

Factoring Repeated Content Within and Among Images
Huamin Wang Yonatan Wexler Eyal Ofek Hugues Hoppe
Georgia Tech Microsoft Corporation Microsoft Corporation Microsoft Research

(a) Input image 𝐼 Factored representation Reconstructed image 𝐼 (b) Factoring a collection of images {𝐼 }

Figure 1: Factoring image content into a block-based transform map and a condensed epitome still allows fast random-access evaluation.

Abstract
We reduce transmission bandwidth and memory space for images
by factoring their repeated content. A transform map and a
condensed epitome are created such that all image blocks can be
reconstructed from transformed epitome patches. The transforms
may include affine deformation and color scaling to account for
perspective and tonal variations across the image. The factored
representation allows efficient random-access through a simple
indirection, and can therefore be used for real-time texture map-
ping without expansion in memory. Our scheme is orthogonal to
traditional image compression, in the sense that the epitome is
amenable to further compression such as DXT. Moreover it
allows a new mode of progressivity, whereby generic features
appear before unique detail. Factoring is also effective across a
collection of images, particularly in the context of image-based
rendering. Eliminating redundant content lets us include textures
that are several times as large in the same memory space.

Keywords: image compression, image epitomes, progressive images.

1. Introduction
Realistic rendering of outdoor scenes (e.g. with Google Earth or
Microsoft Virtual Earth) requires detailed photographic textures,
especially for dense city centers with high depth complexity. Two
key implementation challenges are: (1) bandwidth to transmit the
texture images over the Internet, and (2) memory space to store
these textures for rendering on the client device.
Our goal is to exploit the significant repetition of content in the
images to reduce bandwidth and memory. For instance, textures
often contain repeated patterns such as bricks, tiles, windows, etc.
Traditional image compression schemes are not designed to take
advantage of such repetitions. Most schemes analyze local image
structure, for instance by encoding coefficients of DCT, wavelet,
or other transforms. Such methods do not detect correlation of
high-frequency features across nonlocal neighborhoods. Some
codebook techniques like vector quantization can efficiently
encode duplicate image blocks, but such duplication arises only if

the 2D period of the repeating image content aligns precisely with
the block size – a rare circumstance in practice (Section 2).
Another aspect is that schemes like JPEG require decompression
prior to rendering, and thus do not address the issue of memory
space. Often there is simply not enough memory to uncompress
the texture content for real-time graphics rendering.
Our idea We introduce a new representation that factors large-
scale repeated image content while retaining efficient random
access. Our technique does not assume regular or fixed-frequency
repetition, so it can handle the natural repetitions (and mixtures of
them) that we see in real-world photographs such as in Figure 1.
The basic approach is to factor a given image 𝐼 into an epitome 𝐸
and a transform map 𝜙. The epitome contains a set of charts that
are copied contiguously from the input image, and the transform
map encodes how to reconstruct the image by selecting trans-
formed regions of these epitome charts. Specifically, the image is
divided into a regular grid of blocks, and each block (𝑠×𝑠 pixels)
is recovered from an epitome patch, as illustrated in Figure 2.
In the simplest scheme, the patch is determined by a translation
vector 𝑡 stored as 𝜙 , and the reconstructed image is 𝐼 [𝑝] = 𝐸 𝑝 + 𝜙 [⌊𝑝/𝑠⌋] .
The access to the epitome 𝐸 uses filtered (e.g. bilinear) sampling,
while the access to the transform map 𝜙 uses nearest sampling.
Note that the translation vectors 𝜙 have finer resolution than
block granularity; in fact they may have subpixel precision. Thus,
our technique is not forming a simple dictionary of blocks as in
vector quantization schemes. Rather, the extracted blocks can
overlap arbitrarily in the epitome as shown in Figure 3.

Figure 2: The epitome contains a set of polyomino charts; each
image block is reconstructed from a transformed patch in a chart.

Figure 3: Blocks of the input image often overlap in the epitome.

Intuitively, the goal is to introduce sufficient content into the
epitome 𝐸 such that all blocks of the original image are well
approximated by some transformed versions from within 𝐸.
Our representation builds on prior work on image epitomes [Jojic
et al. 2003; Kannan et al. 2006; Wei et al. 2008]. These earlier
techniques develop epitome images as a powerful analysis struc-
ture, for segmentation, denoising, recognition, indexing, and
texture synthesis. Our focus is instead on efficient image recon-
struction, and we specialize the epitome construction accordingly.
One distinction is that our epitome needs only capture the blocks
of the original image, rather than the neighborhoods of all pixels.
A more important distinction is that we create a compact trans-
form map 𝜙: 𝐼 → 𝐸 from the image to the epitome to allow (lossy)
reconstruction of the original image. Some earlier epitome
schemes also explored such a map, but at the fine resolution of
image pixels, and thus did not enable a concise factoring. Finally,
our reconstruction is extremely fast; it provides random access at
over 800M pixels/second in a current GPU pixel shader.
If the original image is an exact tiling with period 𝜏 × 𝜏, then all
its blocks can be reconstructed from an epitome chart whose size
is only 𝑠⌈𝜏/𝑠⌉ × 𝑠⌈𝜏/𝑠⌉ pixels. In addition, several repeated
patterns (like multiple building facades) with different periodici-
ties can be encoded as separate charts within the same epitome
factoring. Representing multiple repeating patterns efficiently
within the same texture is advantageous as it can eliminate costly
changes in runtime rendering state.
In Section 3 we generalize the transform map 𝜙 to include geome-
tric deformations, for robustness to perspective view distortion.
And optionally, we introduce a low-resolution color scaling map
to improve factoring in the presence of the low-frequency lighting
variations commonly found in real-world photographs.

Benefits
• The factored representation (𝜙, 𝐸) supports efficient random

access – color can be evaluated at any point without expanding
any data to a temporary memory buffer.

• Image compression can still be applied to the epitome to exploit
its fine-scale correlation. Thus our scheme can be viewed as an
orthogonal front-end that effectively reduces image size (the
number of pixels) by discovering repeating larger-scale content.

• The transform map ϕ is itself highly predictable in regions with
either unique or repeating content.

• Like earlier block indirection schemes [e.g. Kraus and Ertl
2002], we encode large image regions of constant or undefined
color very effectively while preserving random access.

• The epitome can have nested structure to offer a new mode of
progressivity at the level of texture features, whereby generic
features are transmitted before specific ones. Unlike the
coarse-to-fine or bit-slice progressivity provided by many im-
age compression methods, our scheme quickly recovers a full-
resolution detailed image, albeit with fewer unique features.

Limitations
• The transform map introduces a memory indirection that can

add access latency. Fortunately, its granularity is coarse (e.g.
162 pixel blocks), so the indirected accesses have good locality.

• The reconstructed image blocks may not match exactly along
their boundaries. We are able to reduce the resulting blocking
artifacts using an interpolation technique in the pixel shader, at
a small cost in computation and bandwidth.

• Filtered minification using an epitome mipmap may introduce
color bleeding between epitome charts, just as in surface tex-
ture atlases. We reduce this artifact by padding the charts with
gutter regions, at some cost in storage.

Finally, we explore how factoring can be applied to image collec-
tions (Figure 1b). This capability is especially exciting for image-
based rendering approaches that store multiple photos of the same
scene from different viewpoints. While some content is unique to
each image, for instance due to occlusion, large portions of the
scene appear in two or more images and can therefore be factored.

2. Related work
Vector quantization Images can be compressed using a code-
book of image blocks [Gersho and Gray 1992; Beers et al. 1996].
Levoy and Hanrahan [1996] apply VQ to collections of images
within light fields. All these schemes use small blocks (e.g. 4×4
pixels), because with larger blocks the codebook cannot accurate-
ly capture the wide variety of block content. The difficulty is that
even if the image content is highly repetitive, the rigid placement
of the blocks implies that they will most often be unique. By
operating on small blocks, VQ is effectively exploiting local data
correlation like traditional compression schemes.
Our insight is to introduce fine-grain transformations to enable
content reuse using much larger blocks. In turn, larger blocks
allow a more compact transform map, and enable more flexible
instancing with affine deformations and color scaling. Our ap-
proach achieves factoring of content significantly larger than the
local analysis performed in traditional compression techniques.
Glyph instancing The JBIG2 compression standard identifies
and factors repeated text characters in a segmented image.
Near-regular textures Liu et al. [2004] and Hays et al. [2006]
analyze near-regular textures to infer lattice structures and local
deformations. Our scheme treats general images with interspersed
repeated patterns, not necessarily with lattice structure. Also we
focus on a concise representation for real-time rendering.
Procedural modeling Müller et al. [2007] automatically infer a
non-uniform lattice from a building facade image, and condense it
to an irreducible facade using symmetry simplifications. Such a
procedural description allows accurate and precise modeling of
repeated grid elements, but with a finely tessellated mesh model.
Epitomic analysis Jojic et al. [2003] create an epitome 𝐸 from
an input image 𝐼 by iteratively optimizing both 𝐸 and a mapping 𝒯: 𝐸 → 𝐼, within a Bayesian framework. The mapping 𝒯 contains
overlapping patches of three different sizes (42, 122, 242). The
inferred (𝐸, 𝒯) makes a powerful generative model, but unlike our
block-based transform map 𝜙: 𝐼 → 𝐸, it is not designed for (and
does not permit) random-access reconstruction of the image.
Kannan et al. [2006] form an epitome by automatically learning
irregularly shaped jigsaw regions shared within a set of training
images. They create a generative model using an offset map 𝐼 → 𝐸, but this map is stored at the same resolution as 𝐼 and
therefore is not a concise factoring. Wei et al. [2008] re-
synthesize textures from optimized exemplars using a control map
at the same or slightly lower resolution than the original image.

Fractal compression Iterated function systems can approximate
an image as the attractor of a set of recursive transformations on
both geometry and color [Fisher 1995]. In this challenging setting
there is no codebook or epitome, only transformations.
Synthesis magnification In the context of texture synthesis,
Lefebvre and Hoppe [2005] sample a high-res. texture using a
synthesized low-res. offset map similar to our translation map 𝜙 .
They also use blending to hide seams, but perform blending over
the whole image rather than just at block boundaries.
Video compression Schemes like MPEG use block-based flow
vectors between successive frames as an image predictor. Our
epitome combines content from many images at once, factors
repetitions within individual images, and supports random access.
Image denoising. The computation of matching windows within
an image has also been used for denoising [Dabov et al. 2007].
Shape from textures In computer vision, some schemes identify
repeating texture elements in an image to recover 3D scene
geometry [Lobay and Forsyth 2006] or to infer the 2D structure of
partially occluding objects [Ahuja and Todorovic 2007].

3. Representation
The basic factored representation introduced in Section 1 assumes
simple translation transforms. We now describe some generaliza-
tions and discuss the encoding of the transform map.
Affine deformations In many cases, the repeated elements of
the input image 𝐼 are not identical translated copies of each other.
For example, in an oblique picture of a tiled floor, the tiles under-
go perspective foreshortening as they approach the horizon
(Figure 4). To account for this, we redefine the transform map to
encode local affine deformations. We define for each block a 2×3 matrix 𝐷 that maps any image point 𝑝 = (𝑥 𝑦 1) to
position 𝐷 𝑝 in the epitome. The reconstructed image is therefore 𝐼 [𝑝] = 𝐸[𝜙 [𝑝/𝑠] 𝑝]. As before, this affine deformation map 𝜙 is piecewise constant over each image block.
The epitome will typically contain the large-scale versions of the
features, while the foreshortened versions are minified instances.
Thus an image block near a foreshortened feature is mapped by 𝜙 to some larger quadrilateral region in 𝐸. Matrix 𝐷 could be a
full 3×3 perspective deformation, but we found that affine de-
formations form a sufficiently accurate local approximation.
Color scaling Repeated image elements may also differ due to
low-frequency lighting variations over the image. In the tiled
floor example, there may be smooth color variations across the
floor due to nonuniform illumination. Also, photos in image
collections may vary due to different exposure or white-balance
parameters. We factor out these lighting variations by introducing
a color scaling function, denoted by a 3×3 diagonal matrix 𝐿.
The transform map becomes the tuple 𝜙 = (𝜙 , 𝜙), such that 𝐼 [𝑝] = 𝐸[𝜙 [𝑝/𝑠] 𝑝] 𝜙 [𝑝/𝑠] .
Although the 3-channel color scaling map 𝜙 requires additional
storage, typically there is a greater benefit in the improved factor-
ing of the lighting-normalized image 𝐼[𝑝] 𝜙 [𝑝]. We store 𝜙 as
a per-block constant, accessed with nearest sampling like 𝜙 .
The image function 𝐼 can be interpreted as a composition of
functions, 𝐼 = 𝜙 ∘ 𝐸 ∘ 𝜙 , and therefore (𝜙 , 𝐸, 𝜙) can be
interpreted as a factoring of the original image function 𝐼.
Encoding of the transform map For storage efficiency we
quantize the coefficients stored in 𝜙. We find that 16-bit fixed-
point numbers are sufficient for the two translation coefficients.
With 3 fractional bits, this provides 0.125 subpixel positioning of
the transformed blocks while allowing access to an epitome 𝐸 up

to size (8K)2. If the transform includes affine deformations, we
store the 4 additional vector coefficients as 8-bit integers. In total
these coefficients require 64 bits/block or only 0.25 bits/pixel with
a block size of 𝑠 = 16 . Similarly, we quantize the color scaling
map 𝜙 to 8 bits/channel, thus using less than 0.1 bits/pixel.

Figure 4: Image blocks match many affinely deformed instances.

4. Construction
We now turn to the problem of constructing a factored image
representation. For simplicity let us assume that the input image 𝐼
is square with size 𝑛×𝑛. With a block size 𝑠×𝑠, the transform
map 𝜙 has size ⌈𝑛/𝑠⌉×⌈𝑛/𝑠⌉.
Ideal goal We desire the factored representation to be both
concise and accurate. Thus we seek to minimize the size of the
two stored textures, |𝐸| + |𝜙|, as well as the image reconstruction
error ‖𝐼 − 𝐼‖ . Mathematically, this can be expressed as min , , 𝜆 (|𝐸| + |𝜙|) + ‖𝐸[𝜙 [𝑝/𝑠] 𝑝] 𝜙 [𝑝/𝑠] − 𝐼[𝑝]‖∈ ,
where the parameter 𝜆 provides a tradeoff between accuracy and
conciseness. Let us briefly consider the two extremes.
If conciseness is ignored (𝜆 = 0), we can achieve a lossless
representation by letting the epitome 𝐸 equal the input image, and
letting the transform map 𝜙 be a 1×1 image containing an identi-
ty transform. Thus, lossless representation is possible with
negligible storage overhead.
For maximum conciseness (𝜆 → ∞), 𝐸 will contain a single block
of size 𝑠 = √𝑛, to reach total storage of only 𝑂 √𝑛 ⋅ √𝑛 = 𝑂(𝑛).
Thus extremely aggressive compression is also achievable.
Of course, the more interesting case is that of intermediate values
of 𝜆, where the representation can hope to factor some repeated
image content to form a smaller epitome, but usually at the cost of
some reconstruction error.
Our approach To make the problem more tractable, we assume
a given block size 𝑠 (discussed in Section 7) so that |𝜙| is fixed.
And, rather than minimizing the functional with parameter 𝜆, we
instead specify a maximum reconstruction error 𝜖 that must be
satisfied for each image block, and seek the most concise repre-
sentation that achieves that error threshold.
Let 𝑒(𝐵) denote the reconstruction error of an image block 𝐵:

 𝑒(𝐵) = ∑ ‖𝐼 [𝑝] − 𝐼[𝑝]‖∈ 𝜎(𝐼) + 𝛽 . (1)

Note that the reconstruction 𝐼 includes color scaling, which is set
such that ∑ 𝐼 [𝑝]∈ = ∑ 𝐼[𝑝]∈ . The variance 𝜎(𝐼) of the
source block is introduced in the denominator (with an exponent 0 ≤ 𝛼 ≤ 2 and small 𝛽) as a perceptual factor to better preserve
low-contrast features in relatively smooth regions.

We then seek min , |𝐸| such that ∀𝐵 ∈ 𝐼, 𝑒(𝐵) ≤ 𝜖 .
We approximate this minimization using a greedy, deterministic
construction process that iteratively grows epitome charts copied
from the input image. Each epitome chart is a connected set of 4×4-pixel blocks, and thus has the shape of a polyomino. The
general strategy is to maximize the number of new image blocks {𝐵} ⊂ 𝐼 that can be accurately reconstructed from the growing
epitome, while minimizing the epitome growth.
Overview The construction procedure has the following steps:
• Find self-similarities in 𝐼.
• Create an epitome chart for each repeated content, to satisfy a

maximum norm on the image reconstruction error.
• Optimize the transform map 𝜙, to minimize the reconstruction

error given the epitome content.
• Assemble all epitome charts into an epitome atlas 𝐸.

4.1 Finding self-similarities
For each block in the input image, we compute the set of all
transformed regions (patches) in the image with similar content,
as shown in Figure 5. That is, for block 𝐵 ∈ 𝐼 we find the set Match(𝐵) = 𝑀 , , 𝑀 , , … of transforms identifying patches of
image 𝐼 that reconstruct 𝐵 within tolerance 𝜖. Each transform 𝑀 , = 𝐷 , , 𝐿 , has an affine deformation and color scaling.
Block 𝐵 is compared with 𝑀 , (𝐵) using Equation (1).
We perform match search using the Kanade-Lucas-Tomasi (KLT)
feature tracker, which optimizes affine alignment of two windows
[Lucas and Kanade 1981; Shi and Tomasi 1994]. Because KLT is
designed for small translations, rotations, and scalings, it must be
initialized with a good starting state.
Translation We initialize separate KLT searches at a grid of
seed points spaced every 𝑠/4 pixels (see Figure 6). We prune the
search by only considering seeds whose (precomputed) neighbor-
hood color histograms are sufficiently similar to the queried
block. For each candidate position 𝑆 we compute the color
scaling 𝐿 , by dividing the mean colors of the two neighborhoods.
However, we constrain the color scaling coefficients to not exceed
1.25, to give preference to brighter image content and thereby
avoid quantization errors in reconstruction.
Rotation We obtain a starting rotation angle 𝜃guess by comparing
orientation histograms of the two neighborhoods (Figure 7):

𝜃guess = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐻orient(𝜃, 𝐵) − 𝐻orient 𝜃 + 𝜃 , 𝑆°
° .

Each histogram contains 36 buckets over the range 0-360 degrees.
The value in each bucket is the luminance gradient strength in that
orientation integrated over the block. The orientation histograms
are precomputed for all block and seed positions.
Scaling We build an image pyramid with sub-octave resolution,
and perform separate searches in each pyramid level (Figure 8).
We only consider pyramid levels that are minified, i.e. corres-
ponding to matches that are magnified in the original image, to
avoid blurring in the reconstruction.
Reflection Finally, we consider both mirror reflections since
these are representable by the affine deformations.
Some image blocks may have an excessive number of matches.
For example, the sky in a photograph often contains blocks that
all match each other, resulting in clique of 𝑂(𝑛) complexity. To
overcome this problem we define a separate relationship of
equivalent blocks. If during the search for Match(𝐵) we find

another block 𝐵 that is nearly identical up to color scaling (with a
tight tolerance and without deformation), we tag 𝐵 to share the
same match list as 𝐵 .

Figure 5: A given image block shown in green accurately
matches the transformed patches highlighted in red.

Figure 6: Translation is seeded at a set of grid points.

Figure 7: Rotation is initialized using orientation histograms.

Figure 8: Scaling is handled by searching in pyramid levels.

4.2 Creating epitome charts
We seek to copy charts from the input image into the epitome 𝐸,
such that the charts can reconstruct other image regions. We grow
each chart greedily, trying to account for as many image blocks as
possible. Each epitome growth step adds a region Δ𝐸 ⊂ 𝐼. Let 𝐼 ⊆ 𝐼 denote the subset of the image that is accurately recon-
structed by epitome 𝐸: 𝐼 = { 𝐵 ∈ 𝐼 ∣ 𝑒(𝐵) ≤ 𝜖 }.
Thus we seek to add the region Δ𝐸 that maximizes Benefit(Δ𝐸) = 𝐼 \𝐼 − |Δ𝐸| .
Letting the increment Δ𝐸 be a single image block would only
match other image blocks that are strictly equivalent. Instead we
desire a somewhat larger region that is able to contain the trans-
formed patches from many Match lists. We find such a candidate
region 𝐶 for each s×s epitome block 𝐵 as follows (see Figure 9).

Figure 9: Candidate region 𝐶 for epitome growth, formed as the
union of transformed patches that overlap the block 𝐵 .

First we construct an inverse mapping Cover(𝐵) that contains the
set of image blocks 𝐵 whose matched patches overlap with 𝐵 : Cover(𝐵) = 𝑀 , ∣∣ 𝑀 , (𝐵) ∩ 𝐵 ≠ ∅ .
We then define 𝐶 as the set of epitome blocks necessary to
reconstruct all transformed blocks in Cover(𝐵): 𝐶 = 𝐵 ∣∣ 𝐵 ∩ 𝑀 , (𝐵) ≠ ∅, 𝑀 , ∈ Cover(𝐵) .
The chart growth candidates are then (Δ𝐸) = 𝐶 \𝐸 for all blocks 𝐵 inside or adjacent to the current chart, or (Δ𝐸) = 𝐶 for all
blocks 𝐵 ∉ 𝐸 in the whole image if starting a new chart. Given a
current existing chart, if we cannot find any addition Δ𝐸 for
which Benefit(Δ𝐸) ≥ 0, then we restart the chart growing
process at a new location in the image. The process terminates
when the whole image is accurately reconstructed, i.e. 𝐼 = 𝐼.
Figure 10 illustrates the process. The first addition to the epitome
is the set 𝐶 that can account for the most image content for its
given size (first row). The epitome chart is shown in red, and the
matched image content is revealed. We then iteratively grow this
epitome chart, resulting in additional matched image content
(second row). When incremental growth to the chart is no longer
beneficial, a new chart is started at the next most useful location
(third row). Figure 11 shows the final result.

Figure 10: Illustrated example of growing the epitome (in red).
The right column reveals the image subset 𝐼 that is accurately
reconstructed at each step of the process.

Figure 11: Construction example: input image, epitome charts,
and charts packed into an epitome atlas.

4.3 Optimizing the transform map
During the incremental growth of the epitome, each image block 𝐵 is assigned to the first epitome location that reconstructs it
sufficiently well, i.e. 𝑀 , (𝐵) for some 𝑀 , ∈ Match(𝐵).
However, content subsequently added to the epitome may provide
a better reconstruction of block 𝐵 . Therefore, after the epitome
construction is completed, we iterate through all image blocks 𝐵 ,
determine the location in the epitome that offers the best recon-
struction of 𝐵 , and update the transform map 𝜙 accordingly: 𝜙[𝐵] = arg min∈Match(), ()⊂ ‖𝐵 − 𝑀(𝐵)‖.
The quality of the reconstructed image can improve significantly
as shown in Figure 12. This optimization changes which content
of the epitome is used during reconstruction, so we remove any
unused content by appropriately trimming blocks from the charts.

Figure 12: Comparison of image reconstruction before and after
optimization of the transform map.

4.4 Assembling charts into an epitome atlas
We pack the charts together into an epitome atlas. This packing
problem is related to surface texture atlas packing [Sander et al.
2001; Lévy et al. 2002]. In our case, the charts are polyominoes,
so packing is an NP-hard discrete problem. We use the heuristic
algorithm of [Freivalds et al. 2002]. The strategy is to consider
charts in order of decreasing size, and determine for each chart the
optimal placement (including rotation and mirroring) that mini-
mizes the growth in area of the bounding rectangle, as illustrated
in Figure 13. The motivation for the heuristic is that small charts
are more likely to fit into the gaps left between the larger charts.

Figure 13: Example of chart packing for a collection of 6 charts.

4.5 Hierarchical construction
For large images, the matching search becomes expensive. As a
speedup we have explored a hierarchical construction algorithm.
We partition the image into sub-images {𝐼 }, factor each sub-
image separately to obtain its epitome 𝐸 , and then form their
union 𝐸 =∪ 𝐸 . We then run the construction process with the
full image 𝐼 as input, but restrict the match search to the smaller
image 𝐸. Epitome charts that are redundant across the images are
trimmed away during optimization (Section 4.3), so we obtain a
final epitome 𝐸 that is more compact than 𝐸. Splitting the image
into 𝐾 sub-images can potentially provide a 𝐾 times speedup (𝑛
versus 𝐾(𝑛 /𝐾) =𝑛 /𝐾). We show this process for the case of
image collections in Section 6.

5. Applications

5.1 Texture mapping
To use our factored representation in the context of 3D rendering,
we must address two issues:
(1) Enabling texture minification to prevent aliasing.
(2) Obtaining continuous reconstruction across block boundaries.

Mipmapping We allow minification using an ordinary mipmap
structure over the epitome texture. However, just as in a surface
texture atlas, the epitome consists of irregular charts, so the
mipmap pyramid will inevitably contain coarser-level samples
whose bilinear basis functions span different charts, and this leads
to color bleeding in the reconstructed image. As is commonly
done for texture atlases, we reduce this problem by adding a
padding gutter (e.g. 4 pixels) between the charts.
At very coarse minification, the access to the transform map 𝜙
will itself suffer from aliasing. The solution is to store a mipmap
of a coarse version of the input image. Fortunately, this coarse
mipmap occupies little space. Figure 14 shows a 1D visualization
of the overall data structure for minification and magnification.

Figure 14: Strategy for image minification and magnification.

Continuous reconstruction Chart padding by itself does not
guarantee continuous inter-block reconstruction, for two reasons:
(1) Due to epitome instancing, the padded samples cannot match
all the blocks that may be adjacent in the reconstructed image;
(2) In the presence of affine deformations, the sample positions do
not align geometrically at the block boundaries (much like in
surface texture atlases).

We guarantee continuous reconstruction by performing explicit
bilinear interpolation in the pixel shader. We access the 4 closest
samples separately through the transform map (possibly mapping
to non-adjacent blocks), and bilinearly blend these sample values.
Thus, sampling near the block corners may access up to 4 separate
epitome charts. The evaluation is fast: 800M pixels/second on an
NVIDIA GeForce 8800 GTX.
Resampling. Many blocks of the reconstructed image 𝐼 contain
affinely transformed epitome content. The affine warping in-
volves (bilinear) sampling, and therefore introduces a slight
amount of blurring. However, images are most often used in
texture mapping where similar interpolation also occurs. It is
important to note that the final rendering of 𝐼 does not introduce
additional resampling, because we render with bilinear filtering
directly from the epitome which contains original un-resampled
content. To make visual comparisons more fair (and in our
favor), it might be reasonable to blur the original image 𝐼 by
evaluating it at one-quarter pixel offset in both 𝑥 and 𝑦 (an aver-
age level of blurring), but we did not do so in the results.

5.2 Compression
The transform map 𝜙 compresses well due to its local coherence
(Figure 15). Indeed, if adjacent image blocks access adjacent
content in the epitome, their associated translation vectors 𝜙 are
identical. With repeating content, adjacent translation vectors
often differ by a small multiple (typically 0 or −1) of the tiling
period. For the example in Figure 15, applying lossless PNG
compression to the offset map 𝜙 reduces it from 7.06 KB to 4.34
KB, or less than 0.14 bits per pixel of 𝐼.

Image 𝐼 Position map Offset map 𝜙

Figure 15: Visualization of the coherence in the transform map.
Middle image shows the epitome locations (red=𝑥,green=𝑦) of
the reconstruction, and right image shows translation vectors 𝜙 .

The epitome 𝐸 can be compressed with a variety of techniques.
For our main scenario of real-time rendering, DXT compression is
most appropriate because it supports random access [McCabe and
Brothers 1998]. In fact, because the epitome is constructed as a
subset of 4x4 blocks in the input image, if the input image is
already DXT compressed, we can simply copy those compressed
blocks unchanged. Thus our factoring scheme is readily cascaded
with DXT compression. For example, when our scheme produces
a 4X compression, DXT will provide an additional 4X compres-
sion resulting a 16X overall reduction in required memory.
For persistent storage, the epitome can be entropy-compressed
using schemes like PNG and JPEG. Ideally, these schemes could
benefit from knowledge of the undefined gutter regions between
charts. Figure 16 shows some examples that compare (1) our
factored representation with its epitome compressed with JPEG
2000, and (2) the original image compressed with JPEG 2000 to
have the same overall compressed size. The results show that at
high compression rates, (1) is clearly superior to (2).

Close-up of

the 1792×944
input image in

Figure 28

(1) Compression
after factoring

(35KB epitome +
35KB transform map)

(2) Compression
of input image

with JPEG 2000
(70KB)

Figure 16: Image quality when compressing the factored epitome
with JPEG 2000, and when compressing the original image with
JPEG 2000 to achieve the same overall size. (Because JPEG
requires decompression prior to rendering, this comparison is not
completely appropriate for our scenario of real-time rendering.)

5.3 Progressive representation
We can create a nested epitome structure to represent increasingly
accurate approximations of a given image, in other words a
scalable level-of-detail representation.
For example, a rough reconstruction 𝐼 of image 𝐼 is obtained
using a small epitome image 𝐸 and an initial transform map 𝜙 .
Then, a more accurate reconstruction 𝐼 of the same image is
obtained by adding more image content to form a larger epitome
image 𝐸 , together with a new transform map 𝜙 . We enforce
that content in 𝐸 be a superset of the content in image 𝐸 , so that
we need only store or transmit the difference 𝐸 \𝐸 . Although
the transform maps 𝜙 and 𝜙 differ, many of the blocks in 𝐼 still
refer to content in 𝐸 and therefore their block transforms in 𝜙
can be predicted from those in 𝜙 to allow effective compression.
We have explored two schemes for progressivity of the epitome
content, as shown in Figure 17.
The first approach is to organize 𝐸 and 𝐸 \𝐸 as separate sub-
images that are concatenated together to form 𝐸 . However, a
major drawback of this approach is that the incremental content in 𝐸 \𝐸 cannot spatially extend the existing epitome charts in 𝐸
since these are already tightly packed. Consequently, we obtain
many new charts in 𝐸 \𝐸 whose content overlaps significantly
with that already in 𝐸 .
Our preferred approach lets content in 𝐸 be spatially remapped
when forming 𝐸 so that existing charts can be augmented (or
partitioned) as needed. We first construct (𝜙 , 𝐸) using a small
error threshold 𝜖 . Next, we construct a coarser representation (𝜙 , 𝐸) using a large error threshold 𝜖 , where epitome content is
constrained to be a subset of 𝐸 . This constraint is achieved by
adaptively removing unnecessary blocks from 𝐸 .
While all blocks of 𝐸 also exist in 𝐸 , they generally appear in
different locations because 𝐸 and 𝐸 are packed independently.
Therefore we form 𝐸 with the help of a remap 𝜓 that records
the destination addresses of the blocks from (1) the previous
epitome 𝐸 and (2) the stream of new image blocks 𝐸 \𝐸 .
Fortunately, there is significant spatial locality, so the remap
should 𝜓 compress well.

The overall progressive stream of data contains: 𝐸 , 𝜙 , 𝐸 \𝐸 , 𝜓 ,diff(𝜙 , 𝜙), 𝐸 \𝐸 , 𝜓 ,diff(𝜙 , 𝜙), … .
This progressive representation can be used for transmission, or to
select a particular content complexity at load time. An example is
shown in Figure 18.

Figure 17 Two progressive schemes; remapped is our preferred.

 𝜖=0.004; 16x 𝜖=0.003; 5.4x 𝜖=0.002; 2.5x

Figure 18: Example result of progressivity, for different error
tolerances 𝜖, showing memory savings factor. This image is
challenging due to the variation in windows.

6. Factoring image collections
Image-based rendering techniques allow navigation within a scene
using a set of photos taken from several viewpoints [e.g. Chen
1995; Buehler et al. 2001; Snavely et al. 2006]. If a scene region
is diffuse, locally planar, and unoccluded, its image in one view
may be well reconstructed in a nearby view using local affine
deformation and color scaling. Note that our factoring approach
operates without scene geometry such as in [Wood et al. 2000].
Given a collection of images {𝐼 }, we seek a common epitome 𝐸
and a set of transform maps {𝜙 }. This problem can be addressed
using our basic construction procedure by simply considering as
input the concatenation of all the images. Because the input is
large, we apply the hierarchical construction algorithm described
in Section 4.5. Figure 19 shows an example result.
The epitome size typically grows sublinearly with the number of
input images. In this example, the epitomes have 53K, 69K, 94K,
107K, and 122K pixels for 1..5 input images respectively. The
larger delta (94K-69K) between the 2nd and 3rd images is due to
the fact that the 3rd image has more glossy reflection.

Figure 19: Example of factoring an image collection.

7. Results and discussion
Figure 20 shows additional examples, and Table 1 summarizes
quantitative results. The water drops in the first row of Figure 20
are from an actual photograph, and are therefore not perfectly
repeating; nonetheless a useful factoring was possible. The
characters in the second row are also all distinct; here it is the fact
that individual strokes are similar at the scale of a block that
allows a condensed epitome. The third row shows a hyperbolic
tiling of colored teapots; the factoring is good in the interior, but it
appears that too much content is retained near the periphery where
the teapot tiles are small. We believe that the KLT-based match-
ing procedure is converging to poor local minima in these high-
frequency regions, and this is an area for improvement. The
zebras in the last row have a high-frequency pattern that is not
repeating at the scale of the blocks, and thus does not factor well.
Construction is an offline preprocess, so we did not invest much
in its optimization. Speeding up this process is an interesting area
for future research, especially for the case of image collections.

Input 𝐼 Epitome 𝐸 Reconstruction 𝐼
Figure 20: Additional image factoring results.

Block size The graph in Figure 21 explores how the memory
size (for 𝐸, 𝜙, and total) varies as a function of the block size 𝑠.
As the block size increases, the epitome also grows because there
are fewer repeating elements of such large size. On the other
hand, for very small block sizes, the epitome reaches a minimal
size, but the transform map occupies a lot of memory. For this
testcase, total memory size has a wide valley for block sizes
ranging from 8 to 20, with a minimum at 𝑠=12.

Accuracy vs. space Figure 22 graphs epitome memory size as a
function the error tolerance 𝜖. As expected, the epitome shrinks
monotonically as the tolerance is increased. Because the input
image (Figure 1) is an actual photograph and does not contain any
uniform region such as sky, no content is perfectly repeating, so
the tolerance 𝜖 must reach some nonzero threshold before the
epitome size begins to reduce.

Example Input 𝐼
Block
size 𝑠 Epitome 𝐸

Memory
savings

RMS
error

Time
(mins)

Figure 1a 504×504 12 328×232 3.1 2.7% 71
Figure 1b 5×600×396 12 472×252 8.0 2.5% 1100
Figure 3 432×372 12 152×132 6.7 3.1% 65
Figure 4 492×372 12 192×132 6.1 3.0% 77
Figure 11 432×432 12 132×136 8.2 3.3% 70
Figure 18 360×516 12 348×148 3.3 2.6% 43
Figure 19 5×600×480 12 548×196 10.0 2.9% 1420
Figure 20a 624×480 12 260×184 5.4 1.6% 262
Figure 20b 396×396 12 180×72 9.3 1.4% 21
Figure 20c 800×800 16 396×340 4.5 2.3% 146
Figure 20d 552×408 12 304×400 1.8 5.4% 89
Figure 24 396×396 12 152×116 7.3 4.5% 28
Figure 25 592×448 16 140×72 19.1 2.5% 112
Figure 28 1792×944 16 372×1144 3.8 3.9% 1950

Table 1: Quantitative results of image factoring.

0

200

400

600

800

1000

0 10 20 30 40

M
em

or
y

si
ze

 (K
B)

Block size s

Total size
Epitome size
Transform size

Figure 21: Memory size as function of the image block size 𝑠 for
the example in Figure 1, with fixed error tolerance 𝜖=0.002.

0

200

400

600

800

0.0000 0.0010 0.0020 0.0030 0.0040

Ep
it

om
e

si
ze

 (K
B)

Approximation error tolerance ε
Figure 22: Epitome memory size as function of error tolerance 𝜖
for the example in Figure 1, with fixed block size 𝑠=12. The
size of the original image (744KB) is indicated by the red square.

Detail transfer We can use image factoring to transfer detail
from finely sampled image regions to coarsely sampled regions as
shown in Figure 23. To achieve this result, we use a large block
size 𝑠=40 and constrain the source of the epitome content to the
high-resolution region in the lower third of the image.
Detail removal Some image elements like the tiles in Figure 24
are structurally similar but not exact duplicates due to variations
in material and wear. The effect of aggressive image factoring is
to carefully preserve the layout of the elements while removing
their unique texture features.
Illumination factoring The draping of the cloth in Figure 25
causes both image-space warping and nonuniform shading of the
regular texture pattern. These are factored efficiently within the
concise transform map. For the user-selected error tolerance, the
large appearance variation resulted in two epitome charts. Omit-
ting the color scaling map results in a much larger reconstruction
error as shown in Figure 26.
Figure 27 shows more visualizations of the epitome construction
process. In the |Cover(𝐵)| image, the bright vertical stripe at the
front edge of building is present because those image neighbor-
hoods are able to match content on both adjacent facades. Indeed
a single epitome chart started along this edge will maximize the
efficiency of the epitome.
General images like the cityscape in Figure 28 are challenging
because the many surface occlusions create boundaries with
mixtures of patterns, and hence the image blocks along these
boundaries are less likely to be repeating. The bottom row reveals
its progressive representation. It shows the original image in
grayscale, with colors indicating the set of nested epitome charts
that are formed for different reconstruction tolerances, from red
for the smallest epitome to green for the largest epitome.

8. Summary and future work
Most image compression schemes are designed to exploit local
structure in the data. We present an orthogonal technique that
exploits the repeated instancing of larger-scale elements, either
within a single image or across a collection of images. The
factored image representation supports random-access rendering
directly from its condensed form.
Some areas of future work include:
• Allow editing of the epitome to update shared image elements,

similar to [Brooks and Dodgson 2002].
• Exploit image factoring for better inpainting.
• Speed up the epitome construction.
• Improve matching of content across image collections, perhaps

with the help of interest points as in [Brown and Lowe 2003].
• Increase the reconstruction quality by using a perceptual metric.

Raw image Input 𝐼 Reconstruction 𝐼
Figure 23: Example of intra-image detail transfer.

Input 𝐼 Epitome 𝐸 Reconstruction 𝐼

Figure 24: Example of image element “generification”.

𝜙

𝜙

Epitome 𝐸 Transform Reconstruction 𝐼

Figure 25: Factoring of both warping and lighting.

𝜙

𝜙

Epitome 𝐸 Transform Reconstruction 𝐼

Figure 26: Factoring without color scaling is much less effective.

(a) |Cover(𝐵)| (b) 𝐸 usage map (c) Error 𝐼 − 𝐼

Figure 27: Additional results for the example data in Figure 1:
(a) visualization of the sizes of the cover sets (number of blocks
that match a given region), (b) frequency of usage of the epitome
content, and (c) emphasized reconstruction error.

(372×1144)

Epitome charts with 𝜖 = 0.002

Reconstructed image 𝐼 (1792×944) Epitome 𝐸

Locations of progressive epitome charts (for 𝜖=0.004,0.003,0.002,0.001)

Figure 28: Example of factoring a large image.

Acknowledgments
We thank Howard Zhou for inspiring us to look at feature trackers
to detect self correspondences. We also thank Craig Kaplan for
the hyperbolic teapot tiling.

References
AHUJA N., AND TODOROVIC S. 2007. Extracting texels in 2.1D

natural textures. ICCV.

BEERS A., AGRAWALA M., AND CHADDHA N. 1996. Rendering
from compressed textures. ACM SIGGRAPH.

BROOKS S., AND DODGSON N. 2002. Self-similarity based texture
editing. ACM SIGGRAPH.

BROWN M., AND LOWE D. 2003. Recognizing panoramas. ICCV.

BUEHLER C., BOSSE M., MCMILLAN L., GORTLER S., AND COHEN
M. 2001. Unstructured lumigraph rendering. SIGGRAPH.

CHEN S. 1995. QuickTime VR: An image-based approach to
virtual environment navigation. ACM SIGGRAPH.

DABOV K., FOI A., KATKOVNIK V., AND EGIAZARIAN K. 2007.
Image denoising by sparse 3D transform-domain collaborative
filtering. IEEE Transactions on Image Processing, 16, 8.

FISHER Y. 1995. Fractal Image Compression, Theory and Appli-
cation. Springer-Verlag, New York.

FREIVALDS K., DOGRUSOZ U., AND KIKUSTS P. 2002. Discon-
nected graph layout and the polyomino packing approach.
Lecture Notes in Computer Science, 2265, 378-391.

GERSHO A., AND GRAY R. 1992. Vector quantization and signal
compression. Kluwer Academic Publishers, Boston.

HAYS J., LEORDEANU M., EFROS A., AND LIU Y. 2006. Discover-
ing texture regularity as a higher-order correspondence
problem. ECCV.

JOJIC N., FREY B., AND KANNAN A. 2003. Epitomic analysis of
appearance and shape. ICCV.

KANNAN A., WINN J., AND ROTHER C. 2006. Clustering appear-
ance and shape by learning jigsaws. NIPS.

KRAUS M., AND ERTL T. 2002. Adaptive texture maps. Graphics
Hardware.

LEFEBVRE S., AND HOPPE H. 2005. Parallel controllable texture
synthesis. ACM SIGGRAPH.

LEVOY M., AND HANRAHAN P. 1996. Light field rendering. ACM
SIGGRAPH.

LÉVY B., PETITJEAN S., RAY N., AND MAILLOT J. 2002. Least
squares conformal maps for automatic texture atlas generation.
ACM SIGGRAPH.

LOBAY A., AND FORSYTH D. 2006. Shape from texture without
boundaries. Int. J. Computer Vision, 67, 1, 71-91.

LIU Y., LIN W.-C., AND HAYS J. 2004. Near-regular texture
analysis and manipulation. ACM SIGGRAPH.

LUCAS B., AND KANADE T. 1981. An iterative image registration
technique with an application to stereo vision. Proceedings of
Imaging Understanding Workshop.

MCCABE D., AND BROTHERS J. 1998. DirectX 6 texture map
compression. Game Developer, 42-46.

MÜLLER P., ZENG G., WONKA P., AND VAN GOOL L. 2007.
Image-based procedural modeling of facades. ACM SIG-
GRAPH.

SANDER P., SNYDER J., GORTLER S., AND HOPPE H. 2001. Texture
mapping progressive meshes. ACM SIGGRAPH.

SHI J., AND TOMASI C. 1994. Good features to track. CVPR.

SNAVELY N., SEITZ S., AND SZELISKI R. 2006. Photo Tourism:
Exploring photo collections in 3D. ACM SIGGRAPH.

WEI L.-Y., HAN J., ZHOU K., HUJUN B., GUO B., AND SHUM H.-Y.
2008. Inverse texture synthesis. ACM SIGGRAPH.

WOOD D., AZUMA D., ALDINGER K., CURLESS B., DUCHAMP T.,
SALESIN D., AND STUETZLE W. 2000. Surface light fields for
3D photography. ACM SIGGRAPH.

	1. Introduction
	2. Related work
	3. Representation
	4. Construction
	4.1 Finding self-similarities
	4.2 Creating epitome charts
	4.3 Optimizing the transform map
	4.4 Assembling charts into an epitome atlas
	4.5 Hierarchical construction

	5. Applications
	5.1 Texture mapping
	5.2 Compression
	5.3 Progressive representation

	6. Factoring image collections
	7. Results and discussion
	8. Summary and future work
	Acknowledgments
	References

