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Figure 1: Light field deformation enables an animator to interactively deform photo-realistic objects. The left figure shows an image of a
light field of a toy Terra Cotta Warrior. The middle image shows a view of the same light field after applying a deformation, in this case, a
twist to the left. Notice that his feet remain fixed and his right ear now becomes visible. The right image shows the warrior turning to his
right.

Abstract

We present a software pipeline that enables an animator to deform
light fields. The pipeline can be used to deform complex objects,
such as furry toys, while maintaining photo-realistic quality. Our
pipeline consists of three stages. First, we split the light field into
sub-light fields. To facilitate splitting of complex objects, we em-
ploy a novel technique based on projected light patterns. Second,
we deform each sub-light field. To do this, we provide the ani-
mator with controls similar to volumetric free-form deformation.
Third, we recombine and render each sub-light field. Our render-
ing technique properly handles visibility changes due to occlusion
among sub-light fields. To ensure consistent illumination of objects
after they have been deformed, our light fields are captured with
the light source fixed to the camera, rather than being fixed to the
object. We demonstrate our deformation pipeline using synthetic
and photographically acquired light fields. Potential applications
include animation, interior design, and interactive gaming.
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1 Introduction

A light field enables photo-realistic rendering of objects and scenes
without knowing their geometry [Levoy and Hanrahan 1996]. Since
they operate on captured photographs, light fields remove the need
to explicitly model geometry, lighting, or surface reflectance prop-
erties. Novel views of interesting objects are found in [Matusik
et al. 2002], where they render light fields of furry teddy bears, toy
angels, and plants; such objects have a very complex geometry and
complex reflectance models.

The ability to deform an object has many uses, including modeling
and animation. In cartoon animation, “squash” and “stretch” de-
formations are widely used to enhance motion and character [John-
ston and Thomas 1995]. In modeling, deformation is often used
to simulate flexible materials. Unfortunately, deforming a three-
dimensional object typically requires having a representation of the
object’s geometry. Light fields, on the other hand, have no geome-
try, or perhaps just a simple proxy [Gortler et al. 1996]. Therefore,
it is not immediately clear how to apply deformations to light fields.

In this paper we describe such a technique for deforming light
fields. By doing so, an animator can leverage both the photorealism
of image-based rendering and the expressive power of deformation.
Figure 1 illustrates a deformation on a light field of a Terra Cotta
soldier. We ensure consistent illumination of the soldier as it de-
forms by capturing a light field of it in which the illumination is
fixed near the camera as it moves. We call this image-based repre-
sentation a coaxial light field. In Section 3 we define this represen-
tation in more detail, and we show that it keeps the illumination of
objects “consistent” during deformations.

Our method for deforming a light field is performed in three stages:
splitting the light field into sub-light fields, deforming each one,
and rendering them together.
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First, the light field is split into sub-light fields. This is done by
partitioning 3D space into multiple subvolumes. With each 3D
subvolume we associate a subset of the light field, namely those
rays that intersect objects lying inside that subvolume. Figure 2
illustrates this notion. In this paper, we assume that subvolumes
are rectangular parallelepipeds, and we henceforth refer to them as
“deformation boxes” or simply “boxes”1. To associate rays of the
light field with particular deformation boxes, one can use a variety
of techniques. The technique we present in this paper uses video
projectors. Specifically, during image capture we illuminate that
portion of the object lying in each deformation box with a different
color. By analyzing the colors of pixels in each view of the light
field, we can associate the ray corresponding to that pixel with the
appropriate subvolume and hence the appropriate sub-light field.

Figure 2: An illustration of a sub-light field. In this top-down view,
two objects are shown in black. The subvolume is drawn in light
gray. Rays that strike the object in that subvolume, and are hence in
its sub-light field, are drawn in pink; rays that either do not intersect
the subvolume or that do not strike the object are drawn in blue.
These rays are not included in the sub-light field.

Second, a deformation is applied to each sub-light field. The ani-
mator specifies the deformation by moving the vertices of the corre-
sponding box. We then apply a 3D warp that maps the undeformed
box to a deformed one, transforming the rays associated with that
box. Figure 3 illustrates how a deformation affects the rays in the
sub-light field. The variant of trilinear warps we employ in this pa-
per maps straight lines to straight lines, thereby producing straight
viewing rays. This allows us to extract the rays we need from the
light field we have captured.

Figure 3: The left image shows an undeformed box (in black) and
several rays (pink arrows). In the right image, the animator manip-
ulates the deformation box, thus causing a 3D warp on the rays.

Finally, the deformed sub-light fields are joined together and ren-
dered using a technique that preserves the occlusion ordering of the
subvolumes.

1Our technique would also work using other subvolume shapes, but we
found boxes to be simple and effective for deformation.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 introduces the coaxial light field and dis-
cusses why it is useful for deformation. Section 4 presents tech-
niques for splitting a light field into sub-light fields. Section 5 il-
lustrates how to define a light field deformation. Section 6 shows
how to combine and render multiple deformed light fields using
hardware-accelerated texture mapping. Section 7 shows our imple-
mentation and results. Section 8 discusses the limitations of our
technique and future work.

2 Related work
Light fields [Levoy and Hanrahan 1996; Gortler et al. 1996] are a
popular alternative to geometric representations of scenes, allowing
photorealistic flythroughs of complex scenes at interactive rates. A
survey of light fields and other image-based representations is given
in [Shum and Kang 2000].

Aside from rendering, relatively little research has been done on
light fields; in particular on editing them. Notable exceptions are
[Seitz and Kutulakos 1998; Rangaswamy 1998] which allow the
user to perform image editing operations such as painting, cropping
and morphing on a set of images. The edits in a single image are
propagated to other images via an underlying volumetric model.
[Oh et al. 2001] allows cloning and texture-illuminance decoupling
in a layered-depth image representation of the scene.

The editing technique most similar to ours is [Zhang et al. 2002],
which permits morphing of a source light field into a target one.
Corresponding 3D features are specified in the source and target
light fields by the user. These corresponding points are then used
to drive a warping of the two light fields, followed by a blending
between them. In our method we also warp the light field, but we
define deformation as a 3D spatial transformation. In other words,
we warp the volume that contains the object, as opposed to warp-
ing the specified feature points on the object. Although it does not
directly support morphing between two light fields, we believe our
formulation makes it easier for users to animate a single light field.

So far, rendering these light fields have used little or no geometry. If
we relax this restriction and provide a geometric proxy of the scene,
then deformation can be realized by warping the proxy and preserv-
ing the surface reflectance properties during this process. Weyrich
et al., presented a system which allows for the relighting and defor-
mation of surface reflectance fields [Weyrich et al. 2004]. Given an
“impostor” geometry on which a surface reflectance field is defined,
they deform this representation and show that it approximately pre-
serves the material properties of the object. Our technique applies a
warp on rays, which facilitates interactive deformation independent
of the complexity of the geometry. However, our implementation
trades off the accuracy in the appearance of the deformed object for
interactive rendering rates.

Finally, deformations on volumes (e.g. 3D points) have also been
explored in the computer graphics and simulation communities.
However, no one to date has applied these deformation techniques
to light fields, i.e. to collections of 4D rays. Our work is inspired
by the work of Alan Barr [1984], who observed that a deformed
object can be rendered by tracing warped rays through the unde-
formed space containing the object. Kurzion and Yagel also ex-
tended the original idea by defining “ray deflectors” to deform rays
before they entered a rendering system [Kurzion and Yagel 1996].
Our technique uses deformation boxes, a technique similar to volu-
metric free-form deformation, which provides the animator with an
intuitive way to specify the ray warp.

Before we discuss the deformation process, we first show why using
a coaxial light field helps produce more consistent lighting during
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deformation.

3 Coaxial light fields
[Levoy and Hanrahan 1996] defines the 4D light field as radiance
along rays as a function of position and direction in a scene under
fixed lighting. Their definitions permit construction of new views
of an object, but its illumination cannot be changed. By contrast,
[Debevec et al. 2000] defines the 4D reflectance field as radiance
along a particular 2D set of rays, i.e. a fixed view of the world, as a
function of (2D) direction to the light source. Their definition per-
mits the relighting of an object, but the observer viewpoint cannot
be changed. If one could capture an object under both changing
viewpoint and changing illumination, one would have an 8D func-
tion (recently captured by [Goesele et al. 2004]). The light fields
of [Levoy and Hanrahan 1996] and [Debevec2000] are 4D slices of
this function.

In this paper, we define a different 4D slice, which we call the
“coaxial light field.” Specifically, we capture different views of an
object, but with the light source fixed to the camera as it moves.
In fact, we assume that the camera rays and illumination rays co-
incide. Since perfectly coaxial viewing and illumination is difficult
to achieve in practice, we merely place our light source as close to
our camera as we can. As an alternative, a ring light source could
also be used.

Let us consider what happens to the illumination on a diffuse object
when rendering a deformed coaxial light field. Figures 4 and 5 illus-
trate the simulated capture and rendering of a deforming checker-
board. In the first figure, coaxial illumination is used during cap-
ture, i.e. the light source is fixed to the camera. In the second figure,
the light source is fixed to the scene. As the figures show, only the
first case generates a correct rendering of the deformed checker-
board.

Thus, the advantage of coaxial viewing and illumination is that it
ensures the correct appearance of objects under deformation, even
though no geometry has been captured. However, this technique
has several limitations. First, the object must be diffuse; specular
highlights will look reasonable when deformed, but they will not
be correct. Second, perfectly coaxial lighting contains no shadows.
This makes them look somewhat flat. In practice, our light source
is placed slightly to the side of our camera, thereby introducing
some shadowing, at the expense of slightly less consistency in the
rendering.

Interestingly, if the light source is placed farther from the camera,
and we assume that the camera orbits around the center of the ob-
ject, then the rendering becomes inconsistent only for parts of the
object that are far from this center. Moreover, it become incon-
sistent only gradually. We are currently experimenting with this
extension. If the artifacts it produces are not too serious, then it
gives the animator more control over the placement of lights, which
in turn allows the creative use of shadows.

4 Splitting the light field
Now we begin our discussion of the deformation process by de-
scribing how we split a light field. The purpose of splitting a light
field is so that each sub-light field can undergo a different defor-
mation. We define a sub-light field as a collection of two objects:
a bundle of rays and an associated deformation box. Our goal is
to associate a deformation box for each ray bundle. A ray bun-
dle consists of the rays that hit object points that undergo the same
transformation. For example, in Figure 6 one ray bundle (shown in

Figure 4: The top two images are from a simulated coaxial light
field. The lighting is a point light source placed near the camera.
As the camera moves to an oblique position, the plane becomes dark
because irradiance falls off with the angle between the plane’s nor-
mal and the illumination direction. The plane is assumed to reflect
light diffusely. The bottom image shows the checkerboard after ap-
plication of a twisting deformation in which the top edge is rotated
along the vertical axis while the bottom edge stays fixed. From the
checkerboard’s bottom edge to its top edge, it becomes darker. Al-
though this image was made by rendering a deformed light field,
this change in intensity correctly depicts what the checkerboard
would look like if it were twisted in the original scene. The arti-
facts are due to under-sampling in the light field and are not related
to the correct lighting on the deformed checkerboard.

yellow) is the set of all rays that hit a point on the fish head. In an-
other view of the fish, we would see other rays in this same bundle
that also hit the head. To store this association, we augment each
deformation box with an index, and we label each associated ray
with that index.

For light fields from synthetic data, creating ray bundles is straight-
forward, since the object geometry is known. First, we split the
triangle mesh algorithmically into parts, where each part undergoes
a different deformation. Then, in 3D, we place a deformation box
over each sub-mesh. The ray bundle which belongs to a partic-
ular box consists of all the rays that are incident to object points
within that box. To compute these ray bundles, we color each sub-
mesh with a different color and capture a light field of the object.
In this way, the color of each ray denotes the bundle to which this
ray belongs. Figure 6 shows one view of the colored mesh and the
associated deformation boxes.

For light fields from captured data, there are several techniques that
could be employed for specifying the ray bundles. In the simplest
case, when the cameras are arranged in a circle and properly aligned
with respect to an object, scan lines in the images can be used to
segment the light field into ray bundles. For example, in Figure 1
all pixels (e.g. rays) in all images above the scan line containing
the statue’s neck could be bundled together. This would allow us to
rotate only the statue’s head while applying a different deformation
to its body. In Figure 1, we actually use a single deformation box
over the entire statue. Using camera scan lines to split the light
field limits how we can acquire an object, which objects can be
deformed, and the space of animations we can apply to them.
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Figure 5: As in Figure 4, the top two images are images from a sim-
ulated light field. In this case, the lighting is a point source fixed
relative to the plane, while the camera revolves around it. Since the
checkerboard is diffuse, its apparent brightness remains unchanged
as the camera moves. The bottom image again shows the checker-
board after application of a twisting deformation. However, this
time the checkerboard remains uniformly white. This is incorrect
for a twisted plane illuminated by a point light source.

Figure 6: Splitting a synthetic light field. The fish is split into three
sub-light fields, each bounded by a deformation box. In this view,
the rays belonging to each sub-light field are color coded. The three
parts of the fish can now undergo independent warps.

4.1 Projector-based segmentation of light fields

To alleviate these restrictions, one can use video projectors to des-
ignate the ray bundles. We show that this technique also enables us
to render more complex motions. First we describe our acquisition
procedure for the teddy bear shown in Figure 14. At the end of this
section we discuss advantages and limitations of this technique.

To segment our light field of the teddy bear we actually capture
three light fields: 1) a coaxially illuminated one used for render-
ing, 2) a light field under color-coded illumination from multiple
projectors, and 3) one under floodlit illumination from the same
projectors. The second and third light fields are used to designate
ray bundles for deformation. Figure 8 illustrates the acquisition
setup using the Stanford Spherical Gantry [Levoy 2004]. We use
two projectors to throw colors onto the teddy bear. One projector
illuminates the teddy bear’s front, and the other his back. The col-
ors denote ray bundles that we will deform independently. Figure
7 illustrates this coloring. The colors are chosen such that their
distance in color space as seen by the projector-camera system is
maximal. In particular, the color difference between two different
areas should be larger than the color variance due to noise.

The image that each projector emits is created by hand. Specifi-

cally, a person sits at a computer that has two video outputs. The
video outputs are exact clones of each other. One output is shown
on a standard CRT monitor. The other output is displayed through
a projector, aimed at the teddy bear. Using a drawing program dis-
played on the CRT monitor, the user paints colored regions which
are displayed live onto the teddy bear, through the projector. This
technique emulates the synthetic case where sub-meshes of an ob-
ject are colored in order to compute the ray bundles. We use two
projectors aimed at the teddy bear’s front and back respectively.
Drawing the images that the projector emits is relatively easy since
the projected colors are not used for recovery of the model, but
merely to split the light field into sub-light fields. After painting
these colored regions (which are projected onto the teddy bear), we
then capture a light field under this new illumination.

In addition to acquiring this colored light field, another one is ac-
quired under floodlit illumination from the projectors. These im-
ages are used to normalize the data from the colored light field,
thus reducing effects from varying object albedo or non-uniformity
of the illumination brightness. Normalization is computed by the
following equation:

B′ = 256∗B/W (1)

where W is the floodlit image (8 bits per channel), B is the colored
image and B′ is the normalized color image. Figure 7 shows image
B′ for one camera’s view of the teddy bear light field.

Figure 7: Segmenting a teddy bear light field by using projector
illumination. The left image is the bear under floodlit illumination.
The middle image shows the same bear when projected with color
masks denoting ray bundles. The colors designate ray bundles for
the head, torso, arms, legs and joints. Each color denotes the sub-
light field to which that pixel belongs. On the right is the same view
after normalization. These illumination conditions are captured for
each camera position in the light field.

Finally, deformation boxes are created to surround colored regions
of the object in the light field . We first construct boxes in 3D using
a modeling program like 3D Studio Max. Then, we project the
boxes onto each camera’s view and verify that these projections
encompass the pixels that have the associated color. For the teddy
bear light field, we only project the deformation boxes onto a few
views, for example, the front, back and side views of the bear.

In our approach, we specified ray bundles using projectors, then
associated a deformation box to each bundle. This forced us to
decide, at acquisition time, on the number and nature of the inde-
pendent deformations that would later be applied. An alternative
approach would be to first specify the deformation boxes and then
associate ray bundles to each box. One way to do this would be to
specify a box in 3D and project it onto each view in the captured
light field. In each such view, the user interactively paints those
pixels (e.g. rays) which both hit the object and lie in the projection
of the appropriate deformation box. The user would have to paint
pixels in every view of the light field, which is a time consuming
process. However, this could be facilitated by a geometric proxy
that would be used to propagate painted pixels to other views.
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No matter how these ray-to-box associations are derived, it is desir-
able that only rays striking object points lying inside a deformation
box are associated with that box. However, when this condition is
violated, rays can either be warped when they shouldn’t be, or vice
versa. We handle the former problem by only warping those rays
that pass through the deformation box (see Section 5). In this way
even if rays are mislabeled (e.g. they hit object points lying outside
of the deformation box), they are not rendered.

While projectors have proven useful for the objects we deformed,
using them does have its limitations. First, this technique would
be difficult to apply for objects of high reflectivity, transparency
or very low albedo. Second, self shadows can make segmentation
harder. Third, sometimes projectors are not appropriate tools for
splitting the light field at all, i.e. for segmenting scenes into fronto-
parallel sub-light fields. In this case, one could extend the focused
imaging techniques described in [Levoy et al. 2004]. By focusing
the projectors’ illumination on the object’s surface, we can also alle-
viate problems due to self-shadowing. Alternatively, by combining
“shape from focus” or “shape from stereo” operators with focused
imaging, we could segment the light field into fronto-parallel sub-
light fields. An application of such a segmentation is animating the
depth layers of a scene containing a field of wheat or grass, thus
simulating the effect of wind.

Figure 8: Our acquisition setup for capturing a cylindrical light
field (as defined in Section 6.2) of an object. Using the Stanford
Spherical Gantry, the camera (A) rotates in a circle in the horizontal
plane. Two lights are placed close to the camera to create near-
coaxial lighting. One light (B) is shown in the above picture. Two
projectors (C, only one shown) are placed above and outside of the
gantry and illuminate the object (D).

5 Deformation
After splitting the light field into sub-light fields, each one is de-
formed. A deformation is a function D : ℜ3→ℜ3. Since the geom-
etry of the sub-light field is unknown, we must directly transform
the rays. By warping the rays, the visual effect is as if we had de-
formed the object. We represent a ray in the light field by two points
on its path. The deformation function warps these two points and
produces a new ray that goes through them. To specify the defor-
mation, we use a variant of free-form deformation [Sederberg and
Parry 1986], controlled by the vertices of a box.

Mathematically, we define a deformation box C as a set of eight
3D points. The animator can move any subset of C to form Cw, a
set of eight warped points. We assume the animator does not move
points to form self-intersecting polytopes. The deformation D is
thus a 3D function mapping C to Cw. While there are many ways to

define such a deformation, any such formulation should satisfy the
following three criteria:

1. D must map C to Cw

2. D must maintain C0 continuity across deformation boxes shar-
ing adjacent faces

3. straight lines should be preserved

The first criterion ensures that the warp adheres to the animator’s
decisions. The second criterion guarantees that when an object lies
across adjacent deformation boxes, it is never disconnected by the
deformations. The third criterion enables us to use standard light
field rendering techniques to render rays. An obvious choice for
the transformation that preserves linearities is the projective trans-
formation. Unfortunately, this mapping violates the first criterion
since there may not exist exact perspective transformations that map
the undeformed box to the deformed one. Furthermore, since the
perspective transform only approximates the deformation, the ver-
tices of adjacent cells may no longer be coincident, causing a shared
face to become disconnected.

We implemented a deformation technique using trilinear coordi-
nates that satisfies the above criteria and is fast and easy to compute.
First, we describe the deformation function, and then we analyze its
behavior.

Warping with trilinear coordinates

Let us assume, without loss of generality, that the original defor-
mation box is a unit cube with a corner at the origin. Then for any
3D point p, we can define it in terms of three interpolation coordi-
nates, u, v, and w. By trilinearly interpolating across the volume, p
can be described in terms of the interpolation coordinates and the 8
vertices of the cube:

p = (1−u)(1− v)(1−w)c1 +(u)(1− v)(1−w)c2+
(1−u)(v)(1−w)c3 +(u)(v)(1−w)c4+
(1−u)(1− v)(w)c5 +(u)(1− v)(w)c6+

(1−u)(v)(w)c7 +(u)(v)(w)c8

(2)

where the ci are the vertices of the cube. Simple scaling and trans-
lation can be used for the general case of a rectilinear box. [Warren
et al. ] present a technique for convex polytopes which reduces to
the same formulation in the rectilinear case. Any 3D point can be
warped using the trilinear coordinates described above.

In general, this transformation satisfies criteria 1 and 2, but is not
linear. However, we use it to warp rays by transforming the entry
and exit points of a ray with respect to its associated deformation
box. The new entry and exit points define a new (straight) line
that represents the warped ray. This ray warp is linear and hence
satisfies all the above criteria. In addition, the warp is well defined
as long as the deformation box does not self intersect.

Figure 9: Warping a ray. Above, shows the undeformed boxes and
a ray going through them. Below, is a conceptual illustration of the
deformed boxes, the piecewise-linear deformed ray (shown in red).
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6 Joining and rendering

The final stage of our framework is joining and rendering the
deformed sub-light fields. For each view ray, we must determine
where it hits the deformed object as it traverses the deformation
boxes. We present a description of our rendering algorithm that
solves this visibility problem. Each view ray, vi, it is partitioned
into segments by the deformation boxes (a segment is the portion
of the ray within a single box). Let l1, ..., ln be the segments along
vi traversed in the forward direction. First, we warp l1 with the
inverse deformation as described in Section 6.1. Let us call this
warped ray segment w1. We then render two values, s1 and t1.
s1 is the value of w1 when rendering using the colored light field
(as described in Section 4). Similarly, t1 is the value of w1 when
rendering using the coaxial light field. We describe our light field
rendering algorithm in Section 6.2. If s1 matches the label of
the deformation box, then the color of vi is t1 and we proceed
to the next view ray, vi+1. Otherwise, we continue to the next
segment l2. This procedure repeats until all ray segments have
been processed (in which case vi is black), or until ti matches
the appropriate deformation box label. Figure 10 illustrates an
example of using this algorithm while the following contains the
associated pseudo-code.

RENDER VIEW (view pt)
1 for view ray← view pt do
2 view raycolor ← BLACK
3 l← SEGMENT RAY(view ray)
4 for i← 1 . . .n segments do
5 wi←WARP(li)
6 si← RENDER(wi , COLORED LF)
7 ti← RENDER(wi , COAXIAL LF)
8 if (si = lindex

i ) then
9 view raycolor ← ti
10 break
11 endif
12 endfor
13 endfor

6.1 Inverse ray warping

To obtain the rays, wi, that are used in the above algorithm, we
apply the inverse deformation on the ray segments li. The inverse
deformation function is computed once for every view point we
wish to synthesize. The cost of this technique is proportional to the
resolution of the image. For trilinear warping, the inverse function
maps the deformed box back to the original one.

In practice, evaluating the inverse is time consuming so we es-
timate it by forward warping many 3D samples and use inter-
polation to approximate the inverse point. We use a hardware-
accelerated texture-mapping approach to quickly interpolate among
the forward-warped 3D points. First, we divide each face of the
original box into many textured triangles. The texture color codes
the original coordinates of the face point on the undeformed cube.
We used 64 x 64 x 2 textured triangles per face for our datasets.
The triangle vertices are warped using the free-form deformation
specified by the deformation box, and the warped triangles are ren-
dered. Front-facing and back-facing faces are rendered separately
and are used as a look-up table (LUT) approximation for the inverse
mapping. Figure 11 illustrates the front and back-facing renderings
corresponding to a given trilinear warp. Using those LUTs we re-
cover the two 3D points of the intersection of the original ray with
the undeformed cube. These points form a ray which is passed into
the light field renderer.

Figure 10: Rendering a view ray. The left pair of images show
the boxes before and after deformation. A view ray, vi intersects
the deformation boxes. The ray is divided into segments where
each one belongs to a box. The first segment, l1 (shown in red in
the middle pair of images) is warped, producing w1. w1 is then
rendered using the colored light field, producing s1. In this case,
s1 is black since it does not hit the object. We continue to the next
segment, l2 (shown in green in the right pair of images) and observe
that s2 matches the label for the deformation box. t2 is then set to
be the color value for the ray vi.

Figure 11: A backward trilinear warp is approximated by forward
warping many samples and then interpolating the results. The left
and right images show the front and back facing triangles, respec-
tively. Notice that the “faces” of the warped box are no longer pla-
nar but remain smooth.

6.2 Light field rendering

We use a cylindrical light field parameterization (CLF) that is well
suited for inward-looking light fields having large viewing angle
and limited vertical parallax. Additionally, CLFs are easy to ac-
quire. A CLF is parameterized by cameras lying on the surface of
a cylinder of fixed radius. The viewing direction of each camera is
aimed at a common point along the axis of the cylinder.

Figure 12 illustrates in flatland the rendering process for a deformed
view ray, r. The process is similar to the technique used to render
concentric mosaics [Shum and He 1999]. First, we compute m, the
intersection point between r and the cylinder. Then we find the
nearest cameras to m (shown as a and b in the figure). We then
define a focal plane p which is orthogonal to r. Of the family of
planes orthogonal to r, we select the one that is a distance d from
the center of the cylinder. For most acquisitions, we pick d to be
close to zero. Finally, we intersect r with p and project this point,
x, onto the image planes of the nearest cameras to obtain a’ and
b’. In 3D we have four nearest cameras and we apply quadralinear
interpolation on the nearest 16 rays to render a final color for r.

r
x

a

b

p

m
a’

b’

Figure 12: Rendering from a cylindrical light field.
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7 Results
Figure 1 shows deformations on a cylindrical light field of a toy
Terra Cotta Warrior using a single deformation box. The deforma-
tion is defined by rotating the top 4 vertices of the box. Notice
that as the statue is twisted, we see the correct change in visibil-
ity. For example, the ear of the toy becomes visible as the head is
turned away. Also notice that the model exhibits correct lighting
after deformation. The statue is photographed under near-coaxial
illumination.

In Figure 13 we animate a swimming fish by controlling three de-
formation boxes. The middle box is being warped, while the front
box (the head) and the back box (the tail) are rotated according to
the bending of the middle box. Notice that visibility is rendered
correctly: the head pixels are drawn in front of the body and tail
pixels.

Figure 14 shows a few frames from an animation of a furry teddy
bear. Using projectors, the bear is split into several deformation
boxes to allow for independent arm, leg and head motion.

8 Discussion and future work
We have presented a pipeline for deforming and rendering light
fields. By splitting, deforming and joining sub-light fields, we can
apply global and local deformation to photorealistic objects; this
ability enables many applications. In particular, it allows an an-
imator to use key-frame interpolation of deformations in order to
produce a light field animation. Alternatively, using these defor-
mations a modeler can customize a light field for insertion into a
geometric model or another light field. Given an archive of light
fields, interior designers can deform plants, chairs, etc., to rapidly
prototype photorealistic scenes of rooms. Finally, game designers
can capture a light field of objects (like the toy soldier), which they
can animate for insertion into a video game.

There are limitations to deforming light fields. First, there is a
trade-off between modeling effort and the level of animation con-
trol. With more deformation boxes, the animator can generate more
complex motions, but more splitting must be done to associate the
sub-light fields to the deformation boxes. Second, when splitting
a light field, we assume there is a one-to-one mapping of rays to
deformation boxes. This assumption is violated for objects with
inter-reflections, refractions or transparency, where rays can enter
and exit multiple boxes. In this case, the ray would either never
undergo a deformation or would be deformed in an inconsistent
manner.

Our ray-warping algorithm also has some limitations. It can twist
a box, or taper it, but it can not curve it. To generate such a defor-
mation, the animator needs to approximate the bending by further
tessellating the light field into smaller boxes. An interesting ex-
tension of this work is to try to estimate the minimum necessary
tessellation of a light field to perform a given transformation, with
minimal of the object geometry.

When rendering multiple sub-light fields, large deformation of
boxes might produce disocclusions of background boxes that were
not actually being captured in the original light field. Searching for
the nearest visible rays gives an approximation for the newly re-
vealed areas, but if these areas are large, this approximation may be
poor.

Finally, we introduced the coaxial light field, where the illumination
is fixed near the camera as it moves. This has the limitation that
shadows are reduced and that the image appears unnatural. We are
currently investigating the visual effects of fixing the illumination
in positions further away from the camera. This is a topic for future
work.
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Figure 13: Deforming a fish with three independent deformations. The top-left image shows the original fish with control boxes shown in
the top-right image. The middle-left image shows the deformed fish with corresponding control cubes in middle-right image. The bottom-left
image shows a different view of the deformed cube. Notice that visibility changes are handled correctly by our algorithm, the fish head pixels
are rendered in front of the tail pixels. This synthetic cylindrical light field was generated using 3D Studio Max

(a) (b) (c)

Figure 14: A deformation on a teddy bear. Image (a) shows a view of the original captured light field. In this case, the cameras were arranged
in a ring, thus capturing a 3D subset of the full 4D light field. A total of 180 images were captured at 240 x 320 resolution. Image (b) shows a
deformation in which the head, arms and legs are all bended or twisted independently. Image (c) shows the deformation boxes used to specify
the motion of the teddy bear. The flash artifacts are due to specular reflection from the fish wire used to hold the bear in place.
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Figure 13: Deforming a fish with three independent deformations. The top-left image shows the original fish with control boxes shown in
the top-right image. The middle-left image shows the deformed fish with corresponding control cubes in middle-right image. The bottom-left
image shows a different view of the deformed cube. Notice that visibility changes are handled correctly by our algorithm, the fish head pixels
are rendered in front of the tail pixels. This synthetic cylindrical light field was generated using 3D Studio Max

(a) (b) (c)

Figure 14: A deformation on a teddy bear. Image (a) shows a view of the original captured light field. In this case, the cameras were arranged
in a ring, thus capturing a 3D subset of the full 4D light field. A total of 180 images were captured at 240 x 320 resolution. Image (b) shows a
deformation in which the head, arms and legs are all bended or twisted independently. Image (c) shows the deformation boxes used to specify
the motion of the teddy bear. The flash artifacts are due to specular reflection from the fish wire used to hold the bear in place.
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