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ABSTRACT

In realistic acoustic sound source localization scenarios, we often
encounter not only the presence of multiple simultaneous sound
sources, but also reverberation and noise. We propose a novel multi-
source localization method based on the spatial sound presence
probability (SSPP). The SSPP can be computed using prior knowl-
edge of the anechoic relative transfer functions (RTFs), which incor-
porate magnitude and phase information, and makes the approach
general for any device and geometry. From the SSPP we can not
only obtain multiple simultaneous sound source direction estimates,
but also their spatial presence probability. The SSPP can be used for
a probabilistic update of the estimated directions, and can further be
used to determine the dominant sound source. We demonstrate the
robustness of our method in challenging non-stationary scenarios
for single- and multi-speaker localization in noisy and reverberant
conditions. The proposed method still localizes a sound source at
8 m with an average error below 7◦.

Index Terms— Acoustic localization, direction-of-arrival, spa-
tial probability

1. INTRODUCTION

Acoustic sound source localization receives a lot of recent research
attention [1], and is an important task for various applications,
among them speech enhancement using beamforming [2], sound
source separation [3], spatial acoustic scene analysis or spatial
sound object detection, and spatial encoding techniques [4]. The
increasing popularity of farfield communication and voice control
demands reliable localization of sound sources at several meters dis-
tance from the microphones in any reverberant and noisy environ-
ment, in presence of potentially multiple directional sound sources.

Sound source localization methods using the time difference of
arrival based on the generalized cross-correlation (GCC) [5] often
fail in more complex scenarios with multiple sources and reverbera-
tion due to violation of the signal model. Most localization methods
model the signal in the time-frequency domain as the direct sound
wave plus some noise or interference. Due to the spectral spar-
sity of speech, assuming only a single directional sound wave per
time-frequency bin can hold well even in presence of multiple active
speech sources. Narrowband direction-of-arrival (DOA) estimators
such as MUSIC [6] and ESPRIT [7] can even estimate multiple
DOAs per time frequency. However, it is not straightforward to esti-
mate the number of sources, and the combination of the narrowband
DOA estimates to one or multiple broadband direction estimates of-
ten creates an additional permutation problem. Furthermore, ES-
PRIT, more efficient MUSIC solutions such as root-MUSIC [8],
or spherical harmonic domain methods [9] impose constraints on

the microphone geometry and microphone directivity, which pro-
hibits generalization to arbitrary microphone arrays. Neural net-
works have been used for sound localization [10, 11]. However,
creating enough training data and re-training for each specific array
can be often impractical. In [12, 13], source separation methods are
used to obtain time-frequency masks to obtain multiple GCC-based
direction estimates.

In this paper, we propose a sound source localization method
that i) is general for any microphone array, ii) can locate multi-
ple simultaneously active, possibly moving sound sources, iii) in-
creases farfield localization accuracy in noisy and reverberant envi-
ronments, iv) provides a presence probability per estimated source
direction, and v) has low requirements on computational complex-
ity, memory and no processing delay. In [14], we proposed a
method to compute the probability of a narrowband sound wave
arriving from a single spatial location using a relative transfer func-
tion (RTF) feature. In this paper, we generalize this method to mul-
tiple directions to create a spatial sound presence probability (SSPP)
map, which indicates regions of spatial source presence. From the
SSPP, we propose to continuously track a maximum number of
sound sources, which can be simultaneously active. This way, we
obtain estimates of direction and presence of a source at each direc-
tion. In contrast to many other multi-source localization methods,
the proposed method does not require prior knowledge of the num-
ber of active sources, which is often challenging to determine in
practice. Compared to the probabilistic source localization method
proposed in [15] using GCC features with support vector machines,
our proposed approach uses time-frequency sparsity to generalize
better for multi-source scenarios. The associated SSPPs for each
direction estimate allow us to determine the dominant active sound
source in each time frame. We evaluate the proposed sound local-
ization method in challenging scenarios with strong reverberation
and large source distances, non-stationary and spatially inhomoge-
nous noise, and changing positions of single and multiple speakers.

2. SIGNAL MODEL

We assume that the sound captured at the microphone with in-
dex m ∈ {1, . . . ,M} is given in the short-time Fourier trans-
form (STFT) domain by

Ym(k, n) =

I∑
i=1

Hm,i(k)Si(k, n) + Vm(k, n), (1)

where Si(k, n) are I speech source signals, Hm,i(k) are the di-
rect path acoustic transfer functions of source i to microphone m,
Vm(k, n) models noise and reverberation, and k and n are the fre-
quency and time frame indices, respectively. Given that the speech
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sources Si(k, n) are spectrally sparse, we assume that there is only
a single dominant speech source per time-frequency bin. Hence, we
model the microphone signals by

Ym(k, n) = Am,1(k, rd)Xd(k, n) + Um(k, n) (2)

where Am,1(k, rd) = Hm,d(k)/H1,d(k) is the relative direct trans-
fer function of the dominant source Sd(k, n) between the m-th
and 1st microphone, Xd(k, n) = Hm,1(k)Sd(k, n) is the domi-
nant speech source signal from location rd at the fist microphone,
and Um(k, n) =

∑
i\d Hm,i(k)Si(k, n) + Vm(k, n) models the

noise, reverberation, and all residual components, such as the non-
dominant speech sources. Note that due to the sparsity assumption,
the dominant source location rd ∈ {r1, . . . , rI} can vary across
frequency within the same time frame n. Although we denote the
source locations as absolute cartesian vectors r = [rx, ry, rz], in
farfield localization, r are usually distance-independent unit vec-
tors, and will be referred as direction in the remainder of the paper.

3. STATE-OF-THE-ART ACOUSTIC LOCALIZATION

A well-known robust and generally applicable localization method
is the steered response power with phase transform (SRP-PHAT)
[16]. The direction estimate is obtained by the maximum of the
normalized cross-power spectral density (CPSD), steered in all pos-
sible directions r` ∈ {r1, . . . , rL} i. e.

r̂SRP(n) = arg max
`

∑
k

∣∣∣∣∣
M∑

m=1

A∗m(k, r`)
Φm,1(k, n)

|Φm,1(k, n)|

∣∣∣∣∣
2

(3)

where Φm,1(k, n) = E {Ym(k, n)Y ∗1 (k, n)} is the cross-power
spectral density between them-th and first microphone signals. The
expectation operator E {·} can be approximated by first-order recur-
sive smoothing with a small time constant.

A widely used narrowband localization method designed for
uniform circular array (UCA) geometries is beamspace root-
MUSIC (BS-RM) [17]. While BS-RM yields similar accuracy but
lower computational complexity than the traditional MUSIC algo-
rithm [6, 18], its complexity is still rather high. To obtain poten-
tially multiple robust broadband direction estimates, k-means clus-
tering has been successfully employed to the estimated narrowband
directions or spatial features [19, 20]. In our baseline algorithm, we
use the slightly more robust k-medians clustering [21] with recur-
sive initialization to obtain multiple broadband direction estimates.
Preliminary experiments showed that additional robustness checks
such as the coherence test or onset detection as proposed in [20]
deteriorated the results in adverse conditions. We assume that the
dominant direction is given by the cluster centroid with the largest
amount of data points.

4. SPATIAL PROBABILITY BASED LOCALIZATION
USING THE RTF INPRODUCT

In [14], we have proposed a method to compute the SSPP of a di-
rectional sound source with respect to a single direction based on
the inproduct between the estimated and given anechoic RTF. In
the following, we formulate the SSPP for multiple directions, such
that the maximum SSPP per direction is an indicator for the most
probable source direction. The narrowband spatial probabilities are
combined into a global broadband SSPP, which can be used to ob-
tain multiple source directions and their presence probabilities. Fur-
thermore, the spatial presence probabilities of the estimated source

directions can be used for a probabilistic update to track the source
direction estimates.

4.1. Spatial sound presence probability

By neglecting the noise term in (2), the RTF can be estimated from
the microphone signals in the least-squares sense by

Âm,1(k, n) =
Φm,1(k, n)

Φ1,1(k, n)
. (4)

Note that in the presence of noise, the RTF estimate given by (4)
is biased. Although there exists a variety of more sophisticated and
unbiased RTF estimators [22, 23, 24], we use (4) to keep the com-
putational complexity low.

Let us define the estimated RTF vector and the anechoic RTF
vectors for the potential source directions r` ∈ {r1, . . . , rL} as

â(k, n) =
[
Â2,1(k, n) . . . ÂM,1(k, n)

]T
, (5)

a`(k) =
[
A2,1(k, r`) . . . AM,1(k, r`)

]T
, (6)

which are both vectors of length M − 1. As a distance measure
between the potential and observed RTF vectors, we utilize the nor-
malized vector inproduct, which can also be interpreted as the co-
sine of the hermitian angle [25, 26, 14]

∆`,k,n = cos 〈a`(k), â(k, n)〉 =
<
{
aH
` (k) â(k, n)

}
‖a`(k)‖ ‖â(k, n)‖ , (7)

where <{·} is the real part operator. Note that −1 ≤ ∆`,k,n ≤ 1
is bounded. The feature ∆`,k,n becomes one, when the estimated
RTF is close to an anechoic source from r`, otherwise we expect
the cosine angle to be smaller than one, or even negative.

Following the concept of RTF-based spatial probabilities [14],
we can compute the conditional probability P (H`|∆`,k,n) that the
observed time-frequency bin originates from direction r` by

P (H`|∆`,k,n) =
P (H`)p(∆`,k,n|H`)

P (H̄`)p(∆`,k,n|H̄`) + P (H`)p(∆`,k,n|H`)
(8)

where P (H̄`) = 1 − P (H`). In [14] it was proposed to model
the likelihood function for spatial speech presence p(∆`,k,n|H`)
by an exponential function, and the likelihood for speech absence
p(∆`,k,n|H̄`) by a raised cosine function, given in [14, Eqs. (9),
(11)], respectively. We assume an equal a priori probability ratio of
P (H`) = P (H̄`) = 0.5.

The global broadband SSPP P (r`, n) is obtained by the arith-
metic average of the narrowband probabilities within the frequency
range of interest as

P (r`, n) =
1

kmax − kmin + 1

kmax∑
kmin

P (H`|∆`,k,n), (9)

where the lower and upper frequency bin limits kmin and kmax should
be chosen according to the array aperture and the spatial aliasing
frequency, respectively. We propose to apply a temporal smooth-
ing to the global SSPP function P (r`, n) with fast attack and slow
release time constants.

An example of the global SSPP function is shown in Fig. 1 on
top for a single speech source with road noise. The ground truth
direction of the speech source is shown as black dashed line for
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Figure 1: From top to bottom: SSPP, probability per estimated
source track, and estimated directions. Example for road noise with
SNR = 10 dB, T60 = 0.8 s and distance 4 m.

frames, where the speech source is active. The presence of the
speech source can be well observed as regions with high SSPP,
while also other highly directional noise components e. g. sound of
passing by cars can be observed.

4.2. Probabilistic tracking of directional sources

As we are uncertain how many sound sources are active at frame
n, we constantly track a maximum of Imax ≥ I source direc-
tions ri along with their presence probabilities P (ri, n) for i ∈
{1, . . . , Imax}.

From the SSPP function P (r, n), we extract the In ≤ Imax

highest spatial peaks at r̂i′ , i′ ∈ {1, . . . , In} at each time step
n. Note that determining the peaks of P (r, n) becomes a 2-
dimensional problem, if we consider varying elevation angles. Only
spatial peaks above the spatial noise floor are considered. The SSPP
noise floor can be tracked by

µP (n) = αPµP (n− 1) + (1− αP )
1

L

L∑
`=1

P (r`, n), (10)

where αP is a very slow time smoothing constant.
The In instantaneous spatial peaks need to be assigned to the

existing direction estimate tracks. From the previous time step, we
have Imax source direction estimates r̂i(n − 1). The In instanta-
neous source directions are mapped uniquely to the closest previous
source direction r̂i′(n)→ r̃i(n) by

r̃i(n) = arg min
i

‖r̂i′(n)− r̂i(n− 1)‖22 ∀i′ ∈ {1, . . . , In}.

(11)

Note that direction book-keeping using cartesian unit vectors avoids
the angular wrap-around problem. After the mapping, the Imax di-
rection estimates can be updated using the SSPPs by

r̂i(n) = (1− Pi(n− 1))r̂i(n− 1) + Pi(n)r̃i(n), (12)

where the probabilities Pi(n) are compensated for the spatial noise
floor by

Pi(n) =
P (r̃i, n)− µP (n)

1− µP (n)
. (13)

Figure 2: Proposed SSPP-based localization system.

The probabilistic update ensures that direction tracks are only up-
dated, if a source in the respective direction is present, and remain
constant during speech absence.

The number of estimated directions Imax should be chosen
larger than the maximum number of expected sound sources to
avoid distraction of the direction estimate tracks. An example for
a single speech source in a road noise scenario is shown in Fig. 1
using Imax = 4. The Fig. 1 top shows the estimated SSPP and the
true source location as black dashed line. The SSPP map clearly
indicates the spatial presence of the speech source, while also other
directional noise components are visible. Note that P (r`, n) is nat-
urally smooth across direction due to smearing by reverberation,
which eases peak extraction. Fig. 1 center shows the four estimated
direction tracks, while the noise floor compensated SSPPs (13) are
shown on Fig. 1 bottom in the same colors. We can observe that
the SSPP is only high, when a directional source is active, while the
direction tracks of inactive sources are not updated.

For a multi-source estimation task, the final result are the Imax

direction tracks along with their SSPPs. For acoustic beamforming,
the goal is often to focus on a single speech source. By assuming
that the dominant source is the desired one, the dominant source
direction per frame can simply be obtained as the direction estimate
with the maximum SSPP ∀i, which is shown as red dotted line on
the top figure in Fig. 1. An overview of the proposed system is
shown in Fig. 2.

5. EVALUATION

5.1. Dataset and evaluation criteria

We created two different datasets, a single speech source scenario
and a multi speech source scenario. Male and female speech utter-
ances of length between 2 to 5 s from an internal database were
concatenated to files of 60 s length by inserting random pauses
of 0 to 4 s length between each utterance. The room impulse re-
sponses were generated using the image method [27] for a UCA
with 6 omnidirectional microphones on a radius of 4 cm by simu-
lating shoebox rooms with the reverberation times {0.3, 0.5, 0.8} s.
The source position changed randomly after 1 to 4 utterances. For
the single-source scenario, the source angle could take any value
between [−179, 180]◦ in 1◦ steps, while the source-array distance
was constant per file with {1, 2, 4, 6, 8} m. For the multi-source
scenario, the source angle changed randomly after 1 to 4 utterances
on an angle grid between [−179, 180]◦ with a 21◦ increment, with
a randomly selected source distance from {1, 2, 4, 6, 8} m per ut-
terance and source. In the multi-source scenario, 3 speech sources
were active simultaneously. After convolving the room impulse
responses with the utterances and summing the speech signals in
the multi-source case, spatial noise recordings from a bar, road,
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Figure 3: Mean absolute localization error (bars) and miss rate with
5◦ tolerance (numbers on top) for a single active speech source with
changing position over SNR and distance.

or office scenario were added with a signal-to-noise ratio (SNR) of
{0, 10, 20, 30} dB. The spatial noise was recorded in the Ambison-
ics format and rendered to the microphone setup [28]. This resulted
in a single- and multi-source dataset of 180 and 36 files.

As evaluation criterion, we use the mean absolute error (MAE)
between the true and estimated source direction, only computed for
frames where the sources are active. Additionally, we compute the
localization miss rate within 5◦ as the ratio of the number of di-
rection estimates, where the absolute localization error is above 5◦,
related to the total number of active frames for each source. For
the multi-source experiment, these error measures are computed be-
tween the closest true and estimated directions. This criterion disre-
gards consistency of the source tracks, which is beyond the scope,
and not the goal of this paper.

5.2. Implementation

In our experiments, the audio data sampled at 16 kHz was processed
using a STFT with square-root Hann windows of 32 ms length and
∆t = 16 ms frame shift. The parameters to compute the narrow-
band spatial probabilites (8) were chosen as proposed in [14]. The
anechoic RTFs a`(k) were computed from the microphone geome-
try using the omnidirectional far-field microphone model, where the
possible direction set {r1, . . . , rL} were the azimuth angles in the
horizontal plane between [−175, 180]◦ in 5◦. Note that the source
angles of the dataset are chosen so that only very few source direc-
tions lie exactly on the discrete RTF direction set used in the imple-
mentation. The recursive smoothing time constants for estimating
the CPSDs were 0.025 s, for the SSPP smoothing of (9) we used
0.002 s attack and 1.2 s release time constants, and for the spatial
noise floor tracking (10) αP had 0.22 s attack and 11.2 s release1.
We estimated Imax = 4 source direction tracks in both the single-
and multi-source experiment.

5.3. Results

Figure 3 shows the results for the single-source experiment. The
bars indicate the localization MAE in degrees, and the miss rate is

1Attack and release refers to rising and falling signals, respectively.

Figure 4: Mean absolute localization error (bars) and miss rate with
5◦ tolerance (numbers on top) for 3 simultaneous speech sources.

shown as numbers in % on top of each bar. The results per SNR av-
eraged over all T60 and distance conditions are shown on top, while
the results per distance averaged over T60 and SNR are shown be-
low. We can observe that the proposed method, denoted as RTF-SP,
yields the lowest MAE in all conditions, and the lowest miss rate
in all conditions except at 1 m distance, where BS-RM is slightly
better. Note that the computational complexity of BS-RM exceeds
the complexity of the proposed method by a factor larger than 10.
SRP-PHAT shows a large discrepancy between MAE and miss rate
at low SNR as its direction estimate has a large variance. While
the performance of SRP-PHAT and BS-RM constantly decreases to-
wards lower SNR and larger distances, the performance of RTF-SP
drops much less significant.

Figure 4 shows the results for the multi-source experiment, de-
pending on SNR (top) and T60 (bottom). The proposed method out-
performs BS-RM except for the miss rate at T60 = 0.3 s. While the
MAE and miss rates at high SNR approximately double compared
to the single source scenario, the performance becomes similar at
lower SNR. Note that the multi-source evaluation disregards the
source assignment problem, and the SSPP is not used in contrast
to the single-source experiment. Therefore, we observe smaller er-
rors at low SNRs in Fig. 4. The performance of both BS-RM and
RTF-SP does not decrease significantly for the highest T60.

6. CONCLUSION

We have proposed a noise- and reverberation-robust source localiza-
tion method for multiple sources. The localization uses spatial prob-
abilities based on a RTF correlation feature incorporating knowl-
edge of the anechoic RTFs in the directions of interest. The method
is able to localize multiple simultaneously active sound sources in
adverse environments using the spatial sound presence probability.
In addition to each direction estimate, the method provides also the
presence probability associated to each direction estimate, which
indicates source activity and estimation confidence. In a further
step, the most likely dominant active source can be determined as
the most probable active source. The proposed method was evalu-
ated in realistic and very challenging scenarios with reverberation
times up to 0.8 s, distances up to 8 m, and non-stationary, spatially
inhomogenous noise.
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