Grounding Natural Language for Building Embodied Agents

Asli Celikyilmaz

Microsoft Research

Acknowledgements:
Xin Wang (UCSB), Qiuyuan Huang (MSR), Dinghan Shen (Duke), Xiujun Li (MSR), Jianfeng Gao (MSR), Lei Zhang (MSR), Yonatan Bisk (MSR), William Wang (UCSB)
Language Empowering Intelligent Agents

Microsoft Cortana

Apple Siri

Google Now
Google Assistant

Amazon Alexa/Echo

Facebook M & Bot

Google Home

Apple HomePod

Image Source: Vivian Chen's Slides
Adapting Agents to Physical Environments

Image Source: Henderson Biomedical

Image Source: boingboing.net

Image Source: Boston Dynamics
Outline

• Language grounding in visual environments
 – Visual Language Navigation Task
 – Self-supervised imitation learning [CVPR 2019]

• Ongoing Work
 – Navigation and Dialog
 – situated and bi-directional
Intelligent Agents Navigating Physical Environments

Our Goal \(\rightarrow \) Build intelligent agents

– Communicate with people
 • Follow natural language instructions
– Understand the dynamics of the perceptual environment
– Alignment between the two!
Language Grounding in Situated Environments

Linguistic symbols \(\leftrightarrow\) Perceptual experiences and actions

(Noun Phrase)
dog reading newspaper

(Verb)
sleeping

(Verb Phrase)
climb on chair to reach switch

Image Source: bing.com
Understanding Visually Grounded Language
Understanding Visually Grounded Language

TASK: Vision & Language Navigation (VNL)

Navigating an agent inside real 3D environments by following natural language instructions.
Matterport 3D Dataset

- 10,800 panoramic views based on 194K RGB-D images
- 90 building-scale scenes (avg. 23 rooms each)
- Includes textured 3D meshes with object segmentations
- Largest RGB-D dataset
Matterport 3D Simulator for VLN Task

Feasible trajectories determined by navigation graph

Anderson, et.al., CVPR 2018
Matterport 3D Simulator for VLN Task

Room-to-Room (R2R) Dataset

• ~7K shortest paths
• 3 instructions for each path
 – Average instruction length 29 words
 – Average trajectory length is 10 meters
• Task: given natural language instructions, find the goal location!

Instruction: Head upstairs and walk past the piano through an archway directly in front. Turn right when the hallway ends at pictures and table. Wait by the moose antlers hanging on the wall.

Anderson, et.al., CVPR 2018
Room-to-Room Dataset Examples

Input: Instruction

turn completely around until you face an open door with a window to the left and a patio to the right, walk forward, ...

Input: Panoramic View

Output

\[a_t \in A \]

Anderson, et.al., CVPR 2018
Visual-Language Navigation Task Challenges

(1) cross-modal grounding
Instruction: Go towards the *living room* and then turn right to the *kitchen*. Then turn left, pass a *table* and enter the *hallway*. Walk down the *hallway* and turn into the *entry way* to your right. Stop in front of the *toilet*.
Visual-Language Navigation Task Challenges

(1) cross-modal grounding
(2) ill-posed feedback
Instruction: Go towards the *living room* and then turn right to the *kitchen*. Then turn left, pass a *table* and enter the *hallway*. Walk down the *hallway* and turn into the *entry way* to your right. Stop in front of the *toilet*.

Agent #1 follows the instruction and reaches the destination.

Agent #2 randomly walks inside the house and reaches the destination.

Both trajectories are considered same in terms of the success signal.
Our Recent “Explanatory” Work on VLN

Learns to **ground language** in visual context using **RL** and **Self-Supervised Imitation Learning**
Reinforced Cross-modal Matching (RCM)

Environment

\(\pi_\theta: \) Reasoning Navigator

\[\text{History} + \text{Instruction} + \text{visual scene} \]

\(V_\beta: \) Matching Critic

Extrinsic Reward

Intrinsic Reward

Instruction

Labeled Target Location

State → Action → Trajectory

turn completely around until you face an open door with a window to the left and a patio to the right, walk forward,
turn completely around until you face an open door with a window to the left and a patio to the right, walk forward,
Matching Critic \rightarrow Intrinsic Reward

$\tau = \{\langle s_1, a_1 \rangle, \langle s_1, a_1 \rangle, \ldots, \langle s_T, a_T \rangle \}$

Reconstruct the instruction to encourage global matching

$V_\beta(\chi, \tau) = V_\beta(\chi, \pi_\theta(\chi))$

$R_{intr} = p_\beta(\chi | \pi_\theta(\chi)) = p_\beta(\chi | \tau)$

Instruction χ

Reasoning Navigator π_θ

Trajectory $\pi_\theta(\chi)$

Matching Critic V_β

Trajectory Encoder

Language Decoder

turn completely around until you face an open door with a window to the left and a patio to the right, walk forward, ...
Visual-Language Navigation Task Challenges

(1) cross-modal grounding
(2) ill-posed feedback
(3) generalization
Self-supervised Imitation Learning (SIL)

Learning from its previous good behaviors \rightarrow better policy that adapts to new environments
Instruction: Turn right and head towards the kitchen. Before you get to the kitchen, turn left and enter the hallway. ... Walk forward and stop beside the bottom of the steps facing the double white doors.
Instruction: Turn right and head towards the kitchen. Before you get to the kitchen, turn left and enter the hallway. ... Walk forward and stop beside the bottom of the steps **facing the double white doors.**

Reinforcement Learning Only

RL + Self-Supervised Imitation Learning
Instruction: Go up the stairs to the right, turn left and go into the room on the left. Turn left and stop near the mannequins.

Intrinsic Reward : 0.51
Result : Failure (error = 3.1m)
Best Student Paper Award

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan-Fang Wang, William Yang Wang, Lei Zhang

"Visual navigation is an important area of computer vision – this paper makes advances in vision-language navigation. Building on previous work in this area, this paper demonstrates exciting results based on self-imitation learning within a cross-modal setting."

- An expert in computer vision
What’s next?

Image Source: Microsoft/HoloLens web page

Image Source: mirror.co.uk
Situated Reasoning Machines

Language Empowered Agents
Bi-directional but not situated!

Situated Language Empowered Agents
Situated but uni-directional!

Situated Reasoning Machines
Bi-directional and situated!
Make sure to clean behind the couch

Cool, wait! Which? Where? Hellllllllppppp Humans are the worst
Vision and Dialog Navigation

- Connecting Language and Vision
 What’s the meaning of “the second door on the right?”

- Modeling uncertainty
 How does an agent know if it’s lost or confused?

- NL Question and Answer generation
 Provide targeted feedback
Vision-based Navigation with Language-based Assistance via Imitation Learning with Indirect Intervention

CVPR 2019

Data + Model

K. Nyugen (UMD), D. Dey (MSR), C. Brocket (MSR), B. Dolan (MSR)
Interaction Snapshot

Goal: Build both the Navigator and the Oracle systems

Visible to both **Navigator** and **Oracle**

- **Hint:** The goal room contains a *mat*.

Visible Only to the **Oracle**

- **A₄**
 - Head into the bathroom. The mat is in there.

Okay, left or right from here?

- **Q₃**
 - Left into the bedroom. Cross it towards another door.

Outside or the bathroom over there?

- **Q₄**
 - Not shown

- **N₄**
 - Not shown

Current SOTA? 0%

Brand new dataset!
Briefly ...

• Situated Unidirectional Task: Visual Language Navigation
 • RL agent navigating 3D environment
 • Cycle loss to evaluate local and global path behavior
 • Imitation learning via self supervision

• Situated Bi-directional Task: Visual+Dialog Navigation (VDN)
 • Learn to ask questions
 • Transfer from previous tasks: Unimodal Dialog, Visual Dialog, VLN, etc.
 • Meta-learn!
Thank you!

QUESTIONS