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Abstract

We consider the adaptive influence maximization problem:
given a network and a budget k, iteratively select k seeds in
the network to maximize the expected number of adopters.
In the full-adoption feedback model, after selecting each
seed, the seed-picker observes all the resulting adoptions. In
the myopic feedback model, the seed-picker only observes
whether each neighbor of the chosen seed adopts. Motivated
by the extreme success of greedy-based algorithms/heuristics
for influence maximization, we propose the concept of greedy
adaptivity gap, which compares the performance of the adap-
tive greedy algorithm to its non-adaptive counterpart. Our
first result shows that, for submodular influence maximiza-
tion, the adaptive greedy algorithm can perform up to a
(1 − 1/e)-fraction worse than the non-adaptive greedy al-
gorithm, and that this ratio is tight. More specifically, on one
side we provide examples where the performance of the adap-
tive greedy algorithm is only a (1− 1/e) fraction of the per-
formance of the non-adaptive greedy algorithm in four set-
tings: for both feedback models and both the independent cas-
cade model and the linear threshold model. On the other side,
we prove that in any submodular cascade, the adaptive greedy
algorithm always outputs a (1 − 1/e)-approximation to the
expected number of adoptions in the optimal non-adaptive
seed choice. Our second result shows that, for the general
submodular cascade model with full-adoption feedback, the
adaptive greedy algorithm can outperform the non-adaptive
greedy algorithm by an unbounded factor. Finally, we pro-
pose a risk-free variant of the adaptive greedy algorithm that
always performs no worse than the non-adaptive greedy algo-
rithm.

1 Introduction
The influence maximization problem (INFMAX) is an op-
timization problem that asks which seeds a viral market-
ing campaign should target (e.g. by giving free products) so
that propagation from these seeds influences the most peo-
ple in a social network. That is, given a graph, a stochas-
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tic diffusion model defining how each node is infected by
its neighbors, and a limited budget k, how to pick k seeds
such that the expected number of total infected nodes in this
graph at the end of the diffusion is maximized. This problem
has significant applications in viral marketing, outbreak de-
tection, rumor controls, etc, and has been extensively stud-
ied (cf. Chen, Lakshmanan, and Castillo; Li et al. (2013;
2018)).

For INFMAX, most of the existing work has consid-
ered submodular diffusion models, especially the indepen-
dent cascade model and the linear threshold model (Kempe,
Kleinberg, and Tardos 2003). Likewise, we also focus on
submodular diffusion models. In submodular diffusion mod-
els, a vertex v’s marginal probability of becoming infected
after a new neighbor t is infected given S as the set of v’s
already infected neighbors is at least the marginal probabil-
ity that v is infected after t is newly infected given T ⊇ S as
the set of v’s already infected neighbors (see the paragraph
before Theorem 2.4 for more details). Intuitively, this means
that the influence of infected nodes are substitutes and never
have synergy.

When submodular INFMAX is considered, nearly all the
known algorithms/heuristics are based on a greedy algo-
rithm that iteratively picks the seed that has the largest
marginal influence. Some of them improve the running time
of the original greedy algorithm by skipping vertices that are
known to be suboptimal (Leskovec et al. 2007; Goyal, Lu,
and Lakshmanan 2011a), while the others improve the scal-
ability of the greedy algorithm by using more scalable al-
gorithms to approximate the expected total influence (Borgs
et al. 2014; Tang, Xiao, and Shi 2014; Tang, Shi, and Xiao
2015; Cheng et al. 2013; Ohsaka et al. 2014) or computing
a score of the seeds that is closely related to the expected to-
tal influence (Chen, Wang, and Yang 2009; Chen, Yuan, and
Zhang 2010a; 2010b; Goyal, Lu, and Lakshmanan 2011b;
Jung, Heo, and Chen 2012; Galhotra, Arora, and Roy 2016;
Tang et al. 2018; Schoenebeck and Tao 2019b). Arora, Gal-
hotra, and Ranu (2017) benchmark most of the aforemen-
tioned variants of the greedy algorithms.

In this paper, we study the adaptive influence maximiza-
tion problem, where seeds are selected iteratively and feed-
back is given to the seed-picker after selecting each seed.



Two different feedback models have been studied in the past:
the full-adoption feedback model and the myopic feedback
model (Golovin and Krause 2011). In the full-adoption feed-
back model, the seed-picker sees the entire diffusion process
of each selected seed, and in the myopic feedback model the
seed-picker only sees whether each neighbor of the chosen
seed is infected.

Past literature focused on the adaptivity gap—the ra-
tio between the performance of the optimal adaptive algo-
rithm and the performance of the optimal non-adaptive al-
gorithm (Golovin and Krause 2011; Peng and Chen 2019;
Chen and Peng 2019). However, even in the non-adaptive
setting, INFMAX is known to be APX-hard (Kempe, Klein-
berg, and Tardos 2003; Schoenebeck and Tao 2019b). As a
result, in practice, it is not clear whether the adaptivity gap
can measure how much better an adaptive algorithm can do.

In this paper, we define and consider the greedy adaptiv-
ity gap, which is the ratio between the performance of the
adaptive greedy algorithm and the non-adaptive greedy al-
gorithm. We focus on the gap between the greedy algorithms
for three reasons. First, as we mentioned, the APX-hardness
of INFMAX renders the practical implications of the adap-
tivity gap unclear. Second, as we remarked at the beginning,
the greedy algorithm is used almost exclusively in the con-
text of influence maximization. Third, the iterative nature of
the original greedy algorithm naturally extends to the adap-
tive setting.

1.1 Our Results
We show that, for the general submodular diffusion models,
with both the full-adoption feedback model and the myopic
feedback model, the infimum of the greedy adaptivity gap is
exactly (1− 1/e). In addition, this result can be extended to
the two well-studied submodular diffusion models: the inde-
pendent cascade model and the linear threshold model. This
is proved in two steps.

In the first step, we show that there are INFMAX in-
stances where the adaptive greedy algorithm can only pro-
duce (1− 1/e) fraction of the influence of the solution out-
put by the non-adaptive greedy algorithm. This result is sur-
prising: one would expect that the adaptivity is always help-
ful, as the feedback provides more information to the seed-
picker, which makes the seed-picker refine the seed choices
in future iterations. Our result shows that this is not the case,
and the feedback, if overly used, can make the seed-picker
act in a more myopic way, which is potentially harmful.

In the second step, we show that the adaptive greedy al-
gorithm is always a (1 − 1/e)-approximation of the non-
adaptive optimal solution, so its performance is always at
least a (1 − 1/e) fraction of the performance of the non-
adaptive greedy algorithm. In particular, combining the two
steps, we see that when the adaptive greedy algorithm out-
put only obtains a (nearly) (1 − 1/e)-fraction of the per-
formance of the non-adaptive greedy algorithm, the non-
adaptive greedy algorithm is (almost) optimal. This worst-
case guarantee indicates that the adaptive greedy algorithm
will never be too bad.

As the second result, we show that the supremum of the
greedy adaptivity gap is infinity, for the general submodular

diffusion model with full-adoption feedback. This indicates
that the adaptive greedy algorithm can perform significantly
better than its non-adaptive counterpart. We also show, with
almost the same proof, that the adaptivity gap in this setting
(general submodular model with full-adoption feedback) is
also unbounded.

Finally, we propose a risk-free but more conservative vari-
ant of the adaptive greedy algorithm, which always per-
forms at least as well as the non-adaptive greedy algorithm.
We recommend both the adaptive greedy algorithm and this
variant.

1.2 Related Work
The influence maximization problem was initially posed by
Domingos and Richardson (2001; 2002). Kempe, Klein-
berg, and Tardos (2003) proposed the linear threshold
model and the independent cascade model, and show that
they are submodular. Whenever a diffusion model is sub-
modular, the greedy algorithm was shown to obtains a
(1 − 1/e)-approximation to the optimal number of infec-
tions (Nemhauser, Wolsey, and Fisher 1978; Kempe, Klein-
berg, and Tardos 2003; 2005; Mossel and Roch 2010).

For adaptive INFMAX, Golovin and Krause (2011)
showed that INFMAX with the independent cascade model
and full-adoption feedback is adaptive submodular, which
implies that the adaptive greedy algorithm obtains a (1 −
1/e)-approximation to the adaptive optimal solution. On the
other hand, INFMAX for the independent cascade model
with myopic feedback, as well as INFMAX for the linear
threshold model with both feedback models, are not adap-
tive submodular. In particular, the adaptive greedy algorithm
fails to obtain a (1 − 1/e)-approximation for the indepen-
dent cascade model with myopic feedback (Peng and Chen
2019). Peng and Chen (2019) showed that the adaptivity gap
for the independent cascade model with myopic feedback
is at most 4 and at least e/(e − 1), and they also showed
that both the adaptive and non-adaptive greedy algorithms
perform a 0.25(1−1/e)-approximation to the adaptive opti-
mal solution. The adaptivity gap for the independent cascade
model with full-adoption feedback, as well as the adaptivity
gap for the linear threshold model with both feedback mod-
els, are still open problems, although there is some partial
progress (Chen and Peng 2019).

Our paper is not the first work studying the adaptive
greedy algorithm. Previous work focused on improving the
running time of the adaptive greedy algorithm (Han et al.
2018). However, to the best of our knowledge, our work is
the first one that compares the adaptive greedy algorithm to
its non-adaptive counterpart.

Finally, we remark that there do exist INFMAX algo-
rithms that are not based on greedy (Bharathi, Kempe,
and Salek 2007; Goldberg and Liu 2013; Angell and
Schoenebeck 2016; Schoenebeck and Tao 2017; 2019a;
Schoenebeck, Tao, and Yu 2019), but they are typically for
non-submodular diffusion models.

2 Preliminary
All graphs in this paper are simple and directed. Given a
graph G = (V,E) and a vertex v ∈ V , let Γ(v) and deg(v)



be the set of in-neighbors and the in-degree of v respectively.

2.1 Triggering Model
We consider the well-studied triggering model (Kempe,
Kleinberg, and Tardos 2003), which is commonly used to
capture “general” submodular diffusion models.1

Definition 2.1 (Kempe, Kleinberg, and Tardos (2003)). The
triggering model, IG,F , is defined by a graph G = (V,E)
and for each vertex v a distribution Fv over the subset of its
in-neighbors {0, 1}|Γ(v)|. Let F = {Fv | v ∈ V }.

On an input seed set S ⊆ V , IG,F (S) outputs a set of
infected vertices as follows:

1. Initially, only vertices in S are infected. Each vertex v
samples a subset of its in-neighbors Tv ⊆ Γ(v) from Fv
independently. We call Tv the triggering set of v.

2. In each subsequent round, a vertex v becomes infected if
a vertex in Tv is infected in the previous round.

3. After a round where no additional vertices are infected,
the set of infected vertices is the output.

IG,F in Definition 2.1 can be viewed as a random function
IG,F : {0, 1}|V | → {0, 1}|V |. In addition, if the triggering
set Tv is fixed for each vertex v, then IG,F is deterministic.
Given v, its triggering set Tv , and an in-neighbor u ∈ Γ(v),
we say that the edge (u, v) is live if u ∈ Tv , and we say that
(u, v) is blocked if u /∈ Tv . It is easy to see that, when the
triggering sets for all vertices are sampled, IG,F (S) is the
set of all vertices that are reachable from S when removing
all blocked edges from the graph.

We define a realization of a graph G = (V,E) as a func-
tion φ : E → {L,B} such that φ(e) = L if e ∈ E is live
and φ(e) = B if e ∈ E is blocked. Let IφG,F : {0, 1}|V | →
{0, 1}|V | be the deterministic function corresponding to the
triggering model IG,F with vertices’ triggering sets follow-
ing realization φ. We write φ ∼ F to indicate that a realiza-
tion φ is sampled according to F = {Fv}.

The triggering model captures the well-known indepen-
dent cascade and linear threshold models. In the two defini-
tions below, we define the two models in terms of the trig-
gering model, which is sufficient for this paper. In the full
version of this paper, we present the original definitions and
give some intuitions for the two models for those readers
who are not familiar with them.

Definition 2.2. The independent cascade model ICM is
a special case of the triggering model IG,F where G =
(V,E,w) is an edge-weighted graph with w(u, v) ∈ (0, 1]
for each (u, v) ∈ E and Fv is the distribution such that each
u ∈ Γ(v) is included in Tv with probability w(u, v) inde-
pendently.

Definition 2.3. The linear threshold model LTM is a special
case of the triggering model IG,F whereG = (V,E,w) is an
edge-weighted graph with w(u, v) > 0 for each (u, v) ∈ E
and

∑
u∈Γ(v) w(u, v) ≤ 1 for each v ∈ V , and Fv is

1A more general way to capture submodular diffusion models is
the general threshold model (Kempe, Kleinberg, and Tardos 2003)
with submodular local influence functions. All our results hold un-
der this setting as well. We will discuss this in the full version.

the distribution defined as follows: order v’s in-neighbors
u1, . . . , uT arbitrarily, sample a real number r in [0, 1] uni-
formly, and

Tv =

{
{ut} if r ∈

[∑t−1
i=1 w(ui, v),

∑t
i=1 w(ui, v)

)
∅ if r ≥

∑T
i=1 w(ui, v)

.

Intuitively, Tv includes at most one of v’s in-neighbors such
that each ut is included with probability w(ut, v).

Given a triggering model IG,F , let σG,F : {0, 1}|V | →
R≥0 be the global influence function defined as σG,F (S) =

Eφ∼F [|IφG,F (S)|]. We drop the subscriptsG,F and write the
global influence function as σ(·) when there is no ambiguity.

A function f mapping from a set of elements to a non-
negative value is submodular if f(A∪{v})−f(A) ≥ f(B∪
{v}) − f(B) for any two sets A,B with A ( B and any
element v /∈ B.
Theorem 2.4 (Kempe, Kleinberg, and Tardos (2003)). For
any triggering model IG,F , σG,F (·) is submodular. In par-
ticular, σG,F (·) is submodular for both ICM and LTM.

2.2 INFMAX and Adaptive INFMAX

Definition 2.5. The influence maximization problem (INF-
MAX) is an optimization problem which takes inputs G =
(V,E), F , and k ∈ Z+, and outputs a seed set S that
maximizes the expected total number of infections: S ∈
argmaxS⊆V :|S|≤k σ(S).

In the remaining part of this subsection, we define the
adaptive version of the influence maximization problem. We
will define two different models: the full-adoption feedback
model and the myopic feedback model. Suppose a seed set
S ⊆ V is chosen by the seed-picker, and an underlying re-
alization φ is given but not known by the seed-picker. Infor-
mally, in the full-adoption feedback model, the seed-picker
sees all the vertices that are infected by S in all future it-
erations, i.e., the seed-picker sees IφG,F (S). In the myopic
feedback model, the seed-picker only sees the states of S’s
neighbors, i.e., whether each vertex in {v | ∃s ∈ S : s ∈
Γ(v)} is infected.

Define a partial realization as a function ϕ : E →
{L,B,U} such that φ(e) = L if e is known to be live,
φ(e) = B if e is known to be blocked, and φ(e) = U if the
status of e is not yet known. We say that a partial realization
ϕ is consistent with the full realization φ, denoted by φ ' ϕ,
if φ(v) = ϕ(v) whenever ϕ(v) 6= U. For the ease of nota-
tion, for an edge (u, v) ∈ E, we will write φ(u, v), ϕ(u, v)
instead of φ((u, v)), ϕ((u, v)).
Definition 2.6. Given a triggering model IG=(V,E),F with a
realization φ, the full-adoption feedback is a function Φf

G,F,φ

mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(u, v) = φ(u, v) for each u ∈ IφG,F (S), and

• ϕ(u, v) = U for each u /∈ IφG,F (S).
Definition 2.7. Given a triggering model IG=(V,E),F with
a realization φ, the myopic feedback is a function Φm

G,F,φ

mapping a seed set S ⊆ V to a partial realization ϕ such
that



• ϕ(u, v) = φ(u, v) for each u ∈ S, and
• ϕ(u, v) = U for each u /∈ S.

An adaptive policy π is a function that maps a seed set
S and a partial realization ϕ to a vertex v = π(S, ϕ),
which corresponds to the next seed the policy π would
choose given ϕ and S being the set of seeds that has al-
ready been chosen. Naturally, we only care about π(S, ϕ)

when ϕ = Φf
G,F,φ(S) or ϕ = Φm

G,F,φ(S), although we de-
fine π that specifies an output for any possible inputs S and
ϕ. Notice that we have defined π as a deterministic policy
for simplicity, and our results hold for randomized policies.
Let Π be the set of all possible adaptive policies.

Notice that an adaptive policy π completely specifies a
seeding strategy in an iterative way. Given an adaptive pol-
icy π and a realization φ, let Sf(π, φ, k) be the first k seeds
selected according to π with the underlying realization φ un-
der the full-adoption feedback model. By on our definition,
Sf(π, φ, k) can be computed as follows:

1. initialize S = ∅;
2. update S = S ∪ {π(S,Φf

G,F,φ(S))} for k iterations;

3. output Sf(π, φ, k) = S.
Define Sm(π, φ, k) similarly for the myopic feedback
model, where Φm

G,F,φ(S) instead of Φf
G,F,φ(S) is used in

Step 2 above.
Let σf(π, k) be the expected number of infected vertices

given that k seeds are chosen according to π, i.e., σf(π, k) =

Eφ∼F [|IφG,F (Sf(π, φ, k))|]. Define σm(π, k) similarly for
the myopic feedback model.
Definition 2.8. The adaptive influence maximization prob-
lem (adaptive INFMAX) is an optimization problem which
takes as inputs G = (V,E), F , and k ∈ Z+, and out-
puts an adaptive policy π that maximizes the expected to-
tal number of infections: π ∈ argmaxπ∈Π σ

f(π, k) or π ∈
argmaxπ∈Π σ

m(π, k) (depending on the feedback model
used).

2.3 Adaptivity Gap and Greedy Adaptivity Gap
The adaptivity gap is defined as the ratio between the perfor-
mance of the optimal adaptive policy and the performance of
the optimal non-adaptive seeding strategy. In this paper, we
only consider the adaptivity gap for triggering models.
Definition 2.9. The adaptivity gap with full-adoption feed-
back is

sup
G,F,k

maxπ∈Π σ
f(π, k)

maxS⊆V,|S|≤k σ(S)
.

The adaptivity gap with myopic feedback is defined simi-
larly.

The (non-adaptive) greedy algorithm iteratively picks a
seed that has the maximum marginal gain to the objective
function σ(·):

1. initialize S = ∅;
2. update for k iterations S = S ∪ {s}, where s ∈

argmaxs∈V σ(S ∪ {s}) with tie broken in an arbitrarily
consistent order;

3. return S.

Let Sg(k) be the set of k seeds output by the (non-adaptive)
greedy algorithm.

The greedy adaptive policy πg is defined as πg(S, ϕ) =

s such that s ∈ argmax
s∈V

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣] , with tie

broken in an arbitrary consistent order.

Definition 2.10. Given a triggering model IG,F and k ∈
Z+, the greedy adaptivity gap with full-adoption feedback is
σf(πg,k)
σ(Sg(k)) . The greedy adaptivity gap with myopic feedback is
defined similarly.

Notice that, unlike the adaptivity gap in Definition 2.9,
we leave G,F, k unspecified (instead of taking a supremum
over them) when defining the greedy adaptivity gap. This is
because we are interested in both supremum and infimum
of the ratio σf(πg,k)

σ(Sg(k)) . Notice that the infimum of the ratio
maxπ∈Π σ

f(π,k)
maxS⊆V,|S|≤k σ(S) in Definition 2.9 is 1: the optimal adap-
tive policy is at least as good as the optimal non-adaptive
policy, as the non-adaptive policy can be viewed as a special
adaptive policy; on the other hand, it is easy to see that there
are INFMAX instances such that the optimal adaptive pol-
icy is no better than non-adaptive one (for example, a graph
containing k vertices but no edges). For this reason, we only
care about the supremum of this ratio.

3 Infimum of Greedy Adaptivity Gap
In this section, we show that the infimum of the greedy adap-
tivity gap for the triggering model is exactly (1 − 1/e), for
both the full-adoption feedback model and the myopic feed-
back model. This implies that the greedy adaptive policy
can perform even worse than the conventional non-adaptive
greedy algorithm, but it will never be significantly worse.
Moreover, we show that this result also holds for both ICM
(Definition 2.2) and LTM (Definition 2.3).

Theorem 3.1. For the full-adoption feedback model,

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
= inf
G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))

= inf
G,F,k

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

In Sect. 3.1, we show by providing examples that the
greedy adaptive policy in the worst case will only achieves
(1− 1/e+ ε)-approximation of the expected number of in-
fected vertices given by the non-adaptive greedy algorithm,
for both ICM and LTM.

In Sect. 3.2, we shows that the greedy adaptive policy
has performance at least (1 − 1/e) of the performance of
the non-adaptive optimal seeds (Theorem 3.4). Theorem 3.4
provides a lower bound on the greedy adaptivity gap for the
triggering model and is also interesting on its own. At the
end of Sect. 3.2, we prove Theorem 3.1 by putting the re-
sults from Sect. 3.1 and Sect. 3.2 together.



3.1 Tight Examples
In this subsection, we show that the adaptive greedy algo-
rithm can perform worse than the non-adaptive greedy algo-
rithm by a factor of (1−1/e+ε), for both ICM and LTM and
any ε > 0. This may be surprising, as one would expect that
the feedback provided to the seed-picker will refine the seed
choices in the future iterations. Here, we provide some intu-
itions why adaptivity can sometimes hurt. Suppose there are
two promising sequences of seed selections, {s, u1, . . . , uk}
and {s, v1, . . . , vk}, such that
• s is the best seed which will be chosen first;
• {s, u1, . . . , uk} has a better performance;
• the influence of u1, . . . , uk are non-overlapping, the influ-

ence of v1, . . . , vk are non-overlapping, but the influence
of ui, vj overlaps for each i, j; moreover, if u1 is picked
as the second seed, the greedy algorithm, adaptive or not,
will continue to pick u2, . . . , uk, and if v1 is picked as the
second seed, v2, . . . , vk will be picked next;

Now, suppose there is a vertex t elsewhere which can be
infected by both s and v1, such that
• if t is infected by s, which slightly reduces the marginal

influence of v1, v1 will be less promising than u1;
• if t is not infected by s, v1 is more promising than u1;
• in average, when there is no feedback, v1 is still less

promising than u1, even after adding the increment in t’s
infection probability to v1’s expected marginal influence.

In this case, the non-adaptive greedy algorithm will “go to
the right trend” by selecting u1 as the second seed; the adap-
tive greedy algorithm, if receiving feedback that t is not in-
fected by s, will “go to the wrong trend” by selecting v1

next.
As a high-level description of the lesson we learned, both

versions of the greedy algorithms are intrinsically myopic,
and the feedback received by the adaptive policy may make
the seed-picker act in a more myopic way, which could be
more hurtful to the final performance.

We will assume in the rest of this section that vertices can
have positive integer weights. This can be assumed with-
out loss of generality, as a simple “star gadget” can simulate
weighted vertices. See the full version of the paper for de-
tails. We will denote by w(v) the weight of v.
Lemma 3.2. For any ε, there exists G,F, k such that IG,F
is an ICM and σf(πg,k)

σ(Sg(k)) ≤ 1− 1
e + ε, σ

m(πg,k)
σ(Sg(k)) ≤ 1− 1

e + ε.

Proof (sketch). We will construct an INFMAX instance
(G = (V,E,w), k + 1) with k + 1 seeds allowed. Let
W ∈ Z+ be a sufficiently large perfect square divisible by
k2k and whose value is to be decided later. The vertex set V
contains the following weighted vertices:

• a vertex s that has weight 2W ;
• a vertex t that has weight

√
W/k;

• 2k vertices u1, . . . , uk, v1, . . . , vk that have weight 1;
• k(k + 1) vertices {wij | i = 1, . . . , k + 1; j = 1, . . . , k}

– w11, . . . , w1k have weight Wk ;

– wi1, . . . , wik have weight 1
k (1 − 1

k )i−1W +
√
W for

each i = 2, . . . , k;
– w(k+1)1, . . . , w(k+1)k have weight (1 − 1

k )kW +
√
W−k
k − (k − 1)

√
W .

The edge set E is specified as follow:

• create two edges (v1, t) and (s, t);
• for each i = 1, . . . , k, create k + 1 edges

(ui, w1i), (ui, w2i), . . . , (ui, w(k+1)i), and create k edges
(vi, wi1), (vi, wi2), . . . , (vi, wik).

For the weights of edges, all the edges have weight 1 except
for the edge (s, t) which has weight 2k/

√
W .

This construction is based on exactly the intuitions men-
tioned at the beginning of Sect. 3.1. By a careful analysis, the
non-adaptive greedy algorithm will choose {s, u1, . . . , uk},
with expected influence (k + 2)W + O(

√
W ). For the

greedy adaptive policy, it will choose {s, u1, . . . , uk} if the
feedback received from picking s is that t is infected, but
this happens with a negligible probability 2k/

√
W ; other-

wise, it will choose {s, v1, . . . , vk}, with expected influence
(2 + k(1 − (1 − 1/k)k))W + O(

√
W ), and this happens

with a high probability 1− 2k/
√
W . The lemma concludes

by noticing that

lim
W,k→∞

(2 + k(1− (1− 1/k)k))W +O(
√
W )

(k + 2)W +O(
√
W )

= 1− 1

e
.

The detailed analysis is omitted due to the space limit and is
available in the full version of this paper.

Lemma 3.3. For any ε, there exists G,F, k such that IG,F
is an LTM and σf(πg,k)

σ(Sg(k)) ≤ 1− 1
e + ε, σ

m(πg,k)
σ(Sg(k)) ≤ 1− 1

e + ε.

Proof. See the full version of this paper.

3.2 Lower Bound
Theorem 3.4. For a triggering model IG,F , we have both

σf(πg, k) ≥
(

1− 1

e

)
max

S⊆V,|S|≤k
σ(S) and σm(πg, k) ≥(

1− 1

e

)
max

S⊆V,|S|≤k
σ(S).

Proof. The proof is deferred to the full version of this paper.
For a high-level idea, let S with |S| = i be the seeds picked
by πg for the first i iterations and S∗ be the optimal non-
adaptive seed set: S∗ ∈ argmax|S′|≤k σ(S′). Given S as the
existing seeds and any feedback (myopic or full-adoption)
corresponding to S, we can show that the marginal incre-
ment to the expected influence caused by the (i+ 1)-th seed
picked by πg is at least 1/k of the marginal increment to the
expected influence caused by S∗. Then, a standard argument
showing that the greedy algorithm can achieve a (1− 1/e)-
approximation for any submodular monotone optimization
problem can be used to prove this theorem.

Finally, putting Theorem 3.4, Lemma 3.2 and Lemma 3.3
together, Theorem 3.1 can be concluded easily. The proof of
Theorem 3.1 is available in the full version.



4 Supremum of Greedy Adaptivity Gap
In this section, we show that, for the full-adoption feedback
model, both the adaptivity gap and the supremum of the
greedy adaptivity gap are unbounded. As a result, in some
cases, the adaptive version of the greedy algorithm can per-
form significantly better than its non-adaptive counterpart.
Theorem 4.1. The greedy adaptivity gap with full-adoption
feedback is unbounded: there exists a triggering model IG,F
and k such that σ

f(πg,k)
σ(Sg(k)) = 2Ω(log log |V |/ log log log |V |).

Theorem 4.2. The adaptivity gap for the general triggering
model with full-adoption feedback is infinity.

In Sect. 4.1, we consider a variant of INFMAX such that
the seeds can only be chosen among a prescribed vertex set
V ⊆ V , where V is specified as an input to the INFMAX in-
stance. We show that, under this setting with LTM, both the
adaptivity gap and the supremum of the greedy adaptivity
gap with the full-adoption feedback model are unbounded
(Lemma 4.5). Since it is common in practice that only a sub-
set of nodes in a network is visible or accessible to the seed-
picker, Lemma 4.5 is also interesting on its own. In Sect. 4.2,
we show that how Lemma 4.5 can be used to prove The-
orem 4.1 and Theorem 4.2. Notice that Theorem 4.1 and
Theorem 4.2 hold for the standard INFMAX setting with-
out a prescribed set of seed candidates, but we do not know
if they hold for LTM (instead, they are for the more general
triggering model).

We first present the following lemma revealing a special
additive property for LTM, which will be used later.
Lemma 4.3. Suppose IG,F is LTM. If U1, U2 ⊆ V with U1∩
U2 = ∅ satisfy that there is no path from any vertices in U1

to any vertices in U2 and vice versa, then σ(U1) + σ(U2) =
σ(U1 ∪ U2).

Proof. See the full version of this paper.

4.1 On LTM with Prescribed Seed Candidates
Definition 4.4. The influence maximization problem with
prescribed seed candidates is an optimization problem
which takes as inputs G = (V,E), F , k ∈ Z+, and V ⊆ V ,
and outputs a seed set S ⊆ V that maximizes the expected
total number of infections: S ∈ argmaxS⊆V :|S|≤k σ(S).
The adaptive influence maximization problem with pre-
scribed seed candidates has the same definition as it is in
Definition 2.8, with the exception that the range of the func-
tion π is now V , and Π is the set of all such policies.
Lemma 4.5. For INFMAX with prescribed seed candi-
dates with LTM and full-adoption feedback, the adap-
tivity gap is infinity, and the greedy adaptivity gap is
2Ω(log |V |/ log log |V |).

Proof. For d,W ∈ Z+ with d being sufficiently large and
W � dd+1, we construct the following (adaptive) INFMAX
instance with prescribed seed candidates:

• the edge-weighted graph G = (V,E,w) consists of an
(d + 1)-level directed full d-ary tree with the root node
being the sink (i.e., an in-arborescence) and W vertices

each of which is connected from the root node of the tree;
the weight of each edge in the tree is 1/d, and the weight
of each edge connecting from the root to thoseW vertices
is 1;

• the number of seeds is given by k = 2(d+1
2 )d;

• the prescribed set for seed candidates V is the set of all
the leaves in the tree.

Since the leaves are not reachable from one to another,
Lemma 4.3 indicates that choosing any k vertices among
V , i.e., the leaves, infects the same number of vertices in
expectation. It is easy to see that a single seed among the
leaves will infect the root node with probability 1/dd, and
those W vertices will be infected with probability 1 if the
root of the tree is infected. Thus, for any seed set S ⊆ V ,
by assuming all vertices in the tree are infected (in the sake
of finding an upper bound for σ(S)), we have σ(S) ≤ 1

dd
·

|S| · W +
∑d
i=0 d

i < |S|W
dd

+ dd+1. This gives an upper
bound for the performance of both the non-adaptive greedy
algorithm and the non-adaptive optimal seed set.

Now, we consider the greedy adaptive policy. If the root
is not infected, there always exists a path from a certain
leaf to the root such that all vertices on the path are not in-
fected. This is because, if all children of an internal node
w are infected, w will be infected with probability 1 (as
fw = d × 1

d = 1 which will always be no smaller than
θw). In other words, if an internal node is uninfected, at least
one of its children is uninfected. It is easy to see that, before
the root is infected, the greedy adaptive policy will always
choose a leaf such that all vertices on the path between the
leaf and the root are uninfected.

Next, we evaluate the expected number of seeds required
to infect the root, under the greedy adaptive policy. Suppose
the tree only has two levels (i.e., a star). The number of seeds
among the leaves required to infect the root is a random vari-
able with uniform distribution on {1, . . . , d}, with expecta-
tion d+1

2 . By induction on the number of levels of the tree,
with a d-level tree as it is in our case, the expected number
of seeds required to infect the root is (d+1

2 )d, which equals
to k

2 . By Markov’s inequality, the k seeds chosen according
to the greedy adaptive policy will infect the root with proba-
bility at least 1/2. Therefore, σf(πg, k) ≥ 1

2W , and the opti-
mal adaptive policy can only be better: maxπ∈Π σ

f(π, k) ≥
σf(πg, k) ≥ 1

2W .
Putting together, both the adaptivity gap and the

supremum of the greedy adaptivity gap is at least
1
2W

kW

dd
+dd+1 =

1
2W

1

2d−1 (1+ 1
d )dW+dd+1· = Ω(2d), if setting

W = dd+10 � dd+1. The lemma concludes by noticing
d = Ω( log |V |

log log |V | ).

4.2 Proof of Theorem 4.1, 4.2
To prove Theorem 4.1 and Theorem 4.2, we construct an
INFMAX instance with a special triggering model IG,F
which is a combination of ICM and LTM.

Definition 4.6. The mixture of ICM and LTM is a trigger-
ing model IG,F where G = (V,E,w) is an edge-weighted



graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E and each
vertex v is labelled either IC or LT such that Tv is sampled
according to Fv described in Definition 2.2 if v is labelled
IC and Tv is sampled according to Fv described in Defini-
tion 2.3 if v is labelled LT. In addition, each vertex v labelled
L satisfies

∑
u∈Γ(v) w(u, v) ≤ 1.

To prove Theorems 4.1 and 4.2, we want to leverage the
tree construction of Lemma 4.5. To do so, we make M
copies of the tree construction in Lemma 4.5 for a large M
and a separate set of vertices A connecting to the leaves of
these trees such that each vertex in A is connected to ex-
actly one leaf in each tree. In particular, we have |A| = LM ,
where L = dd is the number of leaves in each tree. All the
leaves in each of the M copies of the tree are labelled IC,
and the remaining vertices are labelled LT. The weight of
each edge from a vertex u in A to a leaf node is 1, guaran-
teeing the activation of the leaf when u is selected as a seed.
Intuitively, each vertex in A simulates the action that a leaf
is chosen as a seed in each tree and M seeds are chosen si-
multaneously. By choosing M large enough, we can show
that both the adaptive and non-adaptive greedy algorithm
will only select vertices in A as the first k seeds, and both
the adaptivity gap and the supremum of the greedy adaptiv-
ity gap are infinite, as they are in Lemma 4.5. The full proof
of Theorems 4.1 and 4.2 is in the full version of this paper.

5 A Variant of Greedy Adaptive Policy
Although we have seen that the adaptive version of the
greedy algorithm can perform worse than its non-adaptive
counterpart, in general, we would still recommend the use
of it as long as it is feasible, as it can also perform signif-
icantly better than the non-adaptive greedy algorithm (The-
orem 4.1) while never being too bad (Theorem 3.4). As we
remarked, the adaptivity may be harmful because exploiting
the feedback may make the seed-picker too myopic. In this
section, we propose a less aggressive risk-free version of the
greedy adaptive policy, πg−, in that it balances between the
exploitation of the feedback and the focus on the average in
the conventional non-adaptive greedy algorithm.

First, we apply the non-adaptive greedy algorithm with
|V | seeds to obtain an order L on all vertices. Then for any
S ⊆ V and any partial realization ϕ, πg−(S, ϕ) is defined
to be the first vertex v in L that is not known to be infected.
Formally, v is the first vertex in L that are not reachable
from S when removing all edges e with ϕ(e) ∈ {B,U}. This
finishes the description of the policy.

This adaptive policy is always no worse than the non-
adaptive greedy algorithm, as it is easy to see that those
seeds chosen by πg are either seeded or infected by previ-
ously selected seeds in πg−.

However, πg− can sometimes be conservative. It is possi-
ble that πg− has the same performance as the non-adaptive
greedy algorithm, but πg is much better. Especially, when
there is no path between any two vertices among the first
k vertices in L, πg− will make the same choice as the
non-adaptive greedy algorithm. The INFMAX instance in
Sect. 4.2 is an example of this.

We have seen that πg− sometimes performs better than πg

(e.g., in those instances constructed in the proofs of Lemma
3.2 and Lemma 3.3) and sometimes performs worse than the
πg (e.g., in the instance constructed in Sect. 4.2). Therefore,
given a particular INFMAX instance, for deciding which of
πg− and πg to be used (we should never consider the non-
adaptive greedy algorithm if adaptivity is available, as it is
always weakly worse than πg−), we recommend a compari-
son of the two policies by simulations. Notice that the seed-
picker can randomly sample a realization φ and simulate the
feedback the policy will receive. Thus, given IG,F , both πg−
and πg can be estimated by taking an average over the num-
bers of infected vertices in a large number of simulations.

6 Conclusion and Open Problems
We have seen that the infimum of the greedy adaptivity gap
is exactly (1 − 1/e) for ICM, LTM, and general triggering
models with both the full-adoption feedback model and the
myopic feedback model. We have also seen that the supre-
mum of this gap is infinity for the full-adoption feedback
model. One natural open problem is to find the supremum
of the greedy adaptivity gap for the myopic feedback model.
Another natural open problem is to find the supremum of the
greedy adaptivity gap for the more specific ICM and LTM.

The greedy adaptivity gap studied in this paper is closely
related to the adaptivity gap studied in the past. Since
the non-adaptive greedy algorithm is always a (1 − 1/e)-
approximation of the non-adaptive optimal solution, a con-
stant adaptivity gap implies a constant greedy adaptivity gap.
For example, the adaptivity gap for ICM with myopic feed-
back is at most 4 (Peng and Chen 2019), so the greedy adap-
tivity gap in the same setting is at most 4

1−1/e . In addition,
the greedy adaptive policy is known to achieve a (1− 1/e)-
approximation to the adaptive optimal solution for ICM with
full-adoption feedback (Golovin and Krause 2011), so the
adaptivity gap and the greedy adaptivity gap could either be
both constant or both unbounded for ICM with full-adoption
feedback model, but it remains open which case is true. The
adaptivity gap for ICM with full-adoption feedback, as well
as the adaptivity gap for LTM with both feedback models,
are all important open problems. We believe these problems
can be studied together with the greedy adaptivity gap.
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