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Figure 1: Factoring image content into a block-based transform map and a condensed epitome still allows fast random-access evaluation.

Abstract 
We reduce transmission bandwidth and memory space for images 
by factoring their repeated content.  A transform map and a 
condensed epitome are created such that all image blocks can be 
reconstructed from transformed epitome patches.  The transforms 
may include affine deformation and color scaling to account for 
perspective and tonal variations across the image.  The factored 
representation allows efficient random-access through a simple 
indirection, and can therefore be used for real-time texture map-
ping without expansion in memory.  Our scheme is orthogonal to 
traditional image compression, in the sense that the epitome is 
amenable to further compression such as DXT.  Moreover it 
allows a new mode of progressivity, whereby generic features 
appear before unique detail.  Factoring is also effective across a 
collection of images, particularly in the context of image-based 
rendering.  Eliminating redundant content lets us include textures 
that are several times as large in the same memory space. 
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1. Introduction 
Realistic rendering of outdoor scenes (e.g. with Google Earth or 
Microsoft Virtual Earth) requires detailed photographic textures, 
especially for dense city centers with high depth complexity.  Two 
key implementation challenges are: (1) bandwidth to transmit the 
texture images over the Internet, and (2) memory space to store 
these textures for rendering on the client device. 
Our goal is to exploit the significant repetition of content in the 
images to reduce bandwidth and memory.  For instance, textures 
often contain repeated patterns such as bricks, tiles, windows, etc.  
Traditional image compression schemes are not designed to take 
advantage of such repetitions.  Most schemes analyze local image 
structure, for instance by encoding coefficients of DCT, wavelet, 
or other transforms.  Such methods do not detect correlation of 
high-frequency features across nonlocal neighborhoods.  Some 
codebook techniques like vector quantization can efficiently 
encode duplicate image blocks, but such duplication arises only if 

the 2D period of the repeating image content aligns precisely with 
the block size – a rare circumstance in practice (Section 2). 
Another aspect is that schemes like JPEG require decompression 
prior to rendering, and thus do not address the issue of memory 
space.  Often there is simply not enough memory to uncompress 
the texture content for real-time graphics rendering. 
Our idea   We introduce a new representation that factors large-
scale repeated image content while retaining efficient random 
access.  Our technique does not assume regular or fixed-frequency 
repetition, so it can handle the natural repetitions (and mixtures of 
them) that we see in real-world photographs such as in Figure 1. 
The basic approach is to factor a given image 𝐼 into an epitome 𝐸 
and a transform map 𝜙.  The epitome contains a set of charts that 
are copied contiguously from the input image, and the transform 
map encodes how to reconstruct the image by selecting trans-
formed regions of these epitome charts.  Specifically, the image is 
divided into a regular grid of blocks, and each block (𝑠×𝑠 pixels) 
is recovered from an epitome patch, as illustrated in Figure 2. 
In the simplest scheme, the patch is determined by a translation 
vector 𝑡 stored as 𝜙 , and the reconstructed image is 𝐼 [𝑝] = 𝐸 𝑝 + 𝜙 [⌊𝑝/𝑠⌋] . 
The access to the epitome 𝐸 uses filtered (e.g. bilinear) sampling, 
while the access to the transform map 𝜙 uses nearest sampling. 
Note that the translation vectors 𝜙  have finer resolution than 
block granularity; in fact they may have subpixel precision.  Thus, 
our technique is not forming a simple dictionary of blocks as in 
vector quantization schemes.  Rather, the extracted blocks can 
overlap arbitrarily in the epitome as shown in Figure 3. 
 
 

 
Figure 2: The epitome contains a set of polyomino charts; each 
image block is reconstructed from a transformed patch in a chart. 

 



 

 
Figure 3: Blocks of the input image often overlap in the epitome. 

Intuitively, the goal is to introduce sufficient content into the 
epitome 𝐸 such that all blocks of the original image are well 
approximated by some transformed versions from within 𝐸. 
Our representation builds on prior work on image epitomes [Jojic 
et al. 2003; Kannan et al. 2006; Wei et al. 2008].  These earlier 
techniques develop epitome images as a powerful analysis struc-
ture, for segmentation, denoising, recognition, indexing, and 
texture synthesis.  Our focus is instead on efficient image recon-
struction, and we specialize the epitome construction accordingly. 
One distinction is that our epitome needs only capture the blocks 
of the original image, rather than the neighborhoods of all pixels.  
A more important distinction is that we create a compact trans-
form map 𝜙: 𝐼 → 𝐸 from the image to the epitome to allow (lossy) 
reconstruction of the original image.  Some earlier epitome 
schemes also explored such a map, but at the fine resolution of 
image pixels, and thus did not enable a concise factoring.  Finally, 
our reconstruction is extremely fast; it provides random access at 
over 800M pixels/second in a current GPU pixel shader. 
If the original image is an exact tiling with period 𝜏 × 𝜏, then all 
its blocks can be reconstructed from an epitome chart whose size 
is only 𝑠⌈𝜏/𝑠⌉ × 𝑠⌈𝜏/𝑠⌉ pixels.  In addition, several repeated 
patterns (like multiple building facades) with different periodici-
ties can be encoded as separate charts within the same epitome 
factoring.  Representing multiple repeating patterns efficiently 
within the same texture is advantageous as it can eliminate costly 
changes in runtime rendering state. 
In Section 3 we generalize the transform map 𝜙 to include geome-
tric deformations, for robustness to perspective view distortion.  
And optionally, we introduce a low-resolution color scaling map 
to improve factoring in the presence of the low-frequency lighting 
variations commonly found in real-world photographs. 

Benefits 
• The factored representation (𝜙, 𝐸) supports efficient random 

access – color can be evaluated at any point without expanding 
any data to a temporary memory buffer. 

• Image compression can still be applied to the epitome to exploit 
its fine-scale correlation.  Thus our scheme can be viewed as an 
orthogonal front-end that effectively reduces image size (the 
number of pixels) by discovering repeating larger-scale content. 

• The transform map ϕ is itself highly predictable in regions with 
either unique or repeating content. 

• Like earlier block indirection schemes [e.g. Kraus and Ertl 
2002], we encode large image regions of constant or undefined 
color very effectively while preserving random access. 

• The epitome can have nested structure to offer a new mode of 
progressivity at the level of texture features, whereby generic 
features are transmitted before specific ones.  Unlike the 
coarse-to-fine or bit-slice progressivity provided by many im-
age compression methods, our scheme quickly recovers a full-
resolution detailed image, albeit with fewer unique features. 

Limitations 
• The transform map introduces a memory indirection that can 

add access latency.  Fortunately, its granularity is coarse (e.g. 
162 pixel blocks), so the indirected accesses have good locality. 

• The reconstructed image blocks may not match exactly along 
their boundaries.  We are able to reduce the resulting blocking 
artifacts using an interpolation technique in the pixel shader, at 
a small cost in computation and bandwidth. 

• Filtered minification using an epitome mipmap may introduce 
color bleeding between epitome charts, just as in surface tex-
ture atlases.  We reduce this artifact by padding the charts with 
gutter regions, at some cost in storage. 

Finally, we explore how factoring can be applied to image collec-
tions (Figure 1b).  This capability is especially exciting for image-
based rendering approaches that store multiple photos of the same 
scene from different viewpoints.  While some content is unique to 
each image, for instance due to occlusion, large portions of the 
scene appear in two or more images and can therefore be factored. 

2. Related work 
Vector quantization   Images can be compressed using a code-
book of image blocks [Gersho and Gray 1992; Beers et al. 1996].  
Levoy and Hanrahan [1996] apply VQ to collections of images 
within light fields.  All these schemes use small blocks (e.g. 4×4 
pixels), because with larger blocks the codebook cannot accurate-
ly capture the wide variety of block content.  The difficulty is that 
even if the image content is highly repetitive, the rigid placement 
of the blocks implies that they will most often be unique.  By 
operating on small blocks, VQ is effectively exploiting local data 
correlation like traditional compression schemes. 
Our insight is to introduce fine-grain transformations to enable 
content reuse using much larger blocks.  In turn, larger blocks 
allow a more compact transform map, and enable more flexible 
instancing with affine deformations and color scaling. Our ap-
proach achieves factoring of content significantly larger than the 
local analysis performed in traditional compression techniques. 
Glyph instancing   The JBIG2 compression standard identifies 
and factors repeated text characters in a segmented image. 
Near-regular textures   Liu et al. [2004] and Hays et al. [2006] 
analyze near-regular textures to infer lattice structures and local 
deformations.  Our scheme treats general images with interspersed 
repeated patterns, not necessarily with lattice structure.  Also we 
focus on a concise representation for real-time rendering. 
Procedural modeling   Müller et al. [2007] automatically infer a 
non-uniform lattice from a building facade image, and condense it 
to an irreducible facade using symmetry simplifications.  Such a 
procedural description allows accurate and precise modeling of 
repeated grid elements, but with a finely tessellated mesh model. 
Epitomic analysis   Jojic et al. [2003] create an epitome 𝐸 from 
an input image 𝐼 by iteratively optimizing both 𝐸 and a mapping 𝒯: 𝐸 → 𝐼, within a Bayesian framework.  The mapping 𝒯 contains 
overlapping patches of three different sizes (42, 122, 242).  The 
inferred (𝐸, 𝒯) makes a powerful generative model, but unlike our 
block-based transform map 𝜙: 𝐼 → 𝐸, it is not designed for (and 
does not permit) random-access reconstruction of the image. 
Kannan et al. [2006] form an epitome by automatically learning 
irregularly shaped jigsaw regions shared within a set of training 
images.  They create a generative model using an offset map 𝐼 → 𝐸, but this map is stored at the same resolution as 𝐼 and 
therefore is not a concise factoring.  Wei et al. [2008] re-
synthesize textures from optimized exemplars using a control map 
at the same or slightly lower resolution than the original image. 



 

Fractal compression   Iterated function systems can approximate 
an image as the attractor of a set of recursive transformations on 
both geometry and color [Fisher 1995].  In this challenging setting 
there is no codebook or epitome, only transformations. 
Synthesis magnification   In the context of texture synthesis, 
Lefebvre and Hoppe [2005] sample a high-res. texture using a 
synthesized low-res. offset map similar to our translation map 𝜙 .  
They also use blending to hide seams, but perform blending over 
the whole image rather than just at block boundaries. 
Video compression   Schemes like MPEG use block-based flow 
vectors between successive frames as an image predictor.  Our 
epitome combines content from many images at once, factors 
repetitions within individual images, and supports random access. 
Image denoising.  The computation of matching windows within 
an image has also been used for denoising [Dabov et al. 2007]. 
Shape from textures   In computer vision, some schemes identify 
repeating texture elements in an image to recover 3D scene 
geometry [Lobay and Forsyth 2006] or to infer the 2D structure of 
partially occluding objects [Ahuja and Todorovic 2007]. 

3. Representation 
The basic factored representation introduced in Section 1 assumes 
simple translation transforms.  We now describe some generaliza-
tions and discuss the encoding of the transform map. 
Affine deformations   In many cases, the repeated elements of 
the input image 𝐼 are not identical translated copies of each other.  
For example, in an oblique picture of a tiled floor, the tiles under-
go perspective foreshortening as they approach the horizon 
(Figure 4).  To account for this, we redefine the transform map to 
encode local affine deformations.  We define for each block a 2×3 matrix 𝐷 that maps any image point 𝑝 = (𝑥 𝑦 1)  to 
position 𝐷 𝑝 in the epitome.  The reconstructed image is therefore 𝐼 [𝑝] = 𝐸[𝜙 [𝑝/𝑠] 𝑝].  As before, this affine deformation map 𝜙  is piecewise constant over each image block. 
The epitome will typically contain the large-scale versions of the 
features, while the foreshortened versions are minified instances.  
Thus an image block near a foreshortened feature is mapped by 𝜙  to some larger quadrilateral region in 𝐸.  Matrix 𝐷 could be a 
full 3×3 perspective deformation, but we found that affine de-
formations form a sufficiently accurate local approximation. 
Color scaling   Repeated image elements may also differ due to 
low-frequency lighting variations over the image.  In the tiled 
floor example, there may be smooth color variations across the 
floor due to nonuniform illumination.  Also, photos in image 
collections may vary due to different exposure or white-balance 
parameters.  We factor out these lighting variations by introducing 
a color scaling function, denoted by a 3×3 diagonal matrix 𝐿.  
The transform map becomes the tuple 𝜙 = (𝜙 , 𝜙 ), such that  𝐼 [𝑝] = 𝐸[𝜙 [𝑝/𝑠] 𝑝] 𝜙 [𝑝/𝑠] . 
Although the 3-channel color scaling map 𝜙  requires additional 
storage, typically there is a greater benefit in the improved factor-
ing of the lighting-normalized image 𝐼[𝑝] 𝜙 [𝑝].  We store 𝜙  as 
a per-block constant, accessed with nearest sampling like 𝜙 . 
The image function 𝐼  can be interpreted as a composition of 
functions, 𝐼 = 𝜙 ∘ 𝐸 ∘ 𝜙 , and therefore (𝜙 , 𝐸, 𝜙 ) can be 
interpreted as a factoring of the original image function 𝐼. 
Encoding of the transform map   For storage efficiency we 
quantize the coefficients stored in 𝜙.  We find that 16-bit fixed-
point numbers are sufficient for the two translation coefficients.  
With 3 fractional bits, this provides 0.125 subpixel positioning of 
the transformed blocks while allowing access to an epitome 𝐸 up 

to size (8K)2.  If the transform includes affine deformations, we 
store the 4 additional vector coefficients as 8-bit integers.  In total 
these coefficients require 64 bits/block or only 0.25 bits/pixel with 
a block size of 𝑠 = 16 .  Similarly, we quantize the color scaling 
map 𝜙  to 8 bits/channel, thus using less than 0.1 bits/pixel. 
 

 
Figure 4: Image blocks match many affinely deformed instances. 

4. Construction 
We now turn to the problem of constructing a factored image 
representation.  For simplicity let us assume that the input image 𝐼 
is square with size 𝑛×𝑛.  With a block size 𝑠×𝑠, the transform 
map 𝜙 has size ⌈𝑛/𝑠⌉×⌈𝑛/𝑠⌉. 
Ideal goal   We desire the factored representation to be both 
concise and accurate.  Thus we seek to minimize the size of the 
two stored textures, |𝐸| + |𝜙|, as well as the image reconstruction 
error ‖𝐼 − 𝐼‖ .  Mathematically, this can be expressed as min , ,  𝜆 (|𝐸| + |𝜙|) + ‖𝐸[𝜙 [𝑝/𝑠] 𝑝] 𝜙 [𝑝/𝑠] − 𝐼[𝑝]‖∈ , 
where the parameter 𝜆 provides a tradeoff between accuracy and 
conciseness.  Let us briefly consider the two extremes. 
If conciseness is ignored (𝜆 = 0), we can achieve a lossless 
representation by letting the epitome 𝐸 equal the input image, and 
letting the transform map 𝜙 be a 1×1 image containing an identi-
ty transform.  Thus, lossless representation is possible with 
negligible storage overhead. 
For maximum conciseness (𝜆 → ∞), 𝐸 will contain a single block 
of size 𝑠 = √𝑛, to reach total storage of only 𝑂 √𝑛 ⋅ √𝑛 = 𝑂(𝑛).  
Thus extremely aggressive compression is also achievable. 
Of course, the more interesting case is that of intermediate values 
of 𝜆, where the representation can hope to factor some repeated 
image content to form a smaller epitome, but usually at the cost of 
some reconstruction error. 
Our approach   To make the problem more tractable, we assume 
a given block size 𝑠 (discussed in Section 7) so that |𝜙| is fixed.  
And, rather than minimizing the functional with parameter 𝜆, we 
instead specify a maximum reconstruction error 𝜖 that must be 
satisfied for each image block, and seek the most concise repre-
sentation that achieves that error threshold. 
Let 𝑒(𝐵) denote the reconstruction error of an image block 𝐵: 

 𝑒(𝐵) = ∑ ‖𝐼 [𝑝] − 𝐼[𝑝]‖∈ 𝜎(𝐼 ) + 𝛽  . (1)

Note that the reconstruction 𝐼  includes color scaling, which is set 
such that ∑ 𝐼 [𝑝]∈ = ∑ 𝐼[𝑝]∈ .  The variance 𝜎(𝐼 ) of the 
source block is introduced in the denominator (with an exponent 0 ≤ 𝛼 ≤ 2 and small 𝛽) as a perceptual factor to better preserve 
low-contrast features in relatively smooth regions. 



 

We then seek min ,    |𝐸|   such that  ∀𝐵 ∈ 𝐼,  𝑒(𝐵) ≤ 𝜖 . 
We approximate this minimization using a greedy, deterministic 
construction process that iteratively grows epitome charts copied 
from the input image.  Each epitome chart is a connected set of 4×4-pixel blocks, and thus has the shape of a polyomino.  The 
general strategy is to maximize the number of new image blocks {𝐵} ⊂ 𝐼 that can be accurately reconstructed from the growing 
epitome, while minimizing the epitome growth. 
Overview   The construction procedure has the following steps: 
• Find self-similarities in 𝐼. 
• Create an epitome chart for each repeated content, to satisfy a 

maximum norm on the image reconstruction error. 
• Optimize the transform map 𝜙, to minimize the reconstruction 

error given the epitome content. 
• Assemble all epitome charts into an epitome atlas 𝐸. 

4.1 Finding self-similarities 
For each block in the input image, we compute the set of all 
transformed regions (patches) in the image with similar content, 
as shown in Figure 5.  That is, for block 𝐵 ∈ 𝐼 we find the set Match(𝐵 ) = 𝑀 , , 𝑀 , , …  of transforms identifying patches of 
image 𝐼 that reconstruct 𝐵  within tolerance 𝜖.  Each transform 𝑀 , = 𝐷 , , 𝐿 ,  has an affine deformation and color scaling.  
Block 𝐵  is compared with 𝑀 , (𝐵 ) using Equation (1). 
We perform match search using the Kanade-Lucas-Tomasi (KLT) 
feature tracker, which optimizes affine alignment of two windows 
[Lucas and Kanade 1981; Shi and Tomasi 1994].  Because KLT is 
designed for small translations, rotations, and scalings, it must be 
initialized with a good starting state. 
Translation   We initialize separate KLT searches at a grid of 
seed points spaced every 𝑠/4 pixels (see Figure 6).  We prune the 
search by only considering seeds whose (precomputed) neighbor-
hood color histograms are sufficiently similar to the queried 
block.  For each candidate position 𝑆  we compute the color 
scaling 𝐿 ,  by dividing the mean colors of the two neighborhoods.  
However, we constrain the color scaling coefficients to not exceed 
1.25, to give preference to brighter image content and thereby 
avoid quantization errors in reconstruction. 
Rotation   We obtain a starting rotation angle 𝜃guess by comparing 
orientation histograms of the two neighborhoods (Figure 7): 

𝜃guess = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐻orient(𝜃, 𝐵 ) − 𝐻orient 𝜃 + 𝜃 , 𝑆°
° . 

Each histogram contains 36 buckets over the range 0-360 degrees.  
The value in each bucket is the luminance gradient strength in that 
orientation integrated over the block.  The orientation histograms 
are precomputed for all block and seed positions. 
Scaling   We build an image pyramid with sub-octave resolution, 
and perform separate searches in each pyramid level (Figure 8).  
We only consider pyramid levels that are minified, i.e. corres-
ponding to matches that are magnified in the original image, to 
avoid blurring in the reconstruction. 
Reflection   Finally, we consider both mirror reflections since 
these are representable by the affine deformations. 
Some image blocks may have an excessive number of matches.  
For example, the sky in a photograph often contains blocks that 
all match each other, resulting in clique of 𝑂(𝑛 ) complexity.  To 
overcome this problem we define a separate relationship of 
equivalent blocks.  If during the search for Match(𝐵 ) we find 

another block 𝐵  that is nearly identical up to color scaling (with a 
tight tolerance and without deformation), we tag 𝐵  to share the 
same match list as 𝐵 . 
 

 
Figure 5: A given image block shown in green accurately 
matches the transformed patches highlighted in red. 

 
Figure 6: Translation is seeded at a set of grid points. 

 
Figure 7: Rotation is initialized using orientation histograms. 

 
Figure 8: Scaling is handled by searching in pyramid levels. 

4.2 Creating epitome charts 
We seek to copy charts from the input image into the epitome 𝐸, 
such that the charts can reconstruct other image regions. We grow 
each chart greedily, trying to account for as many image blocks as 
possible.  Each epitome growth step adds a region Δ𝐸 ⊂ 𝐼.  Let 𝐼 ⊆ 𝐼 denote the subset of the image that is accurately recon-
structed by epitome 𝐸: 𝐼 = { 𝐵 ∈ 𝐼 ∣ 𝑒(𝐵) ≤ 𝜖 }. 
Thus we seek to add the region Δ𝐸 that maximizes Benefit(Δ𝐸) = 𝐼 \𝐼 − |Δ𝐸| . 
Letting the increment Δ𝐸 be a single image block would only 
match other image blocks that are strictly equivalent.  Instead we 
desire a somewhat larger region that is able to contain the trans-
formed patches from many Match lists.  We find such a candidate 
region 𝐶  for each s×s epitome block 𝐵  as follows (see Figure 9). 



 

 
Figure 9: Candidate region 𝐶  for epitome growth, formed as the 
union of transformed patches that overlap the block 𝐵 . 

First we construct an inverse mapping Cover(𝐵 ) that contains the 
set of image blocks 𝐵  whose matched patches overlap with 𝐵 : Cover(𝐵 ) = 𝑀 , ∣∣ 𝑀 , (𝐵 ) ∩ 𝐵 ≠ ∅ . 
We then define 𝐶  as the set of epitome blocks necessary to 
reconstruct all transformed blocks in Cover(𝐵 ): 𝐶 = 𝐵 ∣∣ 𝐵 ∩ 𝑀 , (𝐵 ) ≠ ∅, 𝑀 , ∈ Cover(𝐵 ) . 
The chart growth candidates are then (Δ𝐸) = 𝐶 \𝐸 for all blocks 𝐵  inside or adjacent to the current chart, or (Δ𝐸) = 𝐶  for all 
blocks 𝐵 ∉ 𝐸 in the whole image if starting a new chart.  Given a 
current existing chart, if we cannot find any addition Δ𝐸 for 
which Benefit(Δ𝐸) ≥ 0, then we restart the chart growing 
process at a new location in the image.  The process terminates 
when the whole image is accurately reconstructed, i.e. 𝐼 = 𝐼. 
Figure 10 illustrates the process.  The first addition to the epitome 
is the set 𝐶  that can account for the most image content for its 
given size (first row).  The epitome chart is shown in red, and the 
matched image content is revealed. We then iteratively grow this 
epitome chart, resulting in additional matched image content 
(second row).  When incremental growth to the chart is no longer 
beneficial, a new chart is started at the next most useful location 
(third row).  Figure 11 shows the final result. 
 

 

 

 
Figure 10: Illustrated example of growing the epitome (in red).  
The right column reveals the image subset 𝐼  that is accurately 
reconstructed at each step of the process. 

 
Figure 11: Construction example: input image, epitome charts, 
and charts packed into an epitome atlas. 

4.3 Optimizing the transform map 
During the incremental growth of the epitome, each image block 𝐵  is assigned to the first epitome location that reconstructs it 
sufficiently well, i.e.  𝑀 , (𝐵 ) for some 𝑀 , ∈ Match(𝐵 ).  
However, content subsequently added to the epitome may provide 
a better reconstruction of block 𝐵 .  Therefore, after the epitome 
construction is completed, we iterate through all image blocks 𝐵 , 
determine the location in the epitome that offers the best recon-
struction of 𝐵 , and update the transform map 𝜙 accordingly: 𝜙[𝐵 ] = arg min∈Match( ),  ( )⊂ ‖𝐵 − 𝑀(𝐵 )‖. 
The quality of the reconstructed image can improve significantly 
as shown in Figure 12.  This optimization changes which content 
of the epitome is used during reconstruction, so we remove any 
unused content by appropriately trimming blocks from the charts. 
 

Figure 12: Comparison of image reconstruction before and after 
optimization of the transform map. 

4.4 Assembling charts into an epitome atlas 
We pack the charts together into an epitome atlas.  This packing 
problem is related to surface texture atlas packing [Sander et al. 
2001; Lévy et al. 2002].  In our case, the charts are polyominoes, 
so packing is an NP-hard discrete problem.  We use the heuristic 
algorithm of [Freivalds et al. 2002].  The strategy is to consider 
charts in order of decreasing size, and determine for each chart the 
optimal placement (including rotation and mirroring) that mini-
mizes the growth in area of the bounding rectangle, as illustrated 
in Figure 13.  The motivation for the heuristic is that small charts 
are more likely to fit into the gaps left between the larger charts.   
 

 
Figure 13: Example of chart packing for a collection of 6 charts. 



 

4.5 Hierarchical construction 
For large images, the matching search becomes expensive.  As a 
speedup we have explored a hierarchical construction algorithm.  
We partition the image into sub-images {𝐼 }, factor each sub-
image separately to obtain its epitome 𝐸 , and then form their 
union 𝐸 =∪ 𝐸 .  We then run the construction process with the 
full image 𝐼 as input, but restrict the match search to the smaller 
image 𝐸.  Epitome charts that are redundant across the images are 
trimmed away during optimization (Section 4.3), so we obtain a 
final epitome 𝐸 that is more compact than 𝐸.  Splitting the image 
into 𝐾 sub-images can potentially provide a 𝐾 times speedup (𝑛  
versus 𝐾(𝑛 /𝐾) =𝑛 /𝐾).  We show this process for the case of 
image collections in Section 6. 

5. Applications 

5.1 Texture mapping 
To use our factored representation in the context of 3D rendering, 
we must address two issues: 
(1) Enabling texture minification to prevent aliasing. 
(2) Obtaining continuous reconstruction across block boundaries. 

Mipmapping   We allow minification using an ordinary mipmap 
structure over the epitome texture.  However, just as in a surface 
texture atlas, the epitome consists of irregular charts, so the 
mipmap pyramid will inevitably contain coarser-level samples 
whose bilinear basis functions span different charts, and this leads 
to color bleeding in the reconstructed image.  As is commonly 
done for texture atlases, we reduce this problem by adding a 
padding gutter (e.g. 4 pixels) between the charts. 
At very coarse minification, the access to the transform map 𝜙 
will itself suffer from aliasing.  The solution is to store a mipmap 
of a coarse version of the input image.  Fortunately, this coarse 
mipmap occupies little space.  Figure 14 shows a 1D visualization 
of the overall data structure for minification and magnification. 
 
 

 

Figure 14: Strategy for image minification and magnification. 

Continuous reconstruction   Chart padding by itself does not 
guarantee continuous inter-block reconstruction, for two reasons: 
(1) Due to epitome instancing, the padded samples cannot match 
all the blocks that may be adjacent in the reconstructed image; 
(2) In the presence of affine deformations, the sample positions do 
not align geometrically at the block boundaries (much like in 
surface texture atlases). 

We guarantee continuous reconstruction by performing explicit 
bilinear interpolation in the pixel shader.  We access the 4 closest 
samples separately through the transform map (possibly mapping 
to non-adjacent blocks), and bilinearly blend these sample values.  
Thus, sampling near the block corners may access up to 4 separate 
epitome charts.  The evaluation is fast: 800M pixels/second on an 
NVIDIA GeForce 8800 GTX. 
Resampling.  Many blocks of the reconstructed image 𝐼  contain 
affinely transformed epitome content.  The affine warping in-
volves (bilinear) sampling, and therefore introduces a slight 
amount of blurring.  However, images are most often used in 
texture mapping where similar interpolation also occurs.  It is 
important to note that the final rendering of 𝐼  does not introduce 
additional resampling, because we render with bilinear filtering 
directly from the epitome which contains original un-resampled 
content.  To make visual comparisons more fair (and in our 
favor), it might be reasonable to blur the original image 𝐼 by 
evaluating it at one-quarter pixel offset in both 𝑥 and 𝑦 (an aver-
age level of blurring), but we did not do so in the results. 

5.2 Compression 
The transform map 𝜙 compresses well due to its local coherence 
(Figure 15).  Indeed, if adjacent image blocks access adjacent 
content in the epitome, their associated translation vectors 𝜙  are 
identical.  With repeating content, adjacent translation vectors 
often differ by a small multiple (typically 0 or −1) of the tiling 
period.  For the example in Figure 15, applying lossless PNG 
compression to the offset map 𝜙  reduces it from 7.06 KB to 4.34 
KB, or less than 0.14 bits per pixel of 𝐼. 
 

Image 𝐼 Position map Offset map 𝜙  

Figure 15: Visualization of the coherence in the transform map.  
Middle image shows the epitome locations (red=𝑥,green=𝑦) of 
the reconstruction, and right image shows translation vectors 𝜙 . 

The epitome 𝐸 can be compressed with a variety of techniques.  
For our main scenario of real-time rendering, DXT compression is 
most appropriate because it supports random access [McCabe and 
Brothers 1998].  In fact, because the epitome is constructed as a 
subset of 4x4 blocks in the input image, if the input image is 
already DXT compressed, we can simply copy those compressed 
blocks unchanged.  Thus our factoring scheme is readily cascaded 
with DXT compression.  For example, when our scheme produces 
a 4X compression, DXT will provide an additional 4X compres-
sion resulting a 16X overall reduction in required memory. 
For persistent storage, the epitome can be entropy-compressed 
using schemes like PNG and JPEG.  Ideally, these schemes could 
benefit from knowledge of the undefined gutter regions between 
charts.  Figure 16 shows some examples that compare (1) our 
factored representation with its epitome compressed with JPEG 
2000, and (2) the original image compressed with JPEG 2000 to 
have the same overall compressed size.  The results show that at 
high compression rates, (1) is clearly superior to (2). 
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Figure 16: Image quality when compressing the factored epitome 
with JPEG 2000, and when compressing the original image with 
JPEG 2000 to achieve the same overall size.  (Because JPEG 
requires decompression prior to rendering, this comparison is not 
completely appropriate for our scenario of real-time rendering.) 

5.3 Progressive representation 
We can create a nested epitome structure to represent increasingly 
accurate approximations of a given image, in other words a 
scalable level-of-detail representation. 
For example, a rough reconstruction 𝐼  of image 𝐼 is obtained 
using a small epitome image 𝐸  and an initial transform map 𝜙 .  
Then, a more accurate reconstruction 𝐼  of the same image is 
obtained by adding more image content to form a larger epitome 
image 𝐸 , together with a new transform map 𝜙 .  We enforce 
that content in 𝐸  be a superset of the content in image 𝐸 , so that 
we need only store or transmit the difference 𝐸 \𝐸 .  Although 
the transform maps 𝜙  and 𝜙  differ, many of the blocks in 𝐼  still 
refer to content in 𝐸  and therefore their block transforms in 𝜙  
can be predicted from those in 𝜙  to allow effective compression. 
We have explored two schemes for progressivity of the epitome 
content, as shown in Figure 17. 
The first approach is to organize 𝐸  and 𝐸 \𝐸  as separate sub-
images that are concatenated together to form 𝐸 .  However, a 
major drawback of this approach is that the incremental content in 𝐸 \𝐸  cannot spatially extend the existing epitome charts in 𝐸  
since these are already tightly packed.  Consequently, we obtain 
many new charts in 𝐸 \𝐸  whose content overlaps significantly 
with that already in 𝐸 . 
Our preferred approach lets content in 𝐸  be spatially remapped 
when forming 𝐸  so that existing charts can be augmented (or 
partitioned) as needed.  We first construct (𝜙 , 𝐸 ) using a small 
error threshold 𝜖 .  Next, we construct a coarser representation (𝜙 , 𝐸 ) using a large error threshold 𝜖 , where epitome content is 
constrained to be a subset of 𝐸 .  This constraint is achieved by 
adaptively removing unnecessary blocks from 𝐸 . 
While all blocks of 𝐸  also exist in 𝐸 , they generally appear in 
different locations because 𝐸  and 𝐸  are packed independently.  
Therefore we form 𝐸  with the help of a remap 𝜓  that records 
the destination addresses of the blocks from (1) the previous 
epitome 𝐸  and (2) the stream of new image blocks 𝐸 \𝐸 .  
Fortunately, there is significant spatial locality, so the remap 
should 𝜓  compress well. 

The overall progressive stream of data contains: 𝐸 , 𝜙 ,  𝐸 \𝐸 , 𝜓 ,diff(𝜙 , 𝜙 ),   𝐸 \𝐸 , 𝜓 ,diff(𝜙 , 𝜙 ),  …   . 
This progressive representation can be used for transmission, or to 
select a particular content complexity at load time.  An example is 
shown in Figure 18. 
 

 
Figure 17 Two progressive schemes; remapped is our preferred. 

 
      𝜖=0.004; 16x            𝜖=0.003; 5.4x              𝜖=0.002; 2.5x 

Figure 18: Example result of progressivity, for different error 
tolerances 𝜖, showing memory savings factor.  This image is 
challenging due to the variation in windows. 

6. Factoring image collections 
Image-based rendering techniques allow navigation within a scene 
using a set of photos taken from several viewpoints [e.g. Chen 
1995; Buehler et al. 2001; Snavely et al. 2006].  If a scene region 
is diffuse, locally planar, and unoccluded, its image in one view 
may be well reconstructed in a nearby view using local affine 
deformation and color scaling.  Note that our factoring approach 
operates without scene geometry such as in [Wood et al. 2000]. 
Given a collection of images {𝐼 }, we seek a common epitome 𝐸 
and a set of transform maps {𝜙 }.  This problem can be addressed 
using our basic construction procedure by simply considering as 
input the concatenation of all the images.  Because the input is 
large, we apply the hierarchical construction algorithm described 
in Section 4.5.  Figure 19 shows an example result. 
The epitome size typically grows sublinearly with the number of 
input images.  In this example, the epitomes have 53K, 69K, 94K, 
107K, and 122K pixels for 1..5 input images respectively.  The 
larger delta (94K-69K) between the 2nd and 3rd images is due to 
the fact that the 3rd image has more glossy reflection. 
 

 
Figure 19: Example of factoring an image collection. 



 

7. Results and discussion 
Figure 20 shows additional examples, and Table 1 summarizes 
quantitative results.  The water drops in the first row of Figure 20 
are from an actual photograph, and are therefore not perfectly 
repeating; nonetheless a useful factoring was possible.  The 
characters in the second row are also all distinct; here it is the fact 
that individual strokes are similar at the scale of a block that 
allows a condensed epitome.  The third row shows a hyperbolic 
tiling of colored teapots; the factoring is good in the interior, but it 
appears that too much content is retained near the periphery where 
the teapot tiles are small.  We believe that the KLT-based match-
ing procedure is converging to poor local minima in these high-
frequency regions, and this is an area for improvement.  The 
zebras in the last row have a high-frequency pattern that is not 
repeating at the scale of the blocks, and thus does not factor well. 
Construction is an offline preprocess, so we did not invest much 
in its optimization.  Speeding up this process is an interesting area 
for future research, especially for the case of image collections. 
 

 

 

 
 
 

 

 
 

 
Input 𝐼 Epitome 𝐸 Reconstruction 𝐼  
Figure 20: Additional image factoring results. 

Block size   The graph in Figure 21 explores how the memory 
size (for 𝐸, 𝜙, and total) varies as a function of the block size 𝑠.  
As the block size increases, the epitome also grows because there 
are fewer repeating elements of such large size.  On the other 
hand, for very small block sizes, the epitome reaches a minimal 
size, but the transform map occupies a lot of memory.  For this 
testcase, total memory size has a wide valley for block sizes 
ranging from 8 to 20, with a minimum at 𝑠=12. 

Accuracy vs. space   Figure 22 graphs epitome memory size as a 
function the error tolerance 𝜖.  As expected, the epitome shrinks 
monotonically as the tolerance is increased.  Because the input 
image (Figure 1) is an actual photograph and does not contain any 
uniform region such as sky, no content is perfectly repeating, so 
the tolerance 𝜖 must reach some nonzero threshold before the 
epitome size begins to reduce. 
 
 

Example Input 𝐼 
Block
size 𝑠 Epitome 𝐸 

Memory
savings 

RMS
error

Time
(mins)

Figure 1a 504×504 12 328×232 3.1 2.7% 71
Figure 1b 5×600×396 12 472×252 8.0 2.5% 1100
Figure 3 432×372 12 152×132 6.7 3.1% 65
Figure 4 492×372 12 192×132 6.1 3.0% 77
Figure 11 432×432 12 132×136 8.2 3.3% 70
Figure 18 360×516 12 348×148 3.3 2.6% 43
Figure 19 5×600×480 12 548×196 10.0 2.9% 1420
Figure 20a 624×480 12 260×184 5.4 1.6% 262
Figure 20b 396×396 12 180×72 9.3 1.4% 21
Figure 20c 800×800 16 396×340 4.5 2.3% 146
Figure 20d 552×408 12 304×400 1.8 5.4% 89
Figure 24 396×396 12 152×116 7.3 4.5% 28
Figure 25 592×448 16 140×72 19.1 2.5% 112
Figure 28 1792×944 16 372×1144 3.8 3.9% 1950

Table 1: Quantitative results of image factoring. 
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Figure 21: Memory size as function of the image block size 𝑠 for 
the example in Figure 1, with fixed error tolerance 𝜖=0.002. 
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Figure 22: Epitome memory size as function of error tolerance 𝜖 
for the example in Figure 1, with fixed block size 𝑠=12.  The 
size of the original image (744KB) is indicated by the red square. 



 

Detail transfer   We can use image factoring to transfer detail 
from finely sampled image regions to coarsely sampled regions as 
shown in Figure 23.  To achieve this result, we use a large block 
size 𝑠=40 and constrain the source of the epitome content to the 
high-resolution region in the lower third of the image. 
Detail removal   Some image elements like the tiles in Figure 24 
are structurally similar but not exact duplicates due to variations 
in material and wear.  The effect of aggressive image factoring is 
to carefully preserve the layout of the elements while removing 
their unique texture features. 
Illumination factoring   The draping of the cloth in Figure 25 
causes both image-space warping and nonuniform shading of the 
regular texture pattern.  These are factored efficiently within the 
concise transform map.  For the user-selected error tolerance, the 
large appearance variation resulted in two epitome charts.  Omit-
ting the color scaling map results in a much larger reconstruction 
error as shown in Figure 26. 
Figure 27 shows more visualizations of the epitome construction 
process.  In the |Cover(𝐵 )| image, the bright vertical stripe at the 
front edge of building is present because those image neighbor-
hoods are able to match content on both adjacent facades.  Indeed 
a single epitome chart started along this edge will maximize the 
efficiency of the epitome. 
General images like the cityscape in Figure 28 are challenging 
because the many surface occlusions create boundaries with 
mixtures of patterns, and hence the image blocks along these 
boundaries are less likely to be repeating.  The bottom row reveals 
its progressive representation.  It shows the original image in 
grayscale, with colors indicating the set of nested epitome charts 
that are formed for different reconstruction tolerances, from red 
for the smallest epitome to green for the largest epitome. 

8. Summary and future work 
Most image compression schemes are designed to exploit local 
structure in the data.  We present an orthogonal technique that 
exploits the repeated instancing of larger-scale elements, either 
within a single image or across a collection of images.  The 
factored image representation supports random-access rendering 
directly from its condensed form. 
Some areas of future work include: 
• Allow editing of the epitome to update shared image elements, 

similar to [Brooks and Dodgson 2002]. 
• Exploit image factoring for better inpainting. 
• Speed up the epitome construction. 
• Improve matching of content across image collections, perhaps 

with the help of interest points as in [Brown and Lowe 2003]. 
• Increase the reconstruction quality by using a perceptual metric. 
 

 
 
 
 

Raw image Input 𝐼 Reconstruction 𝐼  
Figure 23: Example of intra-image detail transfer. 

 
 
 
 

Input 𝐼 Epitome 𝐸 Reconstruction 𝐼  

Figure 24: Example of image element “generification”. 
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Epitome 𝐸  Transform Reconstruction 𝐼  

Figure 25: Factoring of both warping and lighting. 

 

 
 
 
 

 

 

𝜙  
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Epitome 𝐸  Transform Reconstruction 𝐼  

Figure 26: Factoring without color scaling is much less effective. 

 

(a)  |Cover(𝐵 )| (b)  𝐸 usage map (c)  Error 𝐼 − 𝐼 

Figure 27: Additional results for the example data in Figure 1: 
(a) visualization of the sizes of the cover sets (number of blocks 
that match a given region), (b) frequency of usage of the epitome 
content, and (c) emphasized reconstruction error. 



 

(372×1144) 

Epitome charts with 𝜖 = 0.002 

Reconstructed image 𝐼  (1792×944) Epitome 𝐸 

Locations of progressive epitome charts (for 𝜖=0.004,0.003,0.002,0.001)

Figure 28: Example of factoring a large image. 
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