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ABSTRACT
Head-of-Line (HOL) Blocking is a well known cause of per-
formance degradation due to missing packets resulting in la-
tency not only for themselves but also to dependent packets
which have already arrived. Many existing approaches at-
tempt to alleviate the issue by removing dependencies be-
tween packets so that packets which have already arrived
have a lower chance of being delayed due to other packets
which are missing. Other complimentary approaches use ad-
hoc proactive retransmission or error correction to lower the
probability of loss itself. In this paper, we show how appli-
cation dependent requirements can be used in conjunction
with network parameter estimates to provide an optimal ap-
proach to proactive retransmissions or error correction. In
this approach, using network parameter estimates of band-
width, delay, and loss, we first mathematically derive a prob-
ability distribution of the per packet delay which is then used
to optimize parameters in a forward error correction frame-
work given application requirements.

1. INTRODUCTION
In an application where all packets from a network flow

are required in order for the receiver to utilize the informa-
tion, the network effect on application performance can be
measured using the per-flow latency, which we define as the
following.

DEFINITION 1. The per-flow latency is the time differ-
ence between when the first packet is sent to the time that all
packets in the flow have been received.

Since a rough estimate of the per-flow latency is given by
δ + M

R , where δ is the network latency (e.g. in seconds),
M is the total size of the flow (e.g. in bits), and R is the
effective transmission rate (accounting for losses) (e.g. in
bits/second), the best that can be done is to make the effec-
tive transmission rate as close to the capacity of the channel.
If acknowledgments regarding which packets have been re-
ceived are available to the sender, then it is known that re-
transmissions are the best method for recovering from any
losses [3]. In applications such as file transfer (e.g. FTP),
this is the case.

However, in many applications the receiver can utilize

partial information from a network flow and thus individual
packet latencies also affect performance. Some examples of
these include the following.

1. An application which muxes several different streams
or messages together into one flow [1, 15]. In such an
application, partial information can be easily utilized
by extracting a single stream from the flow.

2. An application where a subset of packets can be ren-
dered and utilized by the receiver with the quality of
the rendering being a function of the subset. Typical
examples include interactive software and media ap-
plications such as web or cloud based software appli-
cations, online games, and video conferencing.

In such cases, the per-packet sequential latency (PPSL) is
also important in determining the application performance
and is defined as the following.

DEFINITION 2. The per-packet sequential latency
(PPSL) is defined to be the time difference between when
a particular packet is sent to the time that it and all of the
packets upon which it depends have been received. The term
sequential is used since all dependent packets must also be
received.

For example, if a flow consists of the M packets indexed
0, . . . ,M − 1, and sn is the send time of packet n and rn is
the receive time, we can define the per-flow latency as

τflow = max({ri, i ∈ 0, . . . ,M − 1})− s0 (1)

and the per-packet sequential latency (PPSL) of packet n as

τpacket,n = max({ri, i ∈ Dn})− sn, (2)

where Dn is the set of packets including packet n and those
packets upon which packet n depends. Although for sim-
plicity we use the term received throughout our discussion,
by received, we mean that either the packet is actually re-
ceived or there is sufficient information (via the use of FEC
packets) to recover the packet.

A special case in protocols such as TCP and others which
deliver packets losslessly and in-order gives the following
expression for per-packet sequential latency,

τpacket,n = max({ri, i ∈ 0, . . . , n})− sn. (3)
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This is because packet n is dependent on all prior packets.
Thus if packet k is missing, then it is having an effect on the
per-packet sequential latency for all received packets n ≥ k
resulting in what is commonly known as the Head-of-Line
(HOL) blocking effect. We refer to lossless and in-order de-
livery as reliable.

In cases such as the muxing of several streams into one
flow, the use of TCP can result in unnecessary HOL block-
ing as a missing packet from one stream can cause HOL
blocking on other streams which are not missing any pack-
ets up to that point [6, 14]. However, in such cases, this can
be easily avoided by realizing that the packet dependency
structure imposed by TCP is not needed. For example, the
underlying transport can simply deliver a packet to the appli-
cation so long as all prior packets from a given stream have
been received instead of waiting for all prior packets from
the flow [6]. In addition, if an intelligent acknowledgment
(e.g. selective ACK) and retransmission scheme is used, the
protocol can perform at close to capacity [10]).

However, in other cases, the packet dependency structure
is truly an application required dependency and not simply
a protocol imposed dependency. For example, in interactive
software applications and online games, the packets being
sent may be used to show the current rendering of the user
interface (UI) in response to user actions. The coding of this
rendering would likely employ techniques to remove redun-
dancy and thus have dependencies between packets. In ad-
dition, the effect of missing packets may severely affect the
rendering and the application may in fact require lossless,
in-order delivery in order to be usable.

For applications such as video-conferencing, packet de-
pendency is often imposed by commonly used techniques
such as the use of P-frames and also intra-frame predic-
tion techniques [18]. Although it is commonly assumed that
video decoders are capable of recovering from lost packets,
the effect of packet losses is often more severe than the re-
dundancy incurred in imposing close to lossless delivery (via
the use of proactive forward error correction) [20, 21].

Thus, we see that even though there are several appli-
cations where protocol imposed packet dependencies can
be easily removed, there are other applications where HOL
blocking can affect performance severely. Although we can
use ad-hoc techniques such as in [13] to proactively retrans-
mit and send forward error correction packets, it may result
in under-protection or over-protection depending on appli-
cation requirements and network characteristics.

Therefore in this paper, we attempt to determine the cor-
rect level of forward error correction (FEC) protection for an
application which meets the following characteristics.

1. The application is able to adjust its coding rate.
2. Provided the application meets the coding rate, the ap-

plication requires reliable (or close to reliable).
3. The application has certain per-packet sequential la-

tency constraints that it would like to meet. As an ex-
ample, it may want the probability that PPSL is greater

than or equal to 150ms to be less than 1%.
In this paper, we make the following contributions for ap-

plications with the above characteristics.
1. Describe a forward error correction (FEC) code by ap-

plying a simple modification to a Reed-Solomon style
Maximum Distance Separable (MDS) code for appli-
cations which require lossless, in-order delivery.

2. Derive a mathematically accurate probability distribu-
tion of the per-packet sequential latency (as defined
above) given network characteristics of bandwidth, de-
lay, and loss and coding parameters for the modified
MDS code.

3. Given the probability distribution of the per-packet se-
quential latency, provide an optimization framework to
find FEC coding parameters to meet desired applica-
tion requirements. For example, given a channel with
a loss rate of 1%, RTT of 100ms, bandwidth of 2Mbps,
and packet size of 1400 bytes, what is the FEC strategy
so that the application sees a 99% delay of ≤ 175ms
while maximizing the rate available to the application?

4. Provide an efficient (memory and complexity-wise)
implementation which fairly accurately approximates
the optimization.

In this paper, we do not address the issue of network pa-
rameter estimation and control for which there is already a
significant body of research as we will show in Sec. 8. Al-
though these are critical pieces of a practical system, they
are somewhat orthogonal to the issue of the optimization
presented here. The use of congestion control protocols to
control the rate of transmission in the network is a well re-
searched issue and determines how much data to send. What
we address here is not how much to send, but rather the issue
of what to send.

In fact, any good congestion control protocol should be
completely independent of what the application sends as the
network itself is completely agnostic of the actual data being
sent, and at least for congestion purposes the only thing that
matters is how much is sent. For example, even in the basic
TCP protocol, one could arbitrarily send any data (even for
example when TCP says to retransmit), and there would be
no effect on the network’s congestion characteristics.

Since we are not controlling how much to send, the use
of FEC or other proactive techniques to recover from losses
will not increase the congestion seen on the network. Rather
it will only reduce what is available to the application.

In addition, there is also already a rich body of literature
on network parameter estimation, namely estimating the cur-
rent bandwidth, delay, and loss which we will present in
Sec. 8. It is well-known that these parameters may be ex-
hibit a certain degree of memory (i.e. each sample in time
may not be independent of the previous) and may even ex-
hibit non-stationary behavior [22]. Also, the congestion con-
trol protocol itself will have an effect on these parameters. In
this paper, we are not addressing the issue of techniques to
improve the estimation, but rather are concerned with what
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to do once we have these estimates.
In any application which requires lossless, in-order deliv-

ery of data, we cannot solely rely on FEC codes as there may
still be losses even after the use of FEC. Therefore, the appli-
cation must use FEC codes in combination with retransmis-
sions. However, the amount of FEC (and thus the amount
of loss recovered via retransmissions) can be controlled de-
pending on application requirements and network character-
istics. By addressing the issue of optimally finding FEC pa-
rameters given the above, we can improve the performance
of applications which have rate control, but require lossless
(or near-lossless), in-order delivery of data.

2. FORWARD ERROR CORRECTION
CODE

We consider using a systematic (N,K) block FEC code,
where K original source packets – defined as a coding block
– are sent along with N − K FEC packets giving a redun-
dancy of N−K

K . We use a Cauchy Reed-Solomon code [2]
as the basis for the block code. This code is a Maximum
Distance Separable (MDS) code which means that any K
packets out of the N are sufficient to recover all K packets
in the coding block. Let xi, i = 1, 2, ...,K be the original K
packets and let yj , j = K + 1,K + 2, ..., N be the N −K
FEC packets. We use the following to compute the FEC
packets,

yj =

K∑
i=1

1

i+ j
xi, j = K + 1,K + 2, ..., N (4)

where all mathematical operations (division, addition, and
multiplication) are done over a finite field, e.g. GF (28). Us-
ing matrix notation,

y = Gx

x1
...
xK
yK+1

...
yN


=



1 . . . 0
...

. . .
...

0 . . . 1
1

1+K+1
. . . 1

K+K+1

...
. . .

...
1

1+N
. . . 1

K+N



 x1
...
xK


(5)

.

2.1 Modified Code for Lossless, In-Order De-
livery

If we wish to minimize the per-packet sequential latency
for lossless, in-order delivery of data, we can modify the
code so that FEC packets for a given block also include terms
corresponding to packets in previous blocks In this way, pre-
vious blocks with missing packets may be able to derive ad-
ditional FEC packets to allow for recovery. In case there are
no packets missing in the previous coding blocks, the pre-
vious block’s packets can be removed from the FEC packet
thus not hurting decodability of the current block.

Given two consecutive blocks, the first block consisting
of packets x1,1, . . . , x1,K and the second block of packets

x2,1, . . . , x2,K , we can modify the FEC packets for the sec-
ond block to include additional protection for the first block
using

y2,j =

K∑
i=1

1

i+ j
x2,i +

1

i+ j + (N −K)
x1,i, (6)

where j = K+1,K+2, ..., N . This results in the following
generator matrix,

G =



1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0
1

1+K+1
. . . 1

K+K+1
0 . . . 0

...
. . .

...
...

. . .
...

1
1+N

. . . 1
K+N

0 . . . 0

0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1
1

1+N+1
. . . 1

K+N+1
1

1+K+1
. . . 1

K+K+1

...
. . .

...
...

. . .
...

1
1+2N

. . . 1
K+2N

1
1+N

. . . 1
K+N



.

(7)

That is FEC packets in block 2 also include additional terms
in the linear sum corresponding to additional FEC packets
from block 1 (beyond the N − K FEC packets that have
already been sent for block 1).

This modification can help in decoding block 1 without
hurting block 2.

1. If block 2 is already decodable without a given FEC
packet (say the jth FEC packet in block 2), then we
can remove the term

∑K
i=1

1
i+jx2i from y2j to obtain

an additional FEC packet y1,N+j−K for block 1.
2. If block 1 is already decodable, block 2 is still equally

decodable since the term y1,N+j−K can be removed
from y2j and give an FEC packet which is the same as
before.

3. If block 1 is not decodable, then the additional terms
corresponding to block 1 packets in block 2’s FEC
packets can prevent block 2 from being decodable.
However, for reliable applications which require loss-
less, in-order delivery, this cannot hurt performance
since block 2 is not useful without block 1 anyways.

We can also modify this to include additional previous
blocks. For example, the FEC packet for block m can in-
clude additional FEC protection for blocks m− 1, . . . ,m−
M , where M is the number of blocks which still have un-
acknowledged packets remaining. Additionally, we can also
modify the code in case successive blocks use differing cod-
ing structures, for example if block m uses a (Nm,Km)
code.

For analysis purposes the block coding structure is as-
sumed, even though for practical purposes, the modified
code can be used. The modified code can only improve the
delay seen by the application and thus if the traditional block
code is able to meet the application requirements for a given
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set of network parameters, then the modified one will also
meet the requirements.

3. PER-PACKET SEQUENTIAL LATENCY
ANALYSIS

We define lossless, in-order delivery of packets as reli-
able. The per-packet sequential latency for reliable packet
transmission is defined in Eqn. 3. We use the following no-
tation in the analysis.

1. τ denotes the per-packet sequential latency.
2. (N,K) denotes parameters in the block FEC code.
3. P denotes the size of each packet.
4. T is the current transmission rate.
5. δRTT is the round-trip time between the sender and

receiver.
6. δOWD is the one-way network delay between the

sender and receiver.
7. ε is the loss rate between sender and receiver. We use
ρ = 1− ε to denote the probability of reception.

In practice, P may be variable although for FEC coding pur-
poses, the best performance is achieved when packets are of
similar size. If an FEC packet consists of a linear combina-
tion of packets of varying packet sizes, then the FEC packet
size is simply the largest of all packet sizes.

The network parameters T , δ, and ε will indeed vary over
time as the network changes and in response to conges-
tion control. We assume that the values are averages over
some reasonable time period. In addition, the exact strategy
for parameter estimation may be different. For example, a
common parameter estimation strategy for loss may utilize
a two-state (or multi-state) model such as a Gilbert-Elliot
model [5] where the channel is assumed to be in one of two
or more states, where the underlying network characteristics
(such as loss rate) are different in each state. The parameter
estimation scheme then attempts to classify which state the
channel is in and update the model parameters for the state
only. However, for our purposes regardless of what estima-
tion scheme is used, we will have an estimate of T , δ, and
ε.

In addition, in practice the acknowledgments may also be
lost (i.e. the loss rate between the receiver and sender may
be non-zero). However, if the acknowledgment information
is sufficiently small, then we can add sufficient redundancy
to make the reverse loss rate arbitrarily small.

The per-packet sequential latency for packet n for reliable
data transmission is given by

τn = max({ri, i ∈ 1, . . . , n})− sn, (8)

where sn is the time packet n is sent and ri is the time at
which packet i is received.

To simplify the discussion when analyzing latency, we
compute all time and latency measurements in units of pack-
ets. We can easily go from units of packets to seconds
(and vice-versa) via tseconds =

tpacketsP
T , where P is the

packet size in bits/packet, and T is the transmission rate in

bits/second, and t is some measure of time.

3.1 Per-Packet Delay
For any given FEC coding block of K packets, we define

the round to be the number of times a packet in the coding
block has already been sent. For example, in the first round
(round 0), all K packets of a given block are sent followed
by N −K FEC packets. In round 1, packets which have still
not been acknowledged by the receiver are sent again fol-
lowed by potentially additional FEC packets for the block.
This continues until all packet of the coding block have been
acknowledged as being received.

In order to derive the probability distribution of the per-
packet sequential latency, we first need to obtain an expres-
sion of the per-packet delay.

DEFINITION 3. We define the per-packet delay of packet
n to be rn − sn, where sn is the first time packet n is sent
(in round 0) and rn is the time at which packet n is either
received or successfully decoded via FEC.

Since it takes δOWD time for a packet to be sent from the
sender to the receiver, if a packet is received in round 0, it
experiences a delay of δOWD. If it is recovered by means
of FEC decoding in round 0, then it encounters a delay of
δOWD + δFEC,n, where δFEC,n is the additional delay for
a sufficient number of FEC packets for the block to be de-
coded.

If a packet is not received or recovered in round 0, then it
takes δRTT − δOWD for this feedback to come back and an
additional δOWD time for the second transmission. Thus, a
packet received or recovered in round 1 experiences a delay
of δOWD + δRTT + δFEC,n, where δFEC,n is the additional
delay in case the retransmission is lost and the packet is re-
covered via FEC in round 1.

In general, if packet n is received or decoded in wn
rounds, it experiences a per-packet delay of

dn = rn − sn
= δOWD + wnδRTT + δFEC,n, (9)

where δFEC,n is the additional delay in case FEC is used to
decode the packet.

In a practical system, it may take slightly longer than
δRTT prior to declaring a packet to be lost. For example,
many protocols may declare a packet to be lost when (i) once
acknowledgments from future packets have been received,
(ii) once the protocol receives information from which it
can infer that future packets have been received (e.g. via
Dupacks in TCP), or (iii) once a certain timeout has been
reached. Regardless of the exact mechanism used, it would
simply add a mostly constant delay to the term and thus it is
easy to incorporate in the analysis.

For purposes of obtaining a probability distribution, in
Eqn. 9, we can see that wn and δFEC,n are random variables
whose probability distribution is determined by network
characteristics as well as the coding parameters (N,K).
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3.2 Per-Packet Sequential Latency
Manipulating the expression for per-packet latency from

Eqn. 3 using the per-packet delay from Eqn. 9, we get

τn = max(rn, rn−1, . . . , r0)− sn
=

n
max
i=0

(rn−i − sn−i)− (sn − sn−i)

=
n

max
i=0

dn−i − (sn − sn−i)

= δOWD +
n

max
i=0

(wn−iδRTT + δFEC,n−i − (sn − sn−i))
(10)

Given Eqn. 10, we make the following claim which we
prove in Appendix A.

CLAIM 1. For probability distribution purposes, with the
reasonable assumption that δRTT ≥ N , the following ran-
dom variable has the same probability distribution as τn,

τ ′n = δOWD + δFEC,n +
n

max
i=0

(wn−iδRTT − (sn − sn−i)) .
(11)

where δFEC,n is the additional delay required to make the
coding block to which packet n belongs decodable.

For simplicity going forward, we simply use τn to represent
τ ′n.

Although the exact value for the term sn−sn−i in Eqn. 11
depends on the indices of the coding block for each packet
and the indices of the packets within the block, a simple ap-
proximation is iNK since there areK source packets for every
N packets being sent and thus the separation between each
source packet is approximately N

K .

3.2.1 Computing δFEC,n
To compute the term δFEC,n, we define ιn ∈ {1, . . . ,K−

1} to be the index of the n-th packet in an FEC block where
the earliest packet in the block is ιn = 1 and ιn = K for the
last packet in the block. Let fn ∈ {0, . . . , N −K} to be the
number of FEC packets used to decode the block for packet
n. Then,

δFEC,n =

{
(K + fn)− ιn if fn > 0 and packet n lost
0 otherwise (12)

For example, if the first packet in the FEC block is lost, then
it encounters a delay of K + fn − 1, whereas if the last
packet is lost, it only encounters a delay of fn. Since the
probability distribution of δFEC,n is not dependent on wn,
we can assume ηn and δFEC,n to be independent random
variables.

3.2.2 Components of τn
Since δFEC,n is independent of wn−i for all i, we can

write τn as the sum of two independent random variables,
ηn and δFEC,n,

τn = δOWD + δFEC,n + ηn, (13)

ηn =
n

max
i=0

(
wn−iδRTT −

iN

K

)
. (14)

This allows for a much simpler procedure for obtaining the
distribution of τn. We can now see that the per-packet la-
tency can be seen as the sum of three independent compo-
nents.

1. δOWD which is the network delay for a single trans-
mission. This consists of the network propagation de-
lay plus any queuing delay which is caused by con-
gestion (including that due to the congestion control
protocol itself). This component cannot be controlled
by a coding scheme. The congestion control protocol
may have some effect on it.

2. ηn which can be seen to be the delay from retransmis-
sion of the head-of-line (HOL) blocking packet. This
HOL blocking packet could be packet n itself or some
other previous packet which is missing.

3. δFEC,n which is the additional delay needed in case
FEC is being used to recover the HOL blocking packet.

We note that except for the term δOWD, τn is a func-
tion of (i) δRTT in units of packets which is essentially the
bandwidth-delay product in units of packets and (ii) the loss
rate over the network. In addition, the per-packet latency in-
creases as both of these increases, so a network with a higher
bandwidth-delay product will be more severely affected by
head-of-line blocking.

4. PROBABILITY DISTRIBUTION OF
PER-PACKET LATENCY

In order to derive a distribution for τn, we first derive the
probability distribution for the two independent random vari-
ables, ηn and δFEC,n.

4.1 Probability Distribution of ηn
Assume that δRTT = RN in units of packets, that is there

are R coding blocks in one RTT as shown in Fig. 1. Then
we can write ηn = RN

n
max
i=0

(
wn−i − i

KR

)
. We see that

there is exactly one packet which determines ηn. Let I be
the packet which determines ηn, that is,

I = argmax

(
n

max
i=0

(
wn−i −

i

KR

))
,

ηn = RN

(
wn−I −

I

KR

)
. (15)

We see that ηn can take on the following values,
0, NK ,

2N
K , ..., V NK for all integer V . The probability for ηn

can be written as

P

(
ηn =

V N

K

)
=∑

{(L,J)s.t.(LRK−J)=V }

P (wn−I = L, I = J). (16)

Now we need to determine the joint probability of wn−I
and I . We write this probability by conditioning on
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Coding Block RCoding Block 2Coding Block 1

1 2 K... K+1 ... N 1 2 K... K+1 ... N 1 2 K... K+1 N...

Figure 1: Coding blocks sent on network. There are R coding blocks per RTT .

Coding Block 4Coding Block 2Coding Block 1

9 10 12 13 14 16 17 18 2011 15 19

Coding Block 1

5 6 87

Retransmission RN packets away

9...

Coding Block 1

1 2 43

Block 0:

All wn-i < 1

Block 1:

All wn-i < 1

Block 2:

Some wn-i = 1

...

One RTT  = RK source packets = RN total packets

wn-i 1 0 0 0 0 0 0 0 0 0

...

gL 1-gL 1-gL

s 1-s

Block Probability

Packet Probability

Figure 2: An example showing coding using K = 4packets over a network with δRTT = 4N packets. In the example, we
show how a loss by packet 9 results in per-packet sequential latency for packet 18. For example, if N = 6, then packet 9
retransmission arrives at time s9 + 24. Since s18 ≈ s9 + 9×6

4 , it results in packet 18 being delayed by ≈ 24− 13.5 = 10.5 (in
units of channel packets). The figure also shows how the probability of this event can be computed using block probabilities γ
and packet probabilities σ.

P (wn−i ≤ L).

P (wn−I = L, I = j) =

P (wn−i ≤ L)P (wn−I = L, I = J |wn−i ≤ L). (17)

We then start at some L where we know P (wn−i ≤ L) ≈ 1.
We can recursively compute

P (wn−i ≤ L− 1) =

P (wn−i ≤ L)−
LRK−1∑
I=0

P (wn−I = L, I = J |wn−i ≤ L).

(18)

In order to compute P (wn−I = L, I = J |wn−i ≤ L), we
realize that by definition

P (wn−I = L, I = J |wn−i ≤ L) =

P (wn−J = L)

J−1∏
i=0

P (wn−i ≤ L). (19)

If P (wn−i ≥ L) for any i = 0, . . . , J − 1, then that packet
would have a higher value for wn−i− i

KR violating the def-
inition of I . Also since P (wn−i ≤ L), all packets n− i for
i = J + 1, . . . will have a lower value for wn−i − i

KR with
probability 1. That is, Eqn. 19 is the probability that packet
n− J is the closest packet to packet n which is not received
(either received or decoded) in rounds 0 to L − 1 which is

then subsequently received in round L given the condition
that at least one such packet exists within LRK packets.

To obtain the probability that packet n− I is the first such
packet, we divide the packets prior to packet n into “virtual
coding blocks” as shown in Figure. 2. That is, they need not
align with the actual coding structure of the FEC. This is be-
cause for probability purposes the probability that a group
of packets has a certain pattern of loss is independent of the
packets in the group provided the same coding parameters
are used for all packets in the group. The need for analyz-
ing probabilities over coding blocks arises from the fact that
the marginal probability of loss for any given packet is not
completely independent of the other packets in the block.
However, it is independent outside the block.

We can concretely write this as a product of three terms

P (wn−I = L, I = J |wn−i ≤ L) = P (wn−J = L)×
b J
K c−1∏
i=0

P (wn−Ki ≤ L, . . . wn−(Ki+K−1) ≤ L)×

mod (J,K)−1∏
i=0

P (wn−(Kb J
K c+i)

≤ L), (20)

where mod (J,K) = J−Kb JK c is the “modulo” operator.
Suppose 1− γL is the probability that a group of K packets
is completely recovered in L rounds (0, . . . , L − 1) and γL
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is the probability that at least one packet in the block is still
missing after L rounds. Since P (wn−J = L), it implies that
it comes from a coding block which has not been fully re-
covered in L rounds. Let 1−σ be the probability a packet is
received given that the coding block in which it is contained
has not yet been received. Then, we can write Eqn. 20 as

P (wn−I = L, I = J |wn−i ≤ L) =

1

A
γL(1− γL)b

J
K cσ(1− σ) mod (J,K) (21)

A =

LRK∑
I=0

P (wn−I = L, I = J |wn−i ≤ L), (22)

Since wn−i ≤ L, if the packet J is still missing after rounds
0, . . . , L− 1, then with probability 1, it will be recovered in
round L. We show this probability computation pictorially
in Fig. 2.

The reasoning behind this is that there are b JK c coding
blocks prior to the block containing packet J . Since the
probability of recovering each of them within L rounds is
1− γL, the probability of recovering all of them in L rounds
is (1 − γL)b

J
K c. For the coding block containing packet J ,

it has not been recovered which has a probability of γL.
Within this coding block, there are mod (J,K) packets
which have been recovered (each with probability 1− σ fol-
lowed by the missing packet which has probability σ.

For a specific and practical case, consider the case when
we start with P (wn−I ≤ 1) = 1. That is we assume that
wn−i ∈ {0, 1}. This itself is a reasonable assumption since
ε is small and thus the probability of two losses even in the
absences of FEC is much less than the chance of one since
ε2 << ε. With FEC, P (wn = 2) << P (wn = 1) since
P (wn = 1) will likely be significantly smaller than ε and
very low.

In this case, γ1 is the probability that at least one packet is
missing in a block of K packets after round 0. We can write
this as the probability of receiving less than K packets in a
coding block,

γ1 =

K−1∑
i=0

(
N
i

)
(1− ε)iεN−i. (23)

The probability of recovering in round 1 given failure in
round 0 is more difficult to compute as some of the packets
have already been received in round 0. However, we can ap-
proximate it as γ ≈ γ1 and typically we can simply choose
the number of FEC packets in the successive rounds so that
they all have approximately the same γ.

To compute σ, we need to find the probability that any one
particular packet is missing in a block of K packets given
that at least one packet is missing. We compute this by con-
ditioning on the number of received packets and realizing
that if r packets are received the probability that any one

particular packet is missing is N−r
N .

σ =

∑K−1
r=0

(
N
r

)
(1− ε)rεN−r N−rN

γ
. (24)

Even without the assumption that P (wn−I ≤ 1) ≈ 1, we
can start with a higher value of L and perform the recursion
fairly easily using Eqn. 18.

4.2 Probability Distribution of δFEC,n
The additional delay due to FEC decoding can take on

the values 0, 1, . . . , N −1 since the most the first packet in a
coding block has to wait isN−1. It is clear that δFEC,n = 0
if and only if all source packets in the block are received thus
giving P (δFEC,n = 0) = (1− ε)K .

For other F > 0, we can condition on the index of the
packet ι using

P (δFEC,n = F ) =

K∑
i=1

P (ι = i)P (δFEC,n = F |ι = i)

(25)

=

K∑
i=1

P (δFEC,n = F |ι = i)

K
, (26)

since the packet index is uniformly distributed, P (ιn = i) =
1
K for i = 1, . . . , ,K.

Since δFEC,n = (K + l) − i if l FEC packets are used
to decode the block, P (δFEC,n = F |ι = i) = P (l = F +
i−K), where l is a random variable to represent the number
of FEC packets used in the decoding. In order to use l =
F + i−K FEC packets to decode packet n, we must receive
exactly K − l out of K source packets, receive fn ≥ l FEC
packets, and packet ιn = i must be lost.

Suppose we receive j packets from the i− 1 packets prior
to packet i and l−j packets from theK−i packets following
packet i. Then, conditioning on j gives

P (l = F + i−K) =

min(i−1,l)∑
j=0

PJ(j)P (l = F + i−K|j)

=

min(i−1,l)∑
j=0

(
i− 1
j

)
ρjεi−1−jε(

K − i
l − j

)
ρl−jε(K−i)−(l−j)P (fn ≥ l), (27)

where Pj(j) is the probability of receiving j packets prior to
packet i. The probability that P (fnn ≥ l) is given by

P (fn ≥ l) =

N−K∑
m=l

(
N −K
m

)
ρmεN−K−m. (28)

4.3 Combined Distribution
Going forward, we drop the subscript n from the expres-

sions as we assume the distributions to be stationary given
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using probability model and simulation.

the network estimates. Since η and δFEC are independent,
we can write the probability that the per-packet sequential
latency, τ , is some D larger than the base network delay of
δOWD as

P (τ = δOWD +D) = P (η + δFEC = D)

=
∑

P (δFEC = A)P (η = D −A).

(29)

We can validate the accuracy of the probability distribution
model by comparing the distribution from the probability
model with that from simulation. We show the cumulative
distribution of η + δFEC (the additional sequential latency
beyond the minimum δOWD) in Fig. 3 for δRTT = 106
packets, ε = 0.01, K = 30 packets, N = 33 packets (3 FEC
packets). We see that the cumulative distributions match
showing that the derived probability distribution is correct.

5. FEC OPTIMIZATION
Suppose we wish to find the optimal (N,K) for a given

per-packet sequential latency ofD which is defined to be the
maximal desired θ percentile value for τ − δOWD. That is
we want to find (N,K) to minimize N

K such that

P (τ ≤ δOWD +D) ≥ θ. (30)

In practice, the sequential latency target would be in units
of seconds. We can convert this to units of packets via
Dpackets = bDsecondsT

P c. By taking the floor, the actual
target in seconds can be met. We can write

P (τ ≤ δOWD +D) = P (η + δFEC ≤ D) (31)

==

N−1∑
A=0

P (δFEC = A)P (η ≤ D −A).

(32)

since η and δFEC are independent. To compute P (η ≤ D−
A), we need to find the largest i such that iN

K ≤ D − A,
which is i = b (D−A)K

N c. Thus,

P (η + δFEC ≤ D) =

N−1∑
A=0

P (δFEC = A)

b (D−A)K
N c∑
i=0

P

(
η =

iN

K

)
, (33)

where the probabilities for δFEC and η are obtained as in
Sec. 4.

Since it is not possible to find a closed solution for all
(N,K) such that P (η + δFEC ≤ D) ≥ θ, we search over
the space of (N,K) to find the optimal (N,K) which meets
the delay target D and minimizes N

K . For a given K, we can
stop searching over increasing N once we meet the target
(otherwise we are over-protecting). Also, for a given K, no
minimal N may be found to meet the criteria because the
FEC decoder delay itself may exceed the delay threshold.
In this case, we can stop increasing K once this condition
is reached. We perform optimization using the following
algorithm.

Set K = 1
Set IncreaseCnt = 0
Set current minimal redundancy λmin =∞
Find minimal N such that P (η + δFEC ≤ D) ≥ θ.
Step 2:
if N found and N

K < λmin

λmin ← N
K

if no N found or NK > λmin

IncreaseCnt← IncreaseCnt+ 1
if IncreaseCnt < K

2
K ← K + 1
goto step 2

else
exit

We note that although we present work to optimize the
code to meet percentile delay constraints, it can easily be
modified to allow the application to meet arbitrary average
delay constraints or any other constraint which we can de-
rive from a probability distribution. Meeting average delay
constraints can be done by finding codes so that E[τ ] ≤
δOWD +D.

6. IMPLEMENTATION
Since it is difficult to compute the optimal (N,K) in real-

time as it involves fairly complicated probability computa-
tions and searching over the space of (N,K), we can pre-
compute the optimal values of (N,K) for various values of
δRTT (in packets), ε, θ, and D (in packets) and store them in
a table.

Since the number of possible values for each of the above
parameters can be large, simple pre-computation for all pos-
sible values is not possible and thus the parameters must be
quantized. We use log quantization for δRTT and D since
the dynamic range of δRTT can be very large. δRTT in units
of packets is the bandwidth-delay product (BDP) which can
be on the order from a few packets up to several thousands.
If we use linear quantization, then the percentage error in
δRTT for small δRTT would be large. We use the following
parameter quantization in our implementation.
• δRTT is quantized using log quantization in the

range of [5, 2000] using 50 bins. That is the quan-
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tized value is given by Q(δRTT ) = 2I(δRTT )∆,
where ∆ = log2(2000)−log2(5)

50 and I(δRTT ) =

d log2(δRTT )−log2(5)
50 e. Here ceiling is used since larger

RTT requires more protection. Log quantization en-
sures that the percentage error after quantization is not
large for small values.
• ε is quantized linearly in increments of 0.005 (0.5%)

from 0 to 0.1. giving 21 possible values.
• θ is quantized to one of the following values
{0.95, 0.98, 0.99, 0.995, 0.999}. Quantization gives a
value larger than the targeted θ. For example, to target
the 98.5% sequential latency, we would quantize θ to
0.99.
• D is quantized using the same way as δRTT except us-

ing a floor instead of ceiling since by meeting a smaller
sequential latency target, the actual target will be met.

We note that the range ofD can only be up to δRTT since we
assume that we can always receive a packet in two rounds.

By using the above quantization, we only need to store
50∗21∗5∗50

2 = 131250 values for the optimal (N,K). This
makes the table size needed to about 260KB which is very
manageable. In addition, computing the optimal values for
all combinations does not take long (< 10 minutes).

In order to implement usage in an application, the appli-
cation needs an estimate of the packet size P , transmission
rate T , loss rate ε, and RTT δRTT . The application speci-
fies a target percentile for τ using D and θ. Using P and
T , δRTT and D are converted into units of packets. Then,
using δRTT (in units of packets), ε, θ, and D (in units of
packets), we look up the optimal (N,K) in the precomputed
table. Since the application may not be CBR, it waits for a
minimum ofK packets or for KPT seconds to declare a block
boundary. Thus, the actual number of packets in a block may
be less than K (say K ′). It then inserts dN−K

′

K′ e packets of
FEC and moves to the next block.

7. EVALUATION
We first compare the optimal redundancy as a function of

each of the four parameters, δRTT , ε, D, and θ. In order to
do this, we vary each of the four parameters and fix the other
parameters using δRTT = 106 packets, ε = 0.01, D = 31
packets, and θ = 0.99 (99% delay of less than or equal to
31 packets). The results are shown in Fig. 4. We find the
following four trends which is as expected. The required re-
dundancy increases as δRTT increases, as ε increases, as the
sequential latency target D decreases, and as the percentile
for the latency target theta increases. We note that even
with a 1% loss rate, if we wish the 99% delay to be no more
than a quarter of the RTT, then the redundancy required for
high-BDP networks (2000 packets) is actually over 13%. Al-
though this seems high, it is actually correct since a single
packet loss causes a large number of packets to be delayed
due to head-of-line blocking. In addition, we note that as the
sequential latency target approaches the RTT, the required
redundancy drops to zero. In such cases, the application can

rely on retransmissions alone to meet the target.
We also show the optimal value of the FEC coding block

size (K) using the same methodology in Fig. 5. Here we
see the following trend. The optimal value for K is inde-
pendent of δRTT , ε, and θ. It is mostly a function of the
latency target D. This is most likely due to the fact that
larger K is actually more optimal from an FEC standpoint.
For example, (N,K) = (24, 20) code is more optimal than
a (N,K) = (12, 10) from a decodability perspective even
though both have the same amount of redundancy. The only
reason K cannot go beyond a certain point is that a larger K
results in not being able to meet the delay target, D. The
only reason the optimal K does not grow beyond 30 for
increasing values of D is because of the constraint placed
when performing the search for the optimal (N,K).

In Fig. 6, we show the achieved delay target (the θ per-
centile value of tau − δOWD) as a function of each of the
four parameters along with the desired latency target, D, by
performing simulation. For the cases when δRTT , ε, and θ
are varied, the latency target, D = 31 is used. For the case
when D is varied, the other parameters are fixed as before.
This shows that the proposed optimization is indeed able to
achieve arbitrary per-packet sequential latency targets as ex-
pected. In fact, the targets are met for all cases of δRTT , ε,
D, and θ. The results in Fig. 6 simply show a subset of the
results.

7.1 Sensitivity Analysis
We also attempt to perform sensitivity analysis to see

what the effects are in case the network parameters are mis-
estimated. The results are shown in Fig. 7. We first com-
pute the optimal (N,K) with estimated network parame-
ters of δRTT = 106 packets and ε = 0.01 for applica-
tion requirements of D = 31 packets and θ = .01, that is
P (τ ≥ 137) ≤ 0.01). However, then we suppose that our
estimates of the bandwidth-delay product are incorrect and
we simulate what the effects of that would be.

From Fig. 7 (a) and (b), we see that even if the true
bandwidth-delay product is between 50% to 150% of the es-
timated, there is no effect on the performance. From Fig. 7
(c) and (d), we find that if the true loss rate is double the esti-
mated, then it has little effect on the performance. However,
if the loss rate is 3% and is estimated at 1%, then the 99%
delay increases to 3x of what is desired and the target delay
becomes the 95% delay instead of the 99% delay as desired.

Overall, we see that performance is dependent on get-
ting accurate network estimates, but some amount of mis-
estimation is tolerated fairly well.

8. RELATED WORK
There is a significant amount of work related to network

protocols. In particular, there is a large body of literature on
congestion control protocols using TCP, TCP variants, and
other bandwidth estimation techniques [4,7–9,11,16,17,19].
Much of this work can be used to provide the rate control
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Figure 5: Optimal FEC block size (K) as function of each of the four parameters, δRTT , ε, D, and θ. The specified parameter
is varied while the other three are held constant.

framework needed by any application. This can tell our al-
gorithm how much to send. With minor modifications in
signaling mechanisms and acknowledgments, much of this
work can be modified so that it does not control what to
send. Note that what to send should be application depen-
dent as differing applications have differing requirements.

There is also a large body of literature in network param-
eter estimation [5, 16, 19, 22] which can be used both by
congestion control protocols to enhance their performance
and also be used by our protocol. This in conjunction with
congestion control literature can provide the network control
and estimation.

There has also been work which relates to improving the
performance of real-time interactive applications by utiliz-
ing proactive forward error correction, both with and with-
out retransmissions [12,13,23]. However, some propose ad-
hoc FEC [13] which may result in under-protection or over-
protection. In [23], the authors optimize for a different met-
ric which is geared towards message based streaming where
only each message must remain intact and some messages
may be lost. In [12], the authors attempt to minimize aver-
age delay for reliable streaming. However, the optimization
there cannot meet arbitrary statistical constraints which may
be required by the application as there is no probability dis-
tribution. In addition, the average delay minimization does
not take compute a coding rate for FEC, but rather is only
able to generate instantaneous FEC packets based on the cur-
rent buffer fullness.

As far as we know, there is no work in the literature which
proposes to compute the exact probability distribution of se-
quential latency and then use it to derive optimal coding pa-

rameters to meet arbitrary statistical constraints which are
needed by the application.

We also argue that it is actually extremely desirable to al-
low applications to decide exactly what to send as each of
them has different requirements, some may want to be as
close to channel capacity as possible, while others would
trade capacity for reducing per-packet sequential latency.
Allowing each application to independently decide what to
send is entirely possible as it does not have any effect on the
congestion characteristics of the network, so long as they
obey how much to send which should be governed by the
congestion control protocol. This separation between how
much to send and what to send should be the future of all
transport protocols going forward. Only how much to send
requires cooperation amongst all the flows which are sharing
the link.

9. CONCLUSION
In this paper, we have provided a probability model for the

per-packet sequential latency which, in addition to through-
put, is the measure which is important for user-perceived
performance in interactive applications requiring reliable
data transmission. Since both throughput and latency are im-
portant for such applications, we have used this probability
model to optimize for throughput while still meeting arbi-
trary latency constraints as required by the application. By
using pre-computation and intelligent quantization of net-
work parameters, we have provided a way to efficiently im-
plement this in an application without any significant over-
head, both in terms of memory and computation.
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APPENDIX
A. PROOF OF CLAIM 1

Here we show that Eqn. 10 and Eqn. 11 have the same
probability distribution with the reasonable assumption that
δRTT ≥ N . Consider packet I such that

I = argmax
n

max
i=0

wn−iδRTT + δFEC,n−i − (sn − sn−i).
(34)

We first prove the following two Lemmas.

LEMMA 1. All packets within the coding block contain-
ing packet I and future coding blocks must have wn−i ≤
wn−I .

PROOF. Suppose wn−i > wn−I for some i. If packet
i has index ι ∈ 1, . . . ,K in the coding block, then
δFEC,n−i = 0 or δFEC,n−i = (K + 1) − ι, . . . , N − ι.
Then, we can write

wn−iδRTT + δFEC,n−i − (sn − sn−i)−
wn−IδRTT + δFEC,n−I − (sn − sn−I) =

(wn−i − wn−I)δRTT+

(δFEC,n−i + sn−i)− (δFEC,n−I + sn−I) ≥
(wn−i − wn−I)δRTT + (0 + ιn−i)− (N − ιn−j + ιn−j) =

(wn−i − wn−I)δRTT −N + ιn−i ≥ 1 (35)

since δRTT ≥ N . Thus, if wn−i > wn−I for any i in
the coding block, the definition of I is violated. For cod-
ing blocks sent after that containing packet i, sn−i would
even be larger and thus the definition of I would still be vio-
lated.

Since all packets within the coding block have wn−i ≤
wn−I , we can now show that τn = wn−IδRTT +
δFEC,n−I − (sn − sn−I) can alternatively be written using

τn = wn−JδRTT + δFEC,n−J − (sn − sn−J), (36)

J = argmax
n

max
i=0

wn−iδRTT − (sn − sn−i) (37)

where δFEC,n−J is the additional delay required to decode
the coding block to which packet J belongs. To show this,
we first prove another Lemma.

LEMMA 2. Packet I and J must be from the same coding
block and wn−I = wn−J .

PROOF. If I is contained in a future coding block from
block J , then from 1, wn−I ≤ wn−J . However, wn−I <
wn−J would violate the definition of I and thus wn−I =
wn−J . From this, we would get

wn−IδRTT − (sn − sn−I)−
wn−JδRTT − (sn − sn−J) =

sn−I − sn−J ≥
(ιn−I +N)− (ιn−J) ≥

>= N −K + 1 (38)

which would violate the definition of I . We can similarly
show that if J is from future coding block, we would vi-
olate the definition of I . Thus, we can conclude that I
and J have to be from the same coding block and have
wn−I = wn−J .

Now since I and J are from the same coding block, we
see that if packet I has an index ιI and if fn−I FEC packets
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are used to decode the block, then

τn = wn−IδRTT + (K + fn−I − ιn−i)−
(sn − (s′n−i + ιn−i))

= wn−IδRTT + (K + fn−I)− (sn − s′n−i), (39)

where s′n−i is the send time of the first packet within the
coding block. Therefore, any packet in the coding block con-
taining packet I which is recovered with wn−i = wn−I will
achieve the max and thus not only must packet I and J be
from the same coding block, but they can be identical, that
is I = J .

So for probability distribution purposes, using J will pro-
vide the same results as using packet I . Since δFEC,n−i is
stationary, we can simply use δFEC,n for probability distri-
bution purposes instead of using δFEC,n−i. Thus we have
proved the claim.
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