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Talk organization

* Part 1: Robustness at training time
* What happens when the training set has outliers?

* Part 2: Robustness at test time
* What happens when your adversary tries to fool your model?
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Two motivating examples

Genetic data

Data is often heterogeneous, causing uncontrolled systematic noise
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Two motivating examples

Data poisoning / Adversarial machine learning
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Figure from [Gu, Dolan-Gavitt, Garg ’17]

Data can come from untrusted / tampered sources
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Two motivating examples

Large data sets are often inherently noisy

How can we learn from noisy high dimensional data?
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Challenge: Develop algorithms which are provably robust to worst case noise
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* Given samples from a distribution, where an adversary has moved an &-
fraction of the points arbitrarily, can you recover statistics of the original
distribution?
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Corruptions in high dimensions
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Corruptions in high dimensions
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Corruptions in high dimensions

Any method looking for outliers will lose
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A curse of dimensionality?

All known approaches for high-dimensional mean estimation either
1. Are computationally intractable in high dimensions; or
2. Lose accuracy factors which depend polynomially on the dimension

Is efficient robust estimation possible in high dimensions? Yes!
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Global corruptions?

Idea: If the corruptions move the
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Global corruptions?

Idea: If the corruptions move the

mean...
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Efficient algorithms via spectral signatures

Two consequences of this:

1. If the top eigenvalue of the empirical covariance of your corrupted
data is small, then the corruptions aren’t “too bad”.

» Can just output the empirical mean!

2. If the top eigenvalue is large, then it can only be large because the
bad points are too big in this direction.

» The top eigenvector gives a direction where the bad points are prominent!
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Filtering: A Simple Meta-Algorithm

Given corrupted dataset S
* Let [i be the empirical mean of S
¢ Let 3 be the empirical covariance of S
e (1, v) « top eigenvalue/vector of &
* If Ais not too large
* QOutput i
* Otherwise,

* Project the data points in the direction of v

* Remove (or downweight) the largest data
points in this direction
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Filtering: A Simple Meta-Algorithm

Given corrupted dataset S
* Let [i be the empirical mean of S
¢ Let S be the empirical covariance of S
e (1, v) « top eigenvalue/vector of &
* If Ais not too large
* Qutput /i
* Otherwise,

* Project the data points in the direction of v

* Remove (or downweight) the largest data
points in this direction

Projection onto v
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A single iteration runs in nearly linear time!
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Our Results

Given an e-corrupted set of samples ...we can efficiently get an estimate
that is sufficiently large from... of the true mean to ¢y error:
a distribution with bounded second moment O (\/g ) [LRV16, DKKLMS16, DKKLMS17]
a Gaussian (or sub-Gaussian distribution) O(ey/log1/€)) wrxmsizsovin

with identity covariance
a Gaussian with unknown covariance O(elog1/e) pxkimsieg

a ‘“‘nice”’ distribution with bounded t-th moments 0(61"1/ lt) HL18, KS18)

For all cases, these are the first efficient dimension-independent guarantees!

Also sparsity [L17, DBS17], list learning [CSV17, MV17], graphical models [DKS18], general norms [SCV17],
federated learning [QV17], sparse regression [KKM18, CLL19] etc...



Synthetic Experiments, Unknown Mean
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Synthetic Experiments, Unknown Covariance
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Gene Expression PCA Contains Europe

* Genes Mirror Geography in Europe. [Novembre et al.], Nature ‘08

Original Data
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Naively, Corruptions Destroy Europe

* Genes Mirror Geography in Europe. [Novembre et al.’08]
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Our Algorithms Fix Europe!

* Genes Mirror Geography in Europe. [Novembre et al.’08]

Filter Output
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Application to outlier detection

The filter also directly gives us scores which rank how suspicious each data
point is.

We can directly use this as a method for outlier detection.

Recent work of [Dong, Hopkins, L] give a more sophisticated score motivated
by robust outlier detection called quantum entropy (QUE) scoring

QUE scores outperform previous SOTA on both synthetic and real world
outlier detection tasks!



Experimental setup (synthetic)

[Dong, Hopkins, L], to appear, NeurlPS 2020

* Inliers are Gaussian data, outliers are in k roughly orthogonal directions
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Experimental setup (synthetic)

[Dong, Hopkins, L], to appear, NeurlPS 2020

* Inliers are Gaussian data, outliers are in k roughly orthogonal directions
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Experimental setup (CIFAR-10)

[Dong, Hopkins, L], to appear, NeurlPS 2020

* Inliers are images CIFAR-10, outliers are images from CIFAR-10 grouped into k groups, where each
group has some set of “dead” pixels

* We whiten the data using another set of uncorrupted images from CIFAR-10.
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Beyond robust statistics

Can we “robust-ify” more complicated objectives, like supervised learning?
e.g. regression, SVM

These problems can be phrased in the framework of stochastic optimization
Given a loss function £(X,w) and a distribution D over X, minimize
f(w) = Ex~p [#(X,w)]

Challenge: Given e-corrupted samples from D, minimize f
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SEVER: Robust stochastic optimization

[Diakonikolas, Kamath, Kane, L, Steinhardt, Stewart], ICML 2019

First try: just run stochastic gradient descent using robust estimates

Recall:
W1 € We — Nt ' Gt

where g; is a robust estimate of Vf(w;)
How to do this in the presence of noise?

This works great in theory....but slow in practice

Better: only filter at minimizer of the empirical risk!
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SEVER: Robust stochastic optimization

[Diakonikolas, Kamath, Kane, L, Steinhardt, Stewart], ICML 2019

Theorem: Suppose £ is convex, and Cov [V£(X,w)] < o?]. Under mild
assumptions on D, then SEVER outputs a w so that w.h.p.

f(w) —mui/nf(w) < O(M).

Sample complexity / runtime bounds are polynomial but not super
tight

For specific instances (e.g. SVM, regression), we obtain tighter bounds
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Theorem: Suppose £ is convex, and Cov [V£(X,w)] < o?]. Under mild
assumptions on D, then SEVER outputs a w so that w.h.p.
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Performance for ridge regression

Regression: Drug discovery data,

Regression: Synthetic data Regression: Drug discovery data attack targeted against SEVER
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Beyond(er) robust statistics: backdoor

attacks [Tran, L, Madry], NeurlPS'18
Attacks against ResNet on CIFAR10:
Natural Poisoned Natural Poisoned

cat”

13

“airplane” “bird” “automobile”

These attacks convince the network that the implanted watermark is a strong signal for classification

As a result, the learned representation amplifies the signal of the watermark, creating a backdoor
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Beyond(er) robust statistics: backdoor
attaCkS [Tran, L, Madry], NeurlPS'18

So what happens to the training set at the learned representation level?

watermarked

dogs

cat representations

Empirically, results in a noticeable perturbation in the covariance = our algorithms can detect the
corruptions!



Beyond(er) robust statistics: backdoor

attacks

[Tran, L, Madry], Neur|PS’18
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Target | Epsilon | Nat 1 Pois 1 | #Pois Left | Nat2  Pois2 | Std Pois
bird 5% 92.27% 74.20% 57 92.64% 2.00% 1 20%
10% 92.32% 89.80% 7 92.68% 1.50%

5% 92.45% 83.30% 24 92.24% 0.20%
cat 0.10%
10% 92.39% 92.00% 0 92.44% 0.00%

5% 92.17% 89.80% 7 93.01% 0.00%
dog 0.00%
10% 92.55% 94.30% 1 92.64% 0.00%

5% 92.60% 99.80% 0 92.57% 1.00%
horse 0.80%
10% | 92.26% 99.80% 0 92.63% 1.20%

5% 92.86% 98.60% 0 92.79% 8.30%
cat 8.00%
10% 92.29% 99.10% 0 92.57% 8.20%

5% 92.68% 99.30% 0 92.68% 1.10%
deer 1.00%
10% 92.68% 99.90% 0 92.74% 1.60%

5% 02.87% 88.80% 10 92.61% 0.10%
frog 0.30%
10% 92.82% 93.70% 3 92.74% 0.10%
bird 5% 92.52% 97.90% 0 92.69% 0.00% 0.00%
10% 92.68% 99.30% 0 92.45% 0.50%




Robustness at
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Adversarial examples for NNs
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This is a real problem!

Subtle Poster Camouflage Camsouflage Art  Camouflage An
Right Tumn Graffisi (LISA-CNN)  (GTSRB-CNN)
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Formal definition

Given:

* A classifier f:R? - Y
* An allowed pertubation set § (e.g. £}, ball)

An adversarial example for x € R% is a point x + § for § € S s.t.

f(x) # f(x +6)
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Empirical defenses

* Defenses that seem to work in practice, but we don’t know how to
prove

* Many of these have been broken, often within weeks or months of
publication

* One notable exception: adversarial training [Madry et al 18]
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Given current model 8, data point (X, y), and loss function L, we
apply the first order update:
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Adversarial training

Adversarial training:

Given current model 8, data point (X, y), and loss function L, we
apply the first order update:

Orr1 < 0 — ¢ - VoL(fo(X'),y)

where X' is an adversarial perturbation to X for fy
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Certified defenses

* Defenses that provably cannot be broken.

* However, these often don’t scale, or get much worse numbers than empirical
defenses.

* Arecent approach that might bridge the gap: randomized smoothing [Lecuyer et
al, Li et al, Cohen et al]
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Given a soft classifier F: R? — P (1), its associated smoothed classifier
IS given by

G(x) = (F*N(0,0%1))(x) = Es_pr 0,021 [F(x + 8)]



Randomized smoothing

Given a soft classifier F: R? — P (1), its associated smoothed classifier
IS given by

G(x) = (F*N(0,6%D)(x) = Es-p(0021[F(x + 8)]

i

Image from: [Cohen et al’19]
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respectively. Then



Certifiable robustness of randomized
smoothing

Theorem [Cohen et al’19]: Let G be a soft classifier, and let x € R%. Let a, b € Y be
the most likely and second most likely class for x under G, with probabilities p,, pp

respectively. Then
argmax G(x) = argmax G(x + 6)

for all 6 satisfying
o
18112 < = (27 (pa) — 27" (pp))

where @~ 1 is the inverse Gaussian cdf.



Certifiable robustness of randomized
smoothing

Theorem [Cohen et al’19]: Let G be a soft classifier, and let x € R%. Let a, b € Y be
the most likely and second most likely class for x under G, with probabilities p,, pp

respectively. Then
argmax G(x) = argmax G(x + 6)

for all 6 satisfying
o
1811, <2 (@7 (pa) - 7' (5))

where @~ 1 is the inverse Gaussian cdf.

In practice: can simulate G, p,, pp via Monte-Carlo sampling.
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Training smoothed networks

How do you train the base network so that the smoothed classifier is
effective?

[Cohen et al’19]: Gaussian data augmentation

Our idea: Directly robustify smoothed network via adversarial training
on smoothed loss
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S m O Ot h Ad V [Salman, Yang, L, Zhang, Zhang, Razenshteyn, Bubeck],

to appear, NeurlPS 2020

Given data and label (x, y), want to find X that maximizes loss of G in
an €, ball around x wrt cross-entropy loss L.

X = argmax |xr_x”58L(;E(G(x'),}’)
— argmaX”xr_xl se(— log VBN F(x’ + 5)3/)

We call this the SmoothAdv objective.



S m O Ot h Ad V [Salman, Yang, L, Zhang, Zhang, Razenshteyn, Bubeck],

to appear, NeurlPS 2020

Given data and label (x, y), want to find X that maximizes loss of G in
an €, ball around x wrt cross-entropy loss L.

X = argmax |xr_x”SgLCE(G(x'),}’)
— argmaX”xr_xl se(— log LS F(x’ + 5)y)

We call this the SmoothAdv objective.

We then do adversarial training with this objective.
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SmoothAdyv is not the Gaussian
Augmentation Objective

SmoothAdv Gaussian augmentation
argmax (—logEs F(x' + 6),) i argmax (—EslogF(x' + 6),)
= <e = <e
“find adversarial example of G” “find adversarial example of F that is robust

to Gaussian noise”



SmoothAdyv is not the Gaussian
Augmentation Objective

SmoothAdv Gaussian augmentation
argmax (—logEs F(x' + S)y) i argmax (—Eslog F(x' + 6)y)
=<z =<z
“find adversarial example of G” ;‘fircxsd adversarial g’xample of F that is robust
o Gaussian noise
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Results: Imagenet
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Results: CIFAR10
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Results: Imagenet
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Pretraining on Imagenet Boosts CIFAR10
Provable Robust Accuracy

* Hendrycks et al. 2019 showed that pretraining on downscaled Imagenet improves
empirical robust accuracy on CIFAR10

* |n contrast to clean accuracy, which sees little difference

* We pretrained our own SmoothAdv model on downscale Imagenet then finetuned (i.e.

training the last layer) on CIFAR10, again using SmoothAdyv, obtaining a significant bump
in provable robust accuracy for small radii

& i Goeio [0z 05 oz o L s L l2o 2

Cohen et al.

Ours 74 57 48 38 33 29 24 19 17
Ours + pretrain 80 63 51 37 34 30 25 20 17



Directions in Robust ML

* As ML and Al are used for increasingly sensitive tasks, it becomes
incredibly important to understand their robustness properties.

* These theoretical insights often directly lead to better practical
algorithmes.

* Still many exciting theoretical and applied questions to consider!



