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Concurrency bugs are notoriously hard to detect and reproduce. Controlled concurrency testing (CCT) techniques aim
to offer a solution, where a scheduler explores the space of possible interleavings of a concurrent program looking for
bugs. Since the set of possible interleavings is typically very large, these schedulers employ heuristics that prioritize the
search to “interesting” subspaces. However, current heuristics are typically tuned to specific bug patterns, which limits
their effectiveness in practice.

In this paper, we present QL, a learning-based CCT framework where the likelihood of an action being selected by the
scheduler is influenced by earlier explorations. We leverage the classical Q-learning algorithm to explore the space of
possible interleavings, allowing the exploration to adapt to the program under test, unlike previous techniques. We have
implemented and evaluated QL on a set of microbenchmarks, complex protocols, as well as production cloud services.
In our experiments, we found QL to consistently outperform the state-of-the-art in CCT.

1 Introduction

Testing concurrent programs for defects is extremely challenging. The difficulty stems from a combination of potentially
exponentially large set of program behaviors due to thread interleavings, and the dependence of a bug on a specific, and
rare, ordering of actions between concurrent workers.1 The term Heisenbug has often been used to refer to concurrency
bugs because they can be hard to find, diagnose and fix [1, 2]. Unfortunately, traditional techniques such as stress testing
are unable to uncover many concurrency bugs. Such techniques offer little control over orderings among workers, thus
fail to exercise a sufficient number of program behaviors, and are a poor certification for the correctness or reliability of
a concurrent program. Consequently, concurrent programs often contain insidious defects that remain latent until put
into production, leading to actual loss of business and customer trust [3, 4, 5].

Previous work on addressing this problem can broadly be classified into stateful and stateless techniques, depending on
whether they rely on observing the state of the program or not. Stateful techniques require a precise representation of a
program’s current state during execution. Examples of successful tools in this space include SPIN [6] and ZING [7] that
do enumerative exploration, as well as tools such as NUSMV [8, 9] that do symbolic exploration. These techniques,
however, are generally applied to a model of the program. Each of the tools mentioned above have their own input
representation for programs. Our own interest, however, is in testing real-world code, for which stateful tools cannot be
directly applied because of the inability to snapshot the state of an executing program.

Stateless techniques overcome the requirement of recording program state, and thus, are a better starting point for
testing real-world code. Such techniques require taking over the scheduling in a program. By controlling all scheduling
decisions of which worker to run next, they can reliably explore the program state space. The exploration can be
systematic (i.e., exhaustive in the limit) or randomized. Since the number of executions of a concurrent program
(also called interleavings) is usually very large, schedulers leverage heuristics that prioritize searching “interesting”

1Concurrency can come in many forms: between tasks, threads, processes, actors, and so on. In this paper, we will use the term
worker to refer to the unit of concurrency of a program.
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subspaces of interleavings where bugs are likely to occur. For example, many bugs can be caught with executions that
only have a few context switches [10] or a few ordering constraints [11] or a few number of delays [12], and so on.
These heuristics have been effective at finding several classes of concurrency bugs in microbenchmarks and real-world
scenarios [13, 14]. We refer to the general setup of applying a scheduler to (real-world) programs for the purpose of
finding concurrency bugs as controlled concurrency testing (CCT).

Our goal is to improve upon the state-of-the-art for CCT. Our technique leverages lessons from the area of reinforcement
learning (RL) [15, 16], which also has been concerned with the problem of efficient state-space exploration. The
general RL scenario comprises an agent interacting with its environment. Initially, the agent has no knowledge about the
environment. At each step, the agent can only partially observe the state of the environment, and invoke an action based
on some policy. As a result of this action, the environment transitions to a new state, and provides a reward signal to the
agent. The objective of the agent is to select a sequence of actions that maximizes the expected reward. RL techniques
have been applied to achieve spectacular successes in domains such as robotics [17, 18], game-playing (Go [19],
Atari [20], Backgammon [21]), autonomous driving [22, 23, 24], business management [25, 26], transportation [27, 28],
chemistry [29, 30] and many more.

We map the problem of CCT to the general RL scenario. In essence, the RL agent is the CCT scheduler and the RL
environment is the program: the scheduler (agent) decides the action in the form of which worker to execute next, and
the program (environment) executes the action by running the worker for one step, and then passing control back to
the scheduler to choose the next action. RL techniques are robust to partial state observations, which implies that we
only need to partially capture the state of an executing program, which is readily possible. In that sense, our technique
is neither stateless nor stateful, but rather somewhere in between. The main contribution of this paper is a scheduler
based on the classical Q-Learning algorithm [31, 32]. To the best of our knowledge, this scheduler is the first attempt at
applying learning-based techniques to the problem of CCT.

How does the use of RL compare against the stateless exploration techniques described earlier? The latter build off
empirical observations to define heuristics that optimize for a particular subspace of interleavings. This can, however,
have its shortcomings when the heuristics fail to apply. The heuristics optimize for a particular bug pattern, but fall-off
in effectiveness as soon as the bug escapes that pattern. This renders the testing to be brittle against new classes of bugs.
For instance, a bug that is triggered by a combination of two patterns will not be found by a scheduler looking for just
one of those patterns (see example in Table 1).

This problem of brittleness is further compounded in scenarios where the concurrency is not the only form of non-
determinism in the program. Programs can have data non-determinism as well (we refer to concurrency as a form of
control non-determinism). Data non-determinism is used to generate unconstrained scalar values, for example, to model
user input or choices made outside the control of the application under test. In these cases, heuristics dictating how to
resolve the non-determinism may not even exist: the resolution of data non-determinism may be program specific (see
more in Section 2).

Lastly, existing schedulers do not learn from the explorations performed in previous iterations. We show how RL
does not exhibit the falling-off behavior for complex bug patterns, and systematically learns from exploration done
previously, even in the presence of data non-determinism.

It is worth noting that RL, in general, has two phases. The first phase is concerned with learning a strategy for the agent
through exploration, and in the second phase the agent simply applies the learnt strategy to navigate the environment.
With CCT, we limit our attention to the first phase because our objective is simply to explore the state space of the
program, and stop as soon as a bug is discovered.

We implemented our RL-based scheduler (which we denote as QL) in P# [33], an open-source industrial-strength
framework for building and testing concurrent applications and distributed services. We evaluated QL on a wide range
of P# applications, including production distributed services spanning tens of thousands of LOC, complex protocols,
and multithreaded programs. Our results show that QL outperforms state-of-the-art CCT techniques in terms of bug
finding ability. In some scenarios, QL was the only scheduler that was able to expose a particular bug. Moreover, in
many cases, its frequency of triggering bugs was higher compared to other schedulers.

Our work is a starting point for the application of RL-based search to CCT. We anticipate that many further improvements
are possible by tuning knobs such as the reward function, partial state observations, etc. For this purpose, we make our
implementation and (non-proprietary) benchmarks available open-source2.

The main contributions of this paper are as follows:

2https://github.com/pdeligia/psharp-ql
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1. We provide the first mapping of the problem of testing a program for concurrency bugs onto the general
reinforcement learning scenario (Section 4).

2. We provide an implementation of the RL-based scheduling strategy on P#, an industrial-strength CCT
framework (Section 5).

3. We perform a thorough experimental evaluation of our RL-based scheduler on a wide range of applications,
including production distributed services (Section 6).

The rest of this paper is organized as follows. In Section 2, we provide a high-level overview of our learning-based
scheduling strategy. We cover background material on controlled concurrency testing and reinforcement learning in
Section 3, and then present the QL exploration strategy in Section 4. We discuss the implementation details of QL in the
P# framework in Section 5 and discuss our experimental evaluation in Section 6. We present related work in Section 7
and conclude in Section 8.

2 Overview

This section provides an overview of the key benefits of our learning-based scheduler. We consider a message-passing
model of concurrency in our examples. That is, programs can have one or more workers executing concurrently. Each
worker has its own local state and communicates with other workers via messages. When the program reaches a “bad”
state, it automatically stops and raises an error.

The goal of CCT is to find some execution of a given program that raises an error. CCT typically works by serializing the
execution of the program, allowing only one worker to execute at a given point. More precisely, CCT is parameterized
by a scheduler that is called at each step during the program’s execution. The scheduler must pick one action among the
set of all enabled actions at that point to execute next. For simplicity, assume that a worker can have at most one enabled
action, which implies that picking an enabled action is the same as picking an enabled worker. Section 3 presents our
formal model that also considers the possibility of each worker having multiple enabled actions in order to allow for
data non-determinism.

We focus this section on two particular schedulers that have been used commonly in prior literature. The first is a pure
random scheduler. This scheduler, whenever it has to make a scheduling decision, it picks one worker uniformly at
random from the set of all enabled workers. The second scheduler is probabilistic concurrency testing (PCT) [11]. In
PCT, each worker is assigned a unique priority. The scheduler always selects the highest-priority worker, except that at
a few randomly chosen points during the program’s execution, it changes (decreases) the priority of the highest-priority
worker. The two schedulers are formalized in Section 3. We use additional schedulers in our evaluation (Section 6).

Learning-based scheduler Our main contribution is QL, a learning-based scheduler. As mentioned in the introduction,
we consider the scheduler to be an agent that is interested in exploring the environment, i.e., the program under test. The
agent can (partially) observe the configuration of the environment which, in our case, is the program state. Whenever
the agent asks the environment to execute a particular action, it gets feedback in the form of a reward. The agent
attempts to make decisions that maximizes its reward.

QL employs an adaptive learning algorithm called Q-Learning [31]. For each state-action pair, QL associates a (real-
valued) quality metric called q-value. When QL observes that the program is in state s, it picks an action a from the set
of all enabled actions with probability that is governed by the q-value of (s, a). After one run of the program finishes,
QL updates the q-values of each state-action pair that it observed during the run, according to the rewards that it received,
and uses the updated q-values for choosing actions in the next run.

The goal of QL is to explore the program state space, covering as many diverse set of executions as it can. In other
words, the scheduler should maximize coverage. For this purpose, we set the reward to always be a fixed negative
value (−1), which has the effect of disincentivizing the scheduler from visiting states that it has seen before: the more
times a state has been visited before, the higher the likelihood of QL of staying away from it in future runs. The choice
remains probabilistic and the probabilities never go to 0. This is essential because the scheduler only gets to observe the
program state partially.

Adaptive learning has important ramifications for exploration. Unlike stateful strategies, QL can operate on abstractions
of program configurations, thereby allowing it to scale to production-sized codebases (see Section 6). Unlike stateless
strategies, QL adapts its decisions based on program executions and not due to hard-wired rules.

Power of state observations Consider the program in Figure 1, with two workers A and B continually sending
messages, denoted 0 and 1 respectively, to a third worker C.

3



Learning-based Controlled Concurrency Testing

Figure 1: Simple example with three workers A, B and C.

Worker C has a constant n-length string η ∈ {0, 1}∗, as well as a counter m that is initialized to 0. If the i-th message
received by C (which is 0 if sent by A or 1 if sent by B), matches the i-th character of η, then m is incremented, else it
is set to −1 and is never updated again. The program reaches a bad configuration if m = n. Note that given any string
η, there is exactly one way of scheduling between A and B so that C raises an error after n messages.

We measure the effectiveness of each scheduler as the B-% value: the percentage of buggy program runs in a sufficiently
large number of runs. Table 1 shows the results for Random, PCT and QL, for different choices of the string η.

B-%

String Random PCT QL

η1 = 091 0.08 0.97 10.3
η2 = (01)5 0.09 7 10.4
η3 = (01)3031 0.09 7 10.3

Table 1: B-% for Random, PCT (priority-change budget of 3) and QL scheduling strategies for the program in Figure 1.

The Random scheduler has similar B-% values for the various strings. It is easy to calculate this result analytically:
for any string η of length n in the above example, Random has 1

2n chance of producing that string, as it must choose
between workers A and B exactly according to η. Although B-% does not change with the string, the effectiveness of
finding the bug is poor because of the exponential dependence on the string length. The PCT scheduler biases search
for certain types of strings. As seen in Table 1, when the string matches the PCT heuristics, its effectiveness is much
better than Random, however, it has no chance otherwise.

QL is able to expose the bug for each of the strings with a much higher B-% compared to the other two schedulers. QL
benefits greatly from observing the state of the program as it performs exploration. For this example, we set it up to
observe just the value of counter m of worker C. QL optimizes for coverage, and because the counter is set to −1 on a
wrong scheduling choice, it is forced to learn scheduling decisions that keep incrementing m, which leads to the bug.

Resilience to bug patterns Different schedulers have their own strengths: they are more likely to find bugs of a
certain pattern over others. Consider a slight extension to the Figure 1 example where we add another worker D that
sends a single message (denoted 2) to C and then halts. In this case, Random is much more likely to find the string
η4 = 2(091) (B-% of 0.05%) compared to the string η5 = (091)2 (B-% of 0.003%). The reason is that Random is much
more likely to schedule D earlier in the execution rather than later. PCT works much better at scheduling D late (B-%
of 0.02% for η5). However, this means that a string like η6 = (01)52 falls out of scope for both Random and PCT:
it requires D to be scheduled late, and it requires a prefix that PCT cannot schedule. QL does not demonstrate such
behavior: it has a high B-% for each of these strings (at least 1.7%).

Optimizing for coverage The QL scheduler attempts to learn scheduling decisions that increase coverage. That is, it
tries to uncover new states that it has not observed before. It does not directly attempt to learn scheduling decisions
that reveal the bug. The bug-finding ability is a by-product of increased coverage. Consider the “calculator” example
illustrated in Figure 2.

The worker Calculator maintains a counter that is initialized to 0. Each of the other workers sends exactly 10 identical
messages to Calculator. In response to a message sent by worker Add, Calculator increments its counter by 1.
Similarly, in response to a message sent by Subtract, Multiply, Divide, and Reset, the Calculator worker will
subtract 1, multiply by 2, divide (integer division) by 2, and reset the counter to 0, respectively. In this example, there are
a large number of concurrent executions, however, their effect is such that many of them result in the same Calculator
state. Figure 3 shows the coverage that each scheduler can achieve as we increase the number of program runs. Here,
coverage is measured in terms of the number of distinct counter values generated across all runs. QL dramatically

4



Learning-based Controlled Concurrency Testing

Figure 2: A simple calculator example.

outperforms both Random and PCT: its state observations (which is the Calculator counter value) allows it to push
the program in many different corner cases that other schedulers do not.
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Figure 3: Measuring coverage in the calculator example.

Picking the right state abstraction The above examples show that learning from state observations provides an
effective alternative to generic (program-independent) scheduling heuristics. This leaves open the question of what
constitutes a good state observation? Even for these simple examples, if we make the observation too imprecise (e.g.,
not observing any state), then QL deteriorates to Random-like performance because there is nothing to learn. If we
make the observation to be too precise (e.g., observing the string of messages received at C) then the effectiveness
reduces because the learning slows down in a large state space. Our evaluation shows two interesting trends. First, a
generic state observation (that is readily available from a CCT tool) is enough to make QL very effective in practice for
a large class of benchmarks. Second, the state observation can be tuned on a per-program basis to further improve its
effectiveness, offering users a means of improving the effectiveness of testing for the programs they care about most.

Data non-determinism So far we have only considered the choice of which worker to execute next. However,
programs can have non-determinism within a worker as well. A common example is the use of a Boolean ? operator to
model choices made outside the control of the program (i.e., the program is expected to work correctly irrespective of
how this choice is made). The following snippets demonstrate how the ? operator can be used to model timeouts (that
may or may not fire) or error conditions (e.g., calling an external routine may return one of two different exceptions).

if ( ? )

{

timeout ();

}

if ( ? )

{

throw Exception1 ();

}

else

{

throw Exception2 ();

}

Prior work on stateless schedulers does not account for such data non-determinism. The common practice is to resolve
? uniformly at random: there are no heuristics that determine if one return value should be preferred over the other.
With partial state observations, QL can do much better. We demonstrate this fact with a simple example. Consider
rewriting the program of Figure 1: replace workers A and B with a single worker W , as shown in Figure 4. The worker
W makes a non-deterministic choice (in a loop) and either sends 0 to C or sends 1. Semantically, this program is not
different from the one in Figure 1. However, PCT’s performance regresses because the scheduling between workers
is immaterial: only the non-deterministic choice matters, for which sampling uniformly-at-random is the only option
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available. Interestingly, QL retains its performance, performing just as well as it did for the program of Figure 1 because
the scheduler treats all non-determinism in the same manner.

Figure 4: A program with data non-determinism.

3 Preliminaries

This section presents background material on CCT and reinforcement learning and sets up the notation that we follow
in the rest of the paper.

3.1 Controlled Concurrency Testing

3.1.1 Programming Model

A program P is a tuple 〈W,Σ, σinit , A,Θ〉, where W denotes a (finite) set of concurrently executing workers and
Σ denotes the set of program configurations, with σinit ∈ Σ being the initial configuration. The set of actions that
the program can execute is denoted by A. We use the meta-variables σ, a and w to range over the sets Σ, A andW
respectively. Let ω : A 7→ W be an onto function that maps each action to the unique worker which executes it. The
function Θ : A 7→ 2Σ×Σ denotes the set of transitions associated with a. We write σ a−→ σ′ iff (σ, σ′) ∈ Θ(a). Further,
we assume that transitions associated with an action are deterministic. That is, for each action a, if σ1

a−→ σ2 and
σ1

a−→ σ3 then σ2 = σ3.

We define some helper functions that will be used in the rest of the paper. The function IsError(σ) returns true if the
configuration σ represents an erroneous configuration, and returns false otherwise. We define the functions enabled(σ),
enabledw(σ) and ϑ(σ) as follows:

enabled(σ)
def
= {a ∈ A | ∃σ′ ∈ Σ : σ

a−→ σ′}

enabledw(σ)
def
= {a ∈ enabled(σ) | ω(a) = w}

ϑ(σ)
def
= {w ∈ W | enabledw(σ) 6= ∅}

The function enabled(σ) returns the set of all actions that P can execute when it is at the configuration σ, while
enabledw(σ) returns those actions in enabled(σ) that can be executed by a worker w. Lastly, ϑ(σ) returns all workers
that have at least one enabled action in the configuration σ. With this notation, |ϑ(σ)| > 1 represents control non-
determinism: there is a choice between which worker will take the next step. When |enabledw(σ)| > 1, it represents
data non-determinism: the worker w itself can have multiple enabled actions.

3.1.2 Schedulers

A schedule ` of length N is defined to be a sequence of program transitions starting from the initial configuration:

`
def
=
〈
σinit

a1−→ σ1
a2−→ . . .

aN−−→ σN
〉

We use |`| to denote the length of a schedule, and write ` a′

−→ σ′ to denote a schedule that extends ` with the single

(valid) transition σN
a′

−→ σ′. We also refer to the transition σi−1
ai−→ σi as the i-th step of the schedule. We call a

6
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Algorithm 1: Generic Exploration Algorithm.
Input: Scheduler SCH
Input: Program P , Max-Steps M , Max-Iterations N

1 foreach i ∈ {1, . . . , N} do
2 σ ← σinit , `← 〈σinit〉
3 SCH.PrepareNext()
4 foreach j ∈ {1, . . . ,M} do
5 if IsError(σ) ∨ enabled(σ) = φ then
6 break
7 end
8 a← SCH.GetNext(enabled(σ))
9 σ′ ← Execute(P, σ, a)

10 `←
(
`

a−→ σ′
)

11 σ ← σ′

12 end
13 if IsError(σ) then
14 return `
15 end
16 end
17 return 〈〉

schedule buggy if its final configuration represents an error. Note that because actions are deterministic, a schedule can
equivalently be represented by its sequence of actions.

For a given program P , CCT aims to explore possible schedules of P using the generic exploration algorithm shown
in Algorithm 1. The algorithm is parameterized by a scheduler SCH. It accepts bounds M and N on the length of
each schedule, and the total number of schedules to explore, respectively. Algorithm 1 returns a buggy schedule if
discovered, else it returns an empty sequence.

Algorithm 1 iteratively explores multiple schedules of P , up to bound N (line 1). In each iteration, the scheduler is
informed via a call to PrepareNext to prepare for executing a new schedule (line 3). Each schedule consists of at most
M steps, after which the schedule is aborted and a new one is attempted. In each step, the scheduler SCH is asked to
pick an action from the set of all enabled actions via a call to GetNext (line 8). The selected action is then executed
(line 9): given σ and a, Execute(P, σ, a) returns σ′ such that σ a−→ σ′. The process continues until a bug is found or the
algorithm hits the bound N on the number of explored schedules.

The scheduler SCH controls the exploration strategy. We describe two different scheduler instantiations next.

Random A purely randomized exploration strategy can be obtained by setting the PrepareNext function to skip,
and making the GetNext function return an action chosen uniformly at random from its given set of enabled actions
enabled(σ). Prior work has noted that such a simple strategy is still effective at finding bugs in practice [14].

Probabilistic concurrency testing (PCT) The PCT scheduler described here is an adaptation of the original algorithm
[11] to our setting. PCT is a priority-based scheduler that is parameterized by a given bound D, called the priority-
change-point budget. We assume that the program has a fixed number of workers: |W| = W . The PrepareNext method
of the scheduler (randomly) assigns a unique initial priority to each worker in the range {D,D+1, . . . , D+W}. It also
constructs a set Z = {z1, . . . , zD−1} of D − 1 distinct numbers chosen uniformly at random from the set {1, . . . ,M}.
Assume that Z is sorted, so that zj ≤ zj+1 for each j ≤ D − 2.

The idea behind PCT is to choose the highest-priority worker at each step. Priorities remain fixed, except at priority-
change points when the scheduler shifts priorities. More precisely, when GetNext is called for choosing the ith action,
it first picks the highest-priority worker w. Next, it checks if i equals zj for some zj ∈ Z. If so, it decreases the priority
of w to j. (Note that j ≤ D − 1, so it is the least priority among all currently-assigned priorities.) It then re-picks the
highest-priority worker w′. Finally, it returns an enabled action of w′ chosen uniformly at random from its set of all
enabled actions. (This last part deals with data non-determinism.)

Schedulers need not always be probabilistic or randomized. It is also possible to define a DFS-like scheduler that is
guaranteed to explore all schedules of the program in the limit, although such systematic schedulers tend not to work
well in practice [14]. There are many other schedulers defined in prior literature [34, 14, 12, 10].

7
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Delay bounding (DB) The DB scheduler [12], Algorithm 1 requires an additional argument D, which bounds the
number of times the strategy deviates from an underlying deterministic scheduling strategy3, which we assume to be
round-robin (RR). We assume that the program has a fixed number of workers: |W| = W . Each deviation incurs a
cost, in the form of one or more units of delay, and D limits the total accumulated delays. The RR strategy maintains
a mapW → N assigning to each worker a unique natural number which serves as its identifier. We abuse notation
slightly to use ω(a) to denote the identifier associated with the worker executing action a. For a given configuration σ,
the GetNext for RR selects a worker w according to a round-robin ordering based on the identifiers, and returns an
action a drawn uniformly at random from enabledw(s). For any two workers with identifiers x and y, we use ∆(x, y)
to denote the round-robin distance d between x and y, that is y = (x+ d) mod W . For a schedule ` of length M and a
worker with id x, delays(s, x) denotes the total number of enabled workers which are bypassed when the worker with
identifier x is scheduled after ω(aM ):

delays(`, x)
def
= |{y : 0 ≤ y ≤ ∆(ω(aM ), x) ∧
ω(aM ) + x mod M ∈ ϑ(sM )}|

The total amount of delay dtot is recursively defined as

dtot(`)
def
= 0 if |`| = 0 or |`| = 1

def
= dtot(`

′) + delays(`′, ω(a′)) if ` = `′
a′

−→ s′

The DB exploration algorithm maintains the total delay d incurred so far (and is initialized to 0 in PrepareNext). The
GetNext function either returns an action a according to the RR strategy, or deviates from it—in which case the delays in-
curred (computed using the definition for dtot ) are added to d. If d > D, the GetNext strictly adheres to the RR strategy.

3.2 Reinforcement Learning

The Reinforcement Learning (RL) [35, 36, 15] problem, outlined in Figure 5, comprises an agent interacting with
an environment, about which it has no prior knowledge. At each step, the agent takes an action, which causes the
environment to undergo a state transition. The agent then observes the new state of the environment, and receives
feedback in the form of a reward or penalty. The goal of the agent is to learn a sequence of actions that maximizes its
expected reward.

Figure 5: The Reinforcement Learning problem.

The environment is unknown a priori, i.e., the effect of executing an action is not known. This makes the RL problem
hard, but also generally applicable. In the RL literature, it is common to model the environment as a Markov Decision
Process (MDP) over the partial state observation. An MDP is a stochastic state-transition model, comprising the
following components:

1. A set of states S, representing partial observations of the environment’s actual state.
2. A set of actions A that the agent can instruct the environment to execute.
3. Transition probabilities T (s, a, s′), which denote the probability that the environment transitions from a state
s ∈ S to s′ ∈ S, on taking action a ∈ A.

4. RewardR(s, a) obtained when the agent takes an action a from the state s.

3Our discussion of DB is based on the description in [14].
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Assume that the environment is in some state s ∈ S, and the agent instructs it to execute a sequence of actions
(a1, a2, . . .), denoted as 〈at〉. Let si+1 denote the state of the environment after executing the action ai+1 at state si.
Then, the expected discounted reward, for s and 〈at〉 is defined as

V(s, 〈at〉)
def
= E

[ ∞∑
i=0

γiR(si, ai+1)
∣∣∣ s0 = s

]

The parameter γ ∈ (0, 1] is called the discount factor, and is used to strike a balance between immediate rewards and
long-term rewards. The optimal expected discounted reward for a state s can be written as:

V∗(s) def
= max

〈at〉
V(s, 〈at〉)

= max
a∈A

(
R(s, a) + γ

∑
s′∈S
T (s, a, s′)V∗(s′)

)
The Q-function Q∗(s, a) denotes the expected value obtained by taking action a at state s, and is written as

Q∗(s, a)
def
=

(
R(s, a) + γ

∑
s′∈S
T (s, a, s′)V∗(s′)

)
(1)

The agent makes use of a policy function, π : S 7→ A, to determine the action to be executed at a given state of the
environment. The optimal policy π∗(s) can be obtained by computing the Q-function for each state-action pair, and
then selecting the action a that maximizes Q∗(s, a) (by solving the Bellman equations [37]). However, when the MDP
is unknown, instead of computing the optimal policy, the agent needs to adaptively learn the policy from its history
of interaction with the environment. RL techniques help in systematic exploration of the unknown MDP by learning
which sequences of actions are more likely to earn better rewards (or incur less penalties).

One such popular RL algorithm is Q-Learning [38, 31], which estimates Q∗ values using point samples. Starting from
an initial state s0, Q-Learning iteratively selects an action ai+1 at state si and observes a new state si+1. Now, let 〈st〉
be a sequence of states obtained by some policy and 〈at〉 be the sequence of corresponding actions then, given an initial
estimate of Q0, the Q-learning update rule is as follows:

Qi+1(si, ai+1)← (1− α) ·Qi(si, ai+1) + α ·
(
R(si, ai+1) + γmax

a′
Qi(si+1, a

′)
)

(2)

Here, α ∈ [0, 1] is called the learning parameter. When α = 0, the agent does not learn anything new and retains the
value obtained at ith step, while α = 1 stores only the most recent information and overwrites all previously obtained
rewards. Setting 0 < α < 1, helps to strike a balance between the new values and the old ones.

The Q-Learning algorithm does not explicitly use the transition probability distribution of the underlying MDP during
the update step (unlike Equation 1), and is hence called a model-free algorithm. Such algorithms are advantageous when
the state-space is huge and it is computationally expensive to try learning all the transition probability distributions.

Exploration methods like random completely ignore the historical agent-environment interactions [39, 40], while
counter-based methods [41, 42] take decisions based solely on the frequency of visited states. In contrast, Q-Learning
takes informed stochastic decisions that eventually make worse actions less likely. In our work, we use Softmax [15, 43]
as our policy in order to bias the exploration against unfavorable actions based on the current Q-values. According to
the Softmax policy, the probability of choosing an action a (from a set of possible choices A) at state s, is given by

eQ(s,a)∑
a′∈A eQ(s,a′) . Thus, lower the Q(s, a) value, lesser the likelihood of taking action a again at state s.

4 QL: Q-Learning-based Controlled Concurrency Testing

This section describes our QL scheduler. Let H be a user-defined function that maps Σ 7→ S, where Σ is the set of
program configurations and S is a set of abstract states. When the environment (program) is in the configuration σ,
thenH(σ) represents the observation that the agent will make about the environment. One can think ofH as defining
an abstraction over the program’s configuration space. In reality,H is implemented as a hashing function that is applied
to only a fraction of the program’s configuration. The reward function R : S × A 7→ R is fixed to be a constant −1,
that is,R(s, a) = −1 for all states s and actions a.
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Given a schedule ` = 〈σinit
a1−→ σ1

a2−→ . . .
an−−→ σn〉, let H(`) denote the abstracted schedule with each σi replaced

by si = H(σi). The QL scheduler is parameterized by the abstraction function H. Its GetNext and PrepareNext
procedures are described in Algorithm 2 and Algorithm 3, respectively. The QL scheduler maintains a partial map
Q : S ×A 7→ R. For an abstract state s and action a, Q(s, a), when defined, represents the q-value associated with the
state-action pair (s, a).

Algorithm 2: GetNext-QL
Input: Set of actions {a1, . . . , an}, Configuration σ

1 s← H(σ)
2 foreach a ∈ {a1, . . . , an} do
3 ifQ(s, a) is undefined then

/* Initialize q-value of new (s, a) pair to 0 */
4 Q(s, a)← 0
5 end
6 end
7 D ← 〈〉 /* probability distribution over actions */
8 foreach i ∈ {1, . . . , n} do
9 D(i)← eQ(s,ai)∑n

j=1 e
Q(s,aj)

10 end
11 i← Sample(D)
12 return ai

Algorithm 2 takes as input a program configuration σ, and the set of (say, n) actions enabled(σ). We fix an arbitrary
ordering among these actions and use ai to refer to the ith action in this order. The GetNext procedure first computes
H(σ) and stores it in the variable s. For each input action a, if the q-value for (s, a) is not present in Q, then it is
initialized to 0 (lines 2-6). Next, a variable D is initialized. Lines 8-10 creates a probability distribution D over the set
of n enabled actions using the Softmax policy. Finally, Algorithm 2 samples from the distribution D (i.e., it picks i with
probability D(i)) and returns the corresponding action.

Algorithm 3: PrepareNext-QL

Input: Schedule ` = 〈σ0
a1−→ σ1, . . . , σn−1

an−−→ σn〉
1 ˆ̀← H(`) /* Sets ˆ̀ to 〈s0

a1−→ s1
a2−→ . . .

an−−→ sn〉 */
2 foreach i ∈ {n, . . . , 1} do
3 maxQ← max

a
Q(si, a)

4 Q(si−1, ai)← (1− α) · Q(si−1, ai) + α ·
(
R(si−1, ai) + γ · maxQ

)
5 end

We use the PrepareNext procedure to update the q-values according to the previously executed schedule. We assume
that PrepareNext is not called in the first iteration of Algorithm 1, and in each subsequent iteration, it is passed the
completed schedule from the previous iteration. Algorithm 3 updates the q-values for each state-action pair (si−1, ai)

in the abstracted schedule ˆ̀, according to Equation 2. Note that the negative reward causes the update rule to decrease
the q-value for each observed (s, a) state-action pair. As a result, the Softmax policy lowers the likelihood of selecting
a in subsequent iterations when the state s is encountered, thereby increasing the chances of discovering newer states.

5 Implementation

The P# Framework We have implemented the QL scheduling strategy in P# [33, 44], an open-source industrial-
strength framework for building and testing concurrent as well as distributed applications. A P# program comprises
a set of concurrently executing actors (referred to as machines in P#), communicating with each other via message
passing. Each machine in a P# program is equipped with an inbox of incoming messages. It dequeues these messages in
a single-threaded fashion and processes them one after the one. The processing of a message can update the local state
of the machine, or create new machines, or send messages to existing ones. P# also provides an API (called NONDET)
that returns an unconstrained Boolean value; a program can use NONDET to model data non-determinism. Optionally, a
machine can internally have a state-machine (SM) structure that is offered in P# for programming convenience.

10



Learning-based Controlled Concurrency Testing

P# allows the programmer to specify safety and liveness specifications of the application alongside its implementation.
The framework comes bundled with a CCT tool, called P#-Tester, which implements Algorithm 1 and systematically
tests the code against provided specifications. P#-Tester takes over the scheduling of a P# program. It serializes the
execution, allowing only one machine to proceed at a time. A machine is allowed to execute until it hits a scheduling
point, at which point the control goes back to the P#-Tester and it can choose to schedule some other machine. A
scheduling point is inserted right before each send and create operation. Note that in an actor programming model like
P#, a create or send are the only operations that may potentially not commute with all other operations in the program,
so there is no need for a scheduling point before each instruction [45]. The P#-Tester also inserts a scheduling point at
each call to NONDET and it is up to the scheduler to pick the return value. The resolution of NONDET in all schedulers
that come with P# is purely random. QL is the first scheduler that does otherwise.

The semantics of a P# program is easily instantiated from the one described in Section 3.1.1: a worker is simply a
machine and an action is all steps that a machine can take until it hits the next scheduling point. A machine, at any
point, can have at most one enabled action, except in cases when it is at a call to NONDET, in which case it can have
two enabled actions (one for each possible return value of NONDET).

Our decision to use P# was motivated by the following reasons:

1. We were able to get access to production distributed services written in P#. This allowed us to evaluate QL on
these highly concurrent services comprising tens of thousands of LOC, in addition to complex protocols.

2. P#-Tester contains implementations of several state-of-the-art scheduling strategies, including Random and
PCT. This allowed us to compare QL against independently-implemented schedulers that have been shown to
be effective in practice.

3. P# provides the necessary scaffolding to quickly implement the QL scheduler. The framework exposes APIs to
perform suitable abstractions of the program configuration, retrieve the set of actions, etc., and has been used
in prior studies as well [13, 46, 47].

Extension to multithreaded applications To demonstrate that our technique is not just limited to actor-based
message-passing programs, we implemented an extension to P# that allowed experimenting with multithreaded
programs. In this case, a worker is a thread, which communicates with other workers via shared memory. We assumed
that synchronization operations (marking scheduling points) were given to us by the programmer. For the multi-threaded
benchmarks that we used in our evaluation, the only synchronization operations used were lock acquire and release.

QL scheduler We experimented with several differentH functions for obtaining state observations. Each of them were
implemented as a hashing routine that mapped the current program configuration to an integer; they only differed in
how much of the program state was hashed. In each case, we first constructed a per-worker (per-machine or per-thread)
hash and then applied a commutative hash (in our case, a simple multiplication) of these individual hashes. Thus, in
order to describe an abstraction function, we only describe how we construct the hash of a single machine.

We consider the following variants of QL that use a different per-worker hash:

1. QLi: hashes only the contents of the inbox of a machine. (This only applies to actor-based programs.)

2. QLd: For the case of actors, this hashes the inbox contents, current machine operation (send or create or
NonDet), as well as the current state of the machine’s SM (if any). For the case of multithreaded applications,
this only hashes the lock that a thread is currently trying to acquire or release.

3. QLc: hashes a machine/thread using a user-defined hashing routine that is free to look at any runtime component
used by QLd, as well as the local state of the machine/thread. We added convenient APIs to the P# framework
to let a user provide this hashing scheme.

It is important to note that QLi and QLd are generic schedulers: they only make use of information that is readily available
for all P# programs. They are broadly applicable to any message-passing system. The variant QLc is program-specific
because it requires a user-defined routine. We use QLi and QLd to show the general power of our scheduler, whereas the
other variants are intended to show that user intuition can further enhance the testing quality.

Our implementation of QL in P#-Tester closely mirrors Algorithm 2 and Algorithm 3, with the exception of two
optimizations that we describe next. The implementation maintains a map TF : S → int. TF[s] records the number of
times the scheduler has encountered the hash s during exploration. Our first optimization is that for a given hash s, we
multiply the reward in line 4 of Algorithm 3 with TF[s]. This optimization allows QL to rapidly learn to avoid exploring
a state repeatedly.
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The second optimization applies to the reward function. It is, by default, set to −1 for all state-action pairs. However,
for an action a that correspond to sending a message of a special type, we assign a high negative reward (−1000) to
(s, a) for all states s. This change has the following effect. For some state s and a special action a, once the scheduler
has explored a schedule that takes action a on state s, it will be highly discouraged to fire action a in the future when
the program is in state s. This optimization helps the scheduler improve its diversity of schedules when it comes to the
insertion of this special action. In our experiments, this special action is the injection of a failure message that is used
by programmers to test the failover logic of their distributed system. A failure message is intended to bring down a set
of machines, so one can test the effects of failures in their system.

These optimizations, along with the choice of the abstraction function showcase the degree of control available to a
user for enhancing the testing experience for the program they care about most. In contrast, other schedulers offer little
control to the user.

For all our experiments, we set the values of α and γ, used in Algorithm 3, to 0.3 and 0.7, respectively. We justify this
choice in Section 6.

The ability to observe the program configuration is an added source of information for QL compared to stateless
schedulers. To evaluate the effectiveness of the learning aspects of the algorithm, we came up with two other strategies
to serve as a baseline for QL, described below.

Greedy scheduler The Greedy scheduler maintains a TF map, similar to QL. When the program reaches a state s, the
scheduler computes the set Ns of possible target states the program can transition to from s:

Ns = {s′ | ∃a ∈ A : s
a−→ s′}

The Greedy scheduler chooses a state s′ ∈ Ns having the lowest TF[s′] value, executes the corresponding action and
increments TF[s′]. In case of a tie among several s′ states, Greedy draws the target state uniformly at random.

Iterative delay-bounding scheduler We also compare against a variant of the delay-bounding (DB) [12] scheduler.
In our experiments, we found the original DB algorithm to be ineffective at exposing bugs, so we started with an
optimized version of it [34] and modified it to leverage state observations. In our variant, which we call iterative
delay-bounding (IDB), at each scheduling decision, it either selects an action of the worker w that executed the last
action, or randomly context-switches to a worker different from w. The number of such random context-switches per
run is bounded (called the delay bound). IDB keeps tracks of the visited states as it performs exploration. It starts with
a delay bound of 0 and then iteratively increments it when no new states are discovered in the last 100 runs.

6 Evaluation

This section describes our empirical evaluation that compares QL against other schedulers in terms of bug-finding ability,
coverage, robustness to data non-determinism, choice of the state observations and overhead in terms of testing time.
All our experiments use the P#-Tester. We used existing implementations of schedulers when available (Random and
PCT) and implemented others ourselves (Greedy and IDB). There were other schedulers (such as DFS) that performed
very poorly compared to all others, so we leave them out of the evaluation.

We measure the effectiveness of finding bugs using the metrics Bugs100 and Iter10K, which we define next. For each
program, and for each scheduler, we invoke the P#-Tester 100 times. Each invocation of the tester has a budget of
exploring up to 10000 schedules (for a total of up to 1 million schedules across all invocations of the tester). The metric
Bugs100 is the number of times a bug was exposed out of the 100 invocations, while Iter10K is the average number of
schedules a scheduler explored before exposing a bug (in runs when it did find a bug). The exact upper bound on the
length of each schedule (in the number of scheduling decisions) was varied per program, and was typically in the order
of 103.

We ran all experiments on a Windows 10 virtual machine configured with 8 Intel Xeon cores and 112GB of RAM.

Benchmarks We consider three different categories of benchmarks: complex protocols that are publicly available as
part of the P# framework, multithreaded benchmarks from the SVCOMP [48] and SCTBENCH [14] benchmark suites,
and production distributed services from Microsoft Azure. We ported over all the benchmarks from the pthread library
in SVCOMP and all the benchmarks from SCTBENCH using our P# extension for multithreaded applications. Most of
the SVCOMP and SCTBENCH benchmarks contained trivial bugs, with all the schedulers reporting Bugs100 values of
over 50. We report here the results for the rest of the benchmarks.
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Bugs100( Iter10K)
Baseline strategies Budget-based strategies

Benchmarks LoC #T QLd Random Greedy PCT-3 PCT-10 PCT-30 IDB

Pr
ot

oc
ol

s Raft-v1 1194 17 99 (76) 100 (2120) 83 (2526) 7 12 (4131) 45 (4425) 28 (6810)
Raft-v2 1194 17 95 (103) 4 (5813) 3 (5700) 7 7 7 1 (6228)
Paxos 849 10 66 (6315) 8 (4616) 20 (4678) 19 (5280) 91 (2747) 92 (3278) 33 (6852)
Chord 859 7 34 (761) 7 7 7 7 7 7
FailureDetector 692 5 99 (5420) 7 7 11 (5915) 100 (2043) 99 (2321) 31 (2601)

M
ul

tit
hr

ea
de

d Fib-Bench-2 55 3 100 (10) 100 (19) 100 (25) 7 82 (1828) 100 (2) 100 (1475)
Fib-Bench-Longest-2 55 3 100 (21) 100 (1904) 100 (310) 7 7 7 100 (4466)
Triangular-2 73 3 100 (58) 86 (3979) 100 (138) 7 7 2 (2013) 70 (4719)
Triangular-Longest-2 73 3 100 (66) 7 79 (3688) 7 7 7 7
SafeStack 253 6 1 (148) 7 23 (5044) 7 7 7 46 (6955)

Pr
od

uc
tio

n PRODSERVICE1 56649 27 79 (3793) 14 (4202) 24 (4985) 37 (5137) 29 (4612) 25 (4235) 23 (5196)
PRODSERVICE2-V1 33827 15 100 (1060) 7 7 100 (381) 100 (569) 37 (4158) 7
PRODSERVICE2-V2 33827 28 97 (3415) 7 7 100 (1104) 36 (6543) 7 7
PRODSERVICE3-V1 18663 17 92 (1276) 100 (835) 16 (1268) 76 (2543) 96 (1296) 80 (3881) 7
PRODSERVICE3-V2 19771 17 100 (348) 100 (932) 10 (1018) 64 (4526) 100 (1947) 90 (1233) 7

Table 2: Results from applying various schedulers on 5 protocols, 5 multithreaded programs and 5 production services.
The reported program statistics are: lines of code (LoC), maximum number of concurrent workers (#T), Bugs100and
Iter10K.

We briefly describe the protocol benchmarks and the custom hashing scheme that we implemented for them (for use
with QLc). Our choice of the hash was not guided by knowledge of the bug in the program, but rather by selecting the
components of the program that were central to its logic.

Raft is a consensus protocol that uses a voting process to elect a leader among participating nodes. A timer fires
periodically to initiate the voting process. The two versions of Raft differ in the number of timer events required to
initiate the leader election. A bug in the protocol occurs when two leaders get elected simultaneously. We hash the state
of the voting process: what each node voted for, the hash of the current leader, and the contents of the log for each node.

Chord is a protocol for a peer-to-peer distributed hash table, which maintains a collection of keys; their associated
values are distributed among multiple nodes. A bug occurs if a client attempts to retrieve a key, which should be present,
but gets a response that is does not exist. We hash the set of keys stored in each node.

FailureDetector is a protocol for detecting node failures. It contains a heartbeat mechanism, where a manager initiates
rounds where each node is expected to send heartbeats. If a node fails to send a heartbeat within a period of time, it is
deemed to have failed in that round. The custom hash includes the set of alive nodes, and the set of nodes that are still
deemed alive in the current round. A bug occurs if three rounds elapse, and a node stays failed.

Paxos is a consensus protocol. A bug occurs if two different values are agreed upon simultaneously. We hash the set of
proposed, accepted and learned values.

The selected set of benchmarks span a wide range of programs, covering a wide spectrum of bug patterns. All the
benchmarks have a single known bug.

Effectiveness of QL in bug-finding Table 2 compares the performance of the QLd scheduler, on the Bugs100 and
Iter10K metrics, against the other schedulers. For PCT, we used a priority-switch bound of 3 because lower bounds
performed worse. Interestingly, we found that higher bounds sometimes performed better (theoretically, lower bounds
have a better chance in the worst-case), so we report bounds of 10 and 30 as well. However, in all production
benchmarks, PCT regressed on Bugs100 with bounds higher than 10.

Our main conclusions from Table 2 are as follows. Comparing to the other schedulers, QLd was the single scheduler
which never missed a bug and its Bugs100 was consistently among the highest. In Raft-v2, QLd had Bugs100 of 95,
whereas all other schedulers had Bugs100 of less than 5. For Chord, QLd is the only scheduler that exposed the bug. For
scenarios where other strategies matched the Bugs100 metric for QLd, the latter frequently had lower Iter10K. Further,
note that QLd only relies on the “black-box” state observation readily offered by P# with no additional inputs from the
user.

The performances of PCT and IDB are very sensitive to the choice of parameters such as bounds on priority-change
points and maximum schedule length. As an example, in the FailureDetector benchmark, PCT-30 performs better than
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PCT-3, but it is the other way around for PRODSERVICE2-V1. We also found that the performance of PCT deteriorated
as we increased the maximum schedule length parameter of P#-Tester. It is very hard for the user to make a good
educated guess of these parameters a priori. QL is robust to such parameters, adding to its appeal for practical use.

Lastly, we find that exploration strategies based on state abstractions seem to perform well in general, even without
learning. For example, the performance of the Greedy scheduler is competitive compared to PCT-3. The extra
component of adaptive learning in QL provides it with an additional edge, allowing it to outperform Greedy.

Effect of handling data non-determinism in QL As we highlighted in earlier sections, QL is the first CCT scheduler
that accounts for data non-determinism in a way other than resolving it uniformly-at-random. We evaluate its benefit in
Table 3. We use QLd-NDN to denote a version of QLd where we turn off the handling of data non-determinism (i.e.,
resolve it uniformly-at-random). Table 3 highlights that QLd-NDN clearly regresses in its ability to expose bugs. In
fact, these results together show that for benchmarks such as Raft-v2 and Chord, QL outperforms all other schedulers
because of its handling of data non-determinism.

Bugs100( Iter10K)
Benchmarks QLd-NDN QLd

Raft-v1 86 (2551) 99 (76)
Raft-v2 1 (283) 95 (103)
Paxos 19 (6357) 66 (6315)
Chord 7 34 (761)
PRODSERVICE1 22 (4482) 79 (3793)

Table 3: Comparing QLd without and with the handling of data non-determinism.

Effect of state abstraction on QL We investigate the effect of using the different state abstractions with QL. Table 4
summarizes our findings. For the protocols, QLi, which tracks only the contents of the inbox of the P# machines,
sufficed to expose all bugs besides Chord. A possible reason for this is that the communication between concurrent
workers in a P# program involves message passing, and the bugs are triggered by specific message reorderings. Thus,
tracking just the inbox drives QLi to explore different possible inbox contents for each P# machine, which results in the
bug being exposed.

Bugs100( Iter10K)
Benchmarks QLi QLd QLc

Raft-v1 100 (70) 99 (76) 100 (53)
Raft-v2 100 (96) 95 (103) 100 (81)
Paxos 30 (3713) 66 (6315) 33 (5256)
Chord 7 34 (761) 2 (886)
FailureDetector 38 (3108) 99 (5420) 78 (6590)
SafeStack N/A 1 (253) 31 (2438)

Table 4: Effect of using different state abstractions on QL.

We found the QLd abstraction to be sufficient for exposing all the bugs in our benchmarks. Hashing additional local
state, as allowed by QLc may actually regress the Bugs100 as can be seen for the Paxos and FailureDetector protocols in
Table 4. A notable exception is SafeStack, which comprises a shared stack being concurrently updated by multiple
threads. In this case, the QLd abstraction was too coarse to expose the bug. Our custom abstraction involved tracking the
exact contents of the stack, which forced QLc to explore different stack contents thereby exposing the bug. Once again,
this custom abstraction involved tracking a component which is central to the logic of the program, and is not based on
our knowledge of the bug.

Coverage achieved by QL during exploration We also measured the number of unique abstract states covered by
each of the schedulers across all iterations of the same run of P#-Tester. We used the default abstraction for this
experiment. Figure 6 summarizes our findings for a subset of the benchmarks; these results are representative of our
findings for the remaining protocols and production services.

We find that QLd discovers significantly more unique abstract states, compared to the other schedulers. An interesting
scenario occurs in PRODSERVICE2-V2. The benchmarks involves testing against injected failures. The Random

14



Learning-based Controlled Concurrency Testing

320 640 1280 2560 5120 10240
#Iterations

0

50000

100000

150000

200000

250000

300000

350000

400000
#U

ni
qu

e
ab

st
ra

ct
st

at
e

ha
sh

es
Raft-v1

QLd

Random
Greedy
PCT-3
PCT-10
PCT-30
IDB

320 640 1280 2560 5120 10240
#Iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
FailureDetector

QLd

Random
Greedy
PCT-3
PCT-10
PCT-30
IDB

320 640 1280 2560 5120 10240
#Iterations

0

20000

40000

60000

80000

100000

120000
ProdService2-v2

QLd

Random
Greedy
PCT-3
PCT-10
PCT-30
IDB

Figure 6: Number of unique abstract states explored by various schedulers.

scheduler repeatedly injected the failure very early in the run, which prevents the program from progressing to
interesting corner cases. As a result, it fails to discover too many states (or uncover the bug).

Performance overhead of QL To evaluate the overhead of QL due to tracking states and performing adaptive learning,
we measure the execution times of the QLd, Random, Greedy and PCT-10 strategies on the three programs used in
Figure 6. Table 5 summarizes our findings. In general, QLd has an overall slowdown of 7× and 3× compared to
Random and PCT-10, respectively. However, the degree of coverage achieved by a scheduler has a direct bearing on
the execution times. For example, as Figure 6 highlights, Random discovers far fewer states compared to QLd on the
PRODSERVICE2-V2 program, which results in an overall faster execution time.

Execution Time (seconds)
Benchmarks QLd Random Greedy PCT-10

Raft-v1 210 109 119 102
FailureDetector 767 491 594 533
PRODSERVICE2-V2 830 46 50 133

Table 5: Comparing execution times of QLd, Random, Greedy and PCT-10 strategies for a single invocation of P#-Tester.

Dependence on the α and γ parameters Two key parameters in the Q-Learning algorithm are the α (learning rate)
and γ parameters used in Equation 2. We evaluated the protocols for different combinations of α and γ, and we did not
find a significant variation in either Bugs100 or Iter10K due to the choices. We settled for α = 0.3 and γ = 0.7 since it
strikes a reasonable balance in Equation 2 between weighing immediate versus future rewards.

7 Related Work

Controlled Concurrency Testing Controlled concurrency testing has been subject to extensive research, and several
tools and techniques exist which aim to find complex concurrency bugs [2, 12, 34, 49, 50, 11, 51]. Thomson et al. [14]
provides a nice survey and empirical comparison of several recent stateless strategies such as probabilistic concurrency
testing (PCT) [11] and delay-bounding [12]. We cover several of these techniques in detail in Section 3.

Learning based Software Testing Learning algorithms have been applied to the problem of fuzzing program inputs
[52, 53, 54, 55]. In particular, Böttinger et al. [52] formalizes input fuzzing as an RL problem, and applies deep
Q-learning to learn mutations that yield new program inputs that are likely to maximize code coverage. Zheng et al.
[56, 57] applies supervised learning techniques to automatically identify program features or instrumentation predicates
which are likely to trigger a bug, based on a data set comprising user reports of program executions. Mariani et al.
[58] leverages Q-learning to generate test cases for testing GUI-based applications. The problem of input fuzzing is
orthogonal to CCT: the former is about input values but the latter is primarily about controlling scheduling decisions.

Veanes et al. [59] formalizes the problem of conformance checking between a model and an implementation as a
Markov Decision Process, and use simple heuristics inspired from reinforcement learning. Unlike our work, the paper
assumes limited communication between concurrently executing agents, and also assumes the agents’ actions being
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deterministic. Moreover, their implementation handles a small toy example, whereas our implementation can scale to
production code.

Baskiotis et al. [60] aims to maximize path coverage in sequential programs by identifying distinct feasible paths in the
control flow graph with high probability, using an adaptive sampling mechanism. In contrast, our QL scheduler can
handle concurrent programs and does not require an explicit control flow graph representation.

8 Conclusion

In this paper, we proposed a controlled concurrency testing (CCT) scheduler, called QL, which leverages Q-Learning
to explore a user-defined abstraction of the program state space. Since our scheduler is geared towards coverage and
adapts to the application under test, it is effective at finding concurrency bugs irrespective of their pattern. QL is also
the first scheduler that accounts for data non-determinism. We implemented QL in an open-source industrial-strength
CCT framework. In our benchmarks, comprising complex protocols and production cloud services, we showed that QL
outperforms state-of-the-art CCT strategies.
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