to be done with the bl. See Section 4.3 for evaluation.

3.8 Garbage collector
The STS runtime employs a custom, simple, precise, non-
compacting, mark-and-sweep garbage collector. The runtime
keeps track of STS parts of stacks of all threads of execu-
tion. STS stacks contain only values in the uniform format
described above. During collection, pointers in these stacks,
as well as in global variables, and in any locations registered
dynamically by the C++ runtime are considered live, and
recursively scanned for further live pointers. All objects start

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

MPLR 2019, Under submission, Thomas Ball, Peli de Halleux, and Michał Moskal

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

with a pointer to v-table, which has a method to determine
the size of an object. There is no additional space overhead
incurred by the GC: the lowest bit of the v-table pointer is
used to mark reachable objects, and the size method8 is used
to walk the heap in the sweep phase.
A per-thread object records the STS stack pointer when

an STS function is first called (there can be a C++ stack
underneath it), and the stack pointer is stored just before
any C++ function is called. If a C++ function in turn calls
STS again, which is quite rare, a linked list segment is added
to the per-thread object. These per-thread objects are kept
by our thread scheduler.

To limit heap fragmentation, we trigger collections more
often than strictly necessary. In particular, after every col-
lection we mark the first quarter of free memory as good
for allocation. When an object cannot be allocated there, a
new collection is triggered, likely moving the location of the
“good” quarter. We then allocate the object regardless if it fits
in the (new) good part. This risks triggering a bit too many
collections, but we have found it to limit heap fragmentation,
which was critical when a larger object (eg. a screen buffer)
needed to be allocated later in course of the execution. Addi-
tionally, given the relatively small size of memory and fast
processor speed of the target MCUs, the collections are quite
cheap.

The C++ code can either allocate regular GC-able objects
to be used on the STS side, or use traditional malloc()/
free() for other purposes. Suchmalloc-blocks use a special
encoding including the size in place of the v-table pointer and
are never collected, until they are freed. This heap sharing
lets us avoid splitting the memory into C++ and GC heaps
upfront. We still keep a small C++ heap to be used inside of
interrupt service routines, as the GC cannot be used there.

Arguments to C++ functions called from STS are, in addi-
tion to registers, also placed on the STS stack, so that they
are not GC-ed, while the function is running. Any allocation
can trigger a collection, so intermediate objects allocated in
a C++ function, have to be temporarily registered with the
GC, before they are returned to STS.

Reference-counting We have previously used reference
counting formemorymanagement.We generally incremented
reference counts of all arguments to C++ functions for the
duration of their execution. This incurred dramatic time over-
heads compared to the GC described above (see Figure 7).

4 Evaluation
We evaluate STS compiled machine code (as well as the STS
virtual machine backend, referenced as VM) on a number
of well-known small performance-intensive benchmarks,
comparing the performance against:

8The indirect call overhead is only 4-8 cycles on a Cortex-M4.

• a pure C implementation, compiled with gcc, as a base-
line for comparison;

• Duktape 2.3, an embedded JavaScript interpreter;
• IoT.js 1.0, the JerryScript embedded JavaScript inter-
preter;

• Python 3.6, the regular, full-fledged Python inter-
preter;

• Node.js 11.0, which includes V8, a state of the art JIT
engine;

• MicroPython 1.9.4, an embedded Python interpreter.
We use three different commercially available ARM-based

systems for testing:
• GHI Brainpad, which uses the STM32F401RE, an
ARM Cortex-M4F core with 96kB of RAM and 512kB
of flash running at 84MHz;

• Adafruit Pybadge, using theATSAMD51G19, anARM
Cortex-M4F core with 192kB of RAM and 512kB of
flash running at 120MHz;

• Raspberry Pi Zero, using the BCM2835, an ARM11
core with 512MB of RAM running at constant 700MHz
(dynamic CPU frequency scaling was disabled).

The Pi can run Node.js, which places it outside of our
target memory range, but we used it for reference compari-
son of performance against V8. Generally, memory access is
much slower on the ARM11 core than on M4F cores (where
the entire RAM is similar in performance to L1 cache). The
FPU on the M4F cores is only single-precision, so it was not
used in benchmarks. The FPU on the ARM11 core was used.
Duktape was compiled with default options on the BCM.

On the STM the default profile immediately runs out of
memory, so we used the lowmemory profile (we additionally
enabled fast integer option). We used the official ARMv6
Node.js binary. We used Python that comes with PiCore
Linux. We used IoT.js compiled by one of its developers (the
heap seems hard-set to 512kB, hence the OOM in results).
We used the official MicroPython binary for STM32.

4.1 Benchmarks
We used a number of benchmarks, described below. We
tried to use equivalent code in TypeScript/JavaScript and
Python, as we are comparing run times and not program-
ming languages.9 The C programs by necessity are not di-
rectly feature-comparable, as they lack memory safety and
use a static integer representation.

Richards: Martin Richard’s benchmark simulates an oper-
ating system’s scheduler queue. We took JavaScript sources
from the JetStream benchmark suite [11] and translated
them to TypeScript by replacing prototype initialization with
9More specifically, Python fann was using a different algorithm than the C
or JavaScript versions. We changed it to use the same algorithm and direct
array accesses. Python binary was changed to use classes and not tuples.
We made these alterations because we wanted to measure array accesses
and class implementation. We did not change richards or nbody.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Static TypeScript MPLR 2019, Under submission,

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

BCM2835 at 700MHz (Pi Zero) STM32F401RE at 84MHz
[ms] [times slower than GCC] [ms] [times slower than GCC]

Benchmark GCC Duktape iotjs Python Node STS VM GCC Duktape µPython STS
binary(7) 25 320 40 2.4
binary(8) 20 40 35 75 8.0 2.5 8 74 OOM OOM 2.3
binary(9) 40 38 43 78 4.5 2.3 9 149 OOM OOM 2.1
binary(10) 90 46 67 94 2.8 2.2 11 394 OOM OOM OOM
binary(11) 180 50 OOM 91 1.7 2.2 12
richards(10k) 10 680 490 1210 68 22 113 90 532 287 14
richards(100k) 120 591 400 1048 9 16 94
fann(8) 20 215 284 415 12 23 136 119 198 166 21
fann(9) 230 190 262 402 3 20 124
nbody(1k) 3 227 247 170 113 97 213 511 11 6.7 3.7
nbody(10k) 30 230 246 148 14 85 168
nbody(100k) 310 226 239 143 4 81 167

Figure 4. Benchmark execution times on BCM and STM32 MCUs. VM is the STS virtual machine. OOM = Out of memory.

equivalent class code, adding type information where neces-
sary. The benchmark uses a number of classes with derived
methods for different scheduler tasks, which is meant to
test object property access performance. We also used the C
and Python versions of this benchmark, which use a single
structure for the tasks, together with a switch statement
and a function pointer. We developed equivalent TypeScript
code (labeled richards2), but the class-based version (richards)
seems to better reflect typical JavaScript coding patterns. The
benchmark parameter is the number of scheduling iterations
in thousands.

Binary trees: this program comes from The Computer Lan-
guage Benchmarks Game [10]. Within a loop, it allocates a
full binary tree of a given depth, performs a simple computa-
tion on it, and then deallocates it. The benchmark is designed
to test memory allocation subsystem performance. The C,
Python, and TypeScript versions come from the Benchmarks
Game. The Python version was modified to use a class, in
order to match the TypeScript version closer.

Fannkuch redux: this is another program from the Bench-
marks Game that counts the number of specific permutations
and tests array access and integer performance. The Python
program was modified to use the same algorithm with ex-
plicit, single-element array accesses, the way that the C and
TypeScript versions do.

N-body: this program is a physics simulation of planets in
the solar system, also from the Benchmarks Game, to mea-
sure floating point performance.

4.2 STS and VM performance
Figure 4 compares STS performance against various other
systems. We present the run time of a C program directly in
milliseconds and otherwise as slowdown (number of times)
with respect to C.

On the benchmarks heavy on property access (binary and
richards) STS is well over an order of magnitude faster than
the interpreters, and less than two times slower than Node.js.
Moreover, the interpreters run out of memory much quicker
than STS on binary. For straight combinatorial computation
(fann), STS is about an order of magnitude faster than the
interpreters but several times slower than Node.js (which
employs quite an advanced optimizer in V8). In floating point
computation (nbody), STS is still significantly faster than
interpreters, but 20x slower than Node.js, which utilizes the
FPU much better.
Generally, the longer running benchmarks are more in-

dicative of performance. We have also included the results
for small iteration counts to be able to compare the BCM
and STM directly on the same programs; on such programs
the JIT warmup time is significant in Node.js results.

The STS VM is about 5-6x slower than ARM Thumb STS,
except for the floating-pointing-heavy nbody benchmark,
where most of the work is performed in C++ runtime func-
tions. Yet, the VM is still much faster than the interpreters,
suggesting that the static memory layout of classes con-
tribute significantly to overall STS performance.

The results on STM32 and SAMD have very small variance
(around 0.1%). On BCM we ran benchmarks 10 times and
chosen the fastest results.

4.3 Performance of member access
Figure 5 shows measurements of various forms (see Sec-
tion 3.4) of member access in isolation. The first four rows
show the number of cycles needed for a field access on
this (just an indexed memory lookup), an access with dy-
namic class subtype check, an access resolved via an interface
lookup, and finally an access on a dynamic map object.
For functions, the figure lists a direct call to a procedure,

with no type checks, a call into non-virtual class method, a
9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

MPLR 2019, Under submission, Thomas Ball, Peli de Halleux, and Michał Moskal

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Access STM32 SAMD BCM
this.field 6.5 7.5 11.8
(x as Class).field 23.2 24.1 35.2
(x as Iface).field 52.2 51.6 76.0
({ ... }).field 136.9 136.8 156.3
staticFunction(x) 14.1 15.1 20.6
this.nonVirtual() 14.2 15.1 20.7
this.method() 28.3 29.2 41.7
(x as Class).nonVirt() 34.4 35.2 45.2
(x as Class).method() 34.5 35.2 49.8
(x as Iface).method() 57.7 55.4 85.4

Figure 5.Measured cycles taken by various forms ofmember
access on the three MCUs. Each operation was run a million
times and average time consumed was converted to cycles.

Operation STM32 SAMD BCM
x = 1 1.1 1.8 6.3
x = y 2.0 1.9 4.6
x++ 16.2 16.2 20.6
x += y 16.2 16.0 22.1
x *= y 41.4 41.6 58.7
x = Math.idiv(x, y) 56.0 56.1 162.0
x = {} (allocation) 212.5 206.0 294.5
x += y (double) 414.0 406.5 413.5
x *= y (double) 412.0 402.0 442.0
x /= y (double) 968.5 963.0 443.5

Figure 6. Measured cycles taken by various language primi-
tives on the three MCUs. Double math operations include
allocation and amortized GC (boxing).

call into a virtual class method, and finally an interface call.
We also distinguish between calls on this, which do not
require a dynamic type check, and other non-interface calls
that do.
The non-virtual and virtual calls on a variable are dom-

inated by the subtype check, which is performed slightly
differently, ending up with almost exactly the same perfor-
mance. The interface lookup does not need a type check
(because the method is looked up in the virtual table of the
object on which it is called), which makes it not that much
slower than a regular call. The dynamic map lookup depends
on the number of fields, but other timings are mostly input-
independent.

Figure 7 shows the performance impact of these different
ways of accessing members in a full benchmark. The first
row (Baseline) lists run times in the default mode, where
classes have Java-like virtual tables, in addition to slower
interface tables, and fields of classes are accessed by memory
lookup at statically computed offset.

The second and third row show slowdowns incurred when
methods and fields are looked up via the interface tables.

The fourth row shows the slowdown when objects are repre-
sented as dynamic maps with linear lookup, in benchmarks
that allow for enabling this in a non-invasive way. The slow-
downs for field accesses are rather dramatic, on the order of
2x.
The next row show effects of dropping dynamic subtype

checks when accessing member of this (as its type was
already checked when entering the method). Disabling this
optimization would allow us to fall back to dynamic lookup
also in methods.
The next line compares performance of the simple mark-

and-sweep garbage collector to reference counting (see Sec-
tion 3.8).
Next, we show impact of folding argument conversions

into helper functions. It is very small, but it saves 4% of
code size of Arcade. Then, we show the effects of the peep-
hole optimizer, which saves 14% of code size on Arcade, and
improves performance by a few percent.

The final line measures the impact of all dynamic subtype
checks (enabled in Baseline) that we employ to protect the
class abstraction. This is the price we pay for following Type-
Script semantics, where casts always succeed, but member
access may fail.

4.4 Performance of language primitives
Figure 6 shows cycle measurements of various language
primitives. As with Figure 5, we timed one million operations
of each type and subtracted the time consumed by an empty
loop. The time was then converted to main clock cycles for
comparison.

The counts are quite similar, but not the same, for the two
M4 cores—in both cases programs run from flash, which is
much slower than RAM, and the MCUs cache it differently.
The BCM numbers are worse, likely because main memory
access takes more cycles there, and caches do not always fix
it. This is particularly visible for allocation (which includes
amortized cost of GC), which then also dominate the floating
point operations. Also, there is no hardware integer division
on ARM11.
The integer division and multiplication do not currently

have a fast path implementation in assembly (due to differ-
ences between ARMMCUs), so they are slower than addition,
subtraction and bit operations.

4.5 MakeCode Arcade Performance
The MakeCode Arcade handhelds, as shown in Figure 2, are
about 100 times faster than the original arcade machines of
the 1980s. However, the games in 1980s were programmed
in assembly, with heavy use of accelerated graphics (sprites
etc.). Arcade, on the other hand, offers very high-level and
beginner-friendly APIs in a fully managed, garbage-collected
language. As a result, the more complex games (eg., the one

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Static TypeScript MPLR 2019, Under submission,

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Compiler modification richards richards2 bintree nbody
Baseline 1265ms 1172ms 324ms 1869ms
Methods via interface 13% 0% 4% 0%
Methods+fields via interface 102% 34% 39% 10%
Objects as dynamic maps 143%
Subtype checks on this 19% 0% 4% 1%
Reference counting 165% 128% 100% 64%
Inline conversions 0.1% -0.7% 0.0% -0.1%
No peep hole 6% 6% 5% 0.3%
Disable all subtype checks -12% -17% -7% -3%

Figure 7. Increases in run time when disabling certain optimizations on STM32.

from Fig. 3) are quite playable with STS at 30fps; extrapolat-
ing from our benchmarks, an embedded interpreter would
run at 1-5fps.
We have also evaluated code size on Arcade games. The

STS compiler generates about 37 bytes of ARM Thumb ma-
chine code per input (JavaScript) statement, which works
out to about 20 bytes per input line of code. Note that unused
parts of code are removed, so the game engine is never fully
present in the generated binaries. As a comparison, the STS
VM, which uses a specialized 16/32 bit encoding achieves
about twice the code density.

The C++ runtime occupies about 125kB of flash, while the
bootloader and space for internal filesystem take another
64kB, so there is about 320k left for the program and game
assets. In practice, this limits the user application (excluding
game engine) to 5-10k lines of code, which we have not yet
found to be a significant limitation.

5 Related Work
Safe TypeScript [13] and StrongScript [14] both shore up
TypeScript’s type system with soundness guarantees, backed
by runtime checking. Our work is closest to StrongScript, as
STS uses a nominal interpretation of classes for code gener-
ation and the STS runtime distinguishes between dynamic
objects, created with { x = ... } syntax in JavaScript,
and class objects, created with new C(...) syntax.
STS differs from StrongScript in a variety of ways. First,

StrongScript’s system guarantees that in the absence of
downcasts, a variable of concrete class type C is guaran-
teed to refer to an object of a nominal subtype of C or to
null. STS uses TypeScript’s type inference and checking
as is, with no modification. In STS, a variable of class type C
is checked dynamically (upon lookup of a field/method) to
determine if its value is a nominal subtype of class type C.
The check may fail. There is no type checking performed dy-
namically on arguments. Second, STS erases casts, whereas
StrongScript checks them at runtime; instead, STS performs
checks at a dereference (member/field lookup), as noted

above. StrongScript allows an object of class type to be ex-
tended with extra properties. STS currently does not allow
such an extension;
Hop.js [17] is a static compiler, with advanced type in-

ference, that translates JavaScript programs to Scheme and
then compiles them using Bigloo. Reported performance
numbers indicate much better than STS performance on the
combinatorial benchmarks (like fann) and somewhat worse
on richards (however, these numbers are from x86 and we
estimate from numbers relative to V8; we were unable to run
tests on RPi ourselves).

SJS [5, 6] is a similar system, except that it is implemented
in Java, and generates C instead of Scheme. Similarly, it
seems to exhibit better performance than STS on combina-
torial benchmarks, and slightly worse on richards. Neither
of these is suitable for running in a web browser. In general,
it seems these compilers are able to produce very efficient
code, when they can infer static types, falling back to much
slower runtime path when they cannot. STS, on the other
hand, exhibits rather flat and predictable performance. This
should allow for combining the approaches in future.

There are other embedded interpreters in addition to the
ones we have compared against such as XS7 [21] or Espru-
ino [23]. These seem to have similar performance perfor-
mance as the ones we have used.

6 Conclusion
Static TypeScript (STS) fills an interesting niche in compilers
for embedded systems. Implemented fully in TypeScript it-
self, the STS toolchain can run in a web browser and produce
ARM (Thumb) machine code for a large subset of TypeScript.
For efficiency of compiled code, STS relies on a nominal in-
terpretation of classes. Via MakeCode, STS has been widely
deployed across a range of devices with small amounts of
RAM. Evaluation of STS on a set of small benchmarks shows
that STS’s generated code is much faster than various em-
bedded intepreters for scripting languages. The largest STS
application to date is MakeCode Arcade, whose game engine
comprises over 10,000 lines of STS.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

MPLR 2019, Under submission, Thomas Ball, Peli de Halleux, and Michał Moskal

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Acknowledgments We would like to thank current and
former members of the MakeCode team: Abhijith Chatra,
Sam El-Husseini, Caitlin Hennessy, Steve Hodges, Guillaume
Jenkins, Shannon Kao, Richard Knoll, Jacqueline Russell, and
Daryl Zuniga. We also express our gratitude to James Devine
and Joe Finney at Lancaster University, the authors of CO-
DAL used as a layer of our C++ runtime. Finally, we would
like to thank the anonymous reviewers for their helpful
comments, and Edd Barrett for his help in getting the final
version of this paper ready.

References
[1] Jonny Austin, Howard Baker, Thomas Ball, James Devine, Joe Finney,

Peli de Halleux, Steve Hodges, Michal Moskal, and Gareth Stockdale.
2019. The BBC micro:bit – from the UK to the World. Commun. ACM
(to appear) (2019).

[2] BBC. 2017. BBC micro:bit celebrates huge impact in first year, with
90% of students saying it helped show that anyone can code. https:
//www.bbc.co.uk/mediacentre/latestnews/2017/microbit-first-year.

[3] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. 2014. Under-
standing TypeScript. In ECOOP 2014 - Object-Oriented Programming -
28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings. 257–281. https://doi.org/10.1007/978-3-662-44202-9_11

[4] Hans-J Boehm, Russ Atkinson, and Michael Plass. 1995. Ropes: an
alternative to strings. Software: Practice and Experience 25, 12 (1995),
1315–1330.

[5] Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole
Schlesinger, Manu Sridharan, Frank Tip, and Young-Il Choi. 2016.
Type inference for static compilation of JavaScript. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4,
2016. 410–429. https://doi.org/10.1145/2983990.2984017

[6] Wontae Choi, Satish Chandra, George Necula, and Koushik Sen. 2015.
SJS: A type system for JavaScript with fixed object layout. In Interna-
tional Static Analysis Symposium. Springer, 181–198.

[7] James Devine, Joe Finney, Peli de Halleux, Michal Moskal, Thomas Ball,
and Steve Hodges. 2018. MakeCode and CODAL: intuitive and efficient
embedded systems programming for education. In Proceedings of the
19th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES 2018, Philadelphia,
PA, USA, June 19-20, 2018. 19–30.

[8] Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov.
2015. Ultra Lightweight JavaScript Engine for Internet of Things. In
SPLASH Companion 2015. 19–20.

[9] Damien George. 2018. MicroPython. http://www.micropython.org.
[10] Isaac Gouy. 2018. The Computer Language Benchmarks Game. https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/.
[11] Apple Inc. 2018. JetStream Benchmarks 1.1. https://www.

browserbench.org/JetStream/in-depth.html.
[12] Adafruit Industries. 2018. CircuitPython. https://github.com/adafruit/

circuitpython.
[13] A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris. 2015.

Safe & Efficient Gradual Typing for TypeScript. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. 167–180. http://doi.acm.org/10.1145/2676726.
2676971

[14] G. Richards, F. Z. Nardelli, and J. Vitek. 2015. Concrete Types for Type-
Script. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015. 76–100. https://doi.org/10.4230/LIPIcs.ECOOP.2015.76

[15] Samsung. 2018. JerryScript. http://jerryscript.org.

[16] Sue Sentance, Jane Waite, Steve Hodges, Emily MacLeod, and Lucy
Yeomans. 2017. "Creating Cool Stuff": Pupils’ Experience of the BBC
Micro:Bit. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’17). ACM, 531–536. https:
//doi.org/10.1145/3017680.3017749

[17] Manuel Serrano. 2018. JavaScript AOT compilation. In Proceedings
of the 14th ACM SIGPLAN International Symposium on Dynamic Lan-
guages. ACM, 50–63.

[18] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In
ECOOP 2007 - Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 - August 3, 2007, Proceedings. 2–27. https:
//doi.org/10.1007/978-3-540-73589-2_2

[19] Artifex Software. 2018. MuJS. https://mujs.com/.
[20] Cesanta Software. 2018. mJS. https://github.com/cesanta/mjs.
[21] Patrick Soquet. 2017. XS7. https://www.moddable.com/XS7-TC-39.
[22] Sami Vaarala. 2018. DukTape. https://duktape.org/.
[23] Gordon Williams. 2017. Making Things Smart: Easy Embedded

JavaScript Programming for Making Everyday Objects into Intelligent
Machines. Maker Media.

12

https://www.bbc.co.uk/mediacentre/latestnews/2017/microbit-first-year
https://www.bbc.co.uk/mediacentre/latestnews/2017/microbit-first-year
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/2983990.2984017
http://www.micropython.org
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://www.browserbench.org/JetStream/in-depth.html
https://www.browserbench.org/JetStream/in-depth.html
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://jerryscript.org
https://doi.org/10.1145/3017680.3017749
https://doi.org/10.1145/3017680.3017749
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://mujs.com/
https://github.com/cesanta/mjs
https://www.moddable.com/XS7-TC-39
https://duktape.org/

	Abstract
	1 Introduction
	1.1 Static TypeScript
	1.2 MakeCode: Easy Embedded for Education

	2 Static TypeScript (STS)
	2.1 C++ Interop
	2.2 Packages

	3 Compiler and Runtime
	3.1 Compiler Toolchain
	3.2 Linking
	3.3 Representation of values
	3.4 Virtual table layout
	3.5 Arithmetic operators
	3.6 Representation of built-in objects
	3.7 Peep-hole optimizations
	3.8 Garbage collector

	4 Evaluation
	4.1 Benchmarks
	4.2 STS and VM performance
	4.3 Performance of member access
	4.4 Performance of language primitives
	4.5 MakeCode Arcade Performance

	5 Related Work
	6 Conclusion
	References

