
MINING EFFECTIVE NEGATIVE TRAINING SAMPLES FOR KEYWORD SPOTTING

Jingyong Hou1, Yangyang Shi2, Mari Ostendorf3, Mei-Yuh Hwang2, Lei Xie1

1School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
2Mobvoi AI Lab, Redmond, USA

3Department of Electrical & Computer Engineering, University of Washington, Seattle, USA
{jyhou,lxie}@nwpu-aslp.org, ostendor@uw.edu, {yyshi,mhwang}@mobvoi.com

ABSTRACT
Max-pooling neural network architectures have been proven to be
useful for keyword spotting (KWS), but standard training methods
suffer from a class-imbalance problem when using all frames from
negative utterances. To address the problem, we propose an inno-
vative algorithm, Regional Hard-Example (RHE) mining, to find
effective negative training samples, in order to control the ratio of
negative vs. positive data. To maintain the diversity of the negative
samples, multiple non-contiguous difficult frames per negative train-
ing utterance are dynamically selected during training, based on the
model statistics at each training epoch. Further, to improve model
learning, we introduce a weakly constrained max-pooling method
for positive training utterances, which constrains max-pooling over
the keyword ending frames only at early stages of training. Finally,
data augmentation is combined to bring further improvement. We
assess the algorithms by conducting experiments on wake-up word
detection tasks with two different neural network architectures. The
experiments consistently show that the proposed methods provide
significant improvements compared to a strong baseline. At a false
alarm rate of once per hour, our methods achieve 45-58% relative
reduction in false rejection rates over a strong baseline.

Index Terms— Keyword spotting, Wake-up word detection,
Class imbalance, End-to-end, Hard examples

1. INTRODUCTION

Small-footprint Keyword Spotting (KWS) systems are widely used
in IoT devices such as smart speakers and mobile phones for wake-
up word detection. On these devices, the KWS system needs to pro-
cess streaming audio in real-time, locally on the device, to detect
some predefined keyword(s). An accurate, fast, and small-footprint
KWS system is highly desired to reduce power needs of computa-
tion. We classify recent popular KWS architectures into two cate-
gories: keyword/filler posterior modeling followed by a search algo-
rithm, and end-to-end (E2E) based architectures.

In the first approach [1, 2, 3, 4, 5], each word (or subword) of
the keyword (can be multiple words) is modeled by a Hidden Markov
Model (HMM) and usually an additional phone-loop graph is used
as a filler model to absorb non-keyword speech segments. Given
the posterior probabilities of the (sub)word units, a simple search al-
gorithm is followed to find the occurrence of the keyword phrase,
similar to speech recognition. With the success of Deep Neural
Networks (DNNs) [6], some recent work has replaced HMMs with
pure DNNs [7, 8, 9, 10, 11] or simplified HMM-DNN hybrid mod-
els [12, 13, 14, 15, 16]. In these newer approaches, an output node
to represent the posterior of filler segments is often used to replace
the phone-loop HMM graph.

E2E architectures bring further improvement to small-footprint
KWS. They treat a keyword as a single modeling unit and simply
detect its presence in the streaming utterance. As each frame arrives,
the model decides if a keyword has been discovered. In this case,
KWS becomes a keyword/non-keyword binary classification task.
The sequence binary classification model is trained to minimize the
keyword category cross entropy loss [17, 18, 19, 20].

As Sun et al. [21] points out, cross-entropy based training relies
on accurate time labeling of the keyword. To alleviate the depen-
dency, they proposed a max-pooling based cross-entropy loss func-
tion: for each positive keyword utterance, the keyword category is
updated based on the single frame with the highest positive-class
posterior within the keyword location. For the non-keyword cate-
gory, all the frames in non-keyword regions are used, including the
non-keyword segments in positive utterances. This causes a severe
class imbalance problem; i.e., the ratio of non-keyword vs. keyword
training samples is unreasonably large.

Class imbalance is common in small-footprint KWS training,
because it is expensive to collect positive keyword training data,
while it is easy to find abundant non-keyword data. On the other
hand, we do need a large amount of diverse negative training data to
prevent false alarms, especially due to phrases similar to the keyword
or due to various environment noises. The class imbalance problem
in deep KWS systems [7] has been addressed by Liu et al. [11] using
focal loss.

In this paper, we focus on improving max-pooling based E2E
KWS. To alleviate the class imbalance problem during training, we
propose a regional hard-example (RHE) mining algorithm to select
representative negative training samples. The idea is inspired by
the Online Hard Example Mining algorithm in object detection [22].
Our proposed method includes a few innovations. First, we select ef-
fective negative examples dynamically during training, at the same
time maintaining a controlled ratio of positive vs. negative train-
ing samples within each mini-batch. Second, to address inaccu-
rate time labeling of the keyword associated with automatic force-
alignment by existing acoustic models, we use weakly constrained
max-pooling, where the restriction of max-pooling over keyword ar-
eas is enforced only at early stages of training. In addition, to allevi-
ate over-fitting in training, SpecAugment [23] is applied, which has
been proven useful in automatic speech recognition.

To verify our proposals, we conduct experiments using both
Gated Recurrent Unit (GRU) [24] and dilated Temporal Convolu-
tional Network (TCN) [25] structures. At a false alarm rate (FAR) of
once per hour, our method achieves 45-58% relative reduction in the
false rejection rate (FRR) on two different keywords, over a strong
baseline system. Our code will be made public after peer review.1

1github.com/jingyonghou/KWS Max-pooling RHE.git



2. METHODS

2.1. KWS with end-to-end solutions

In this section, we define the wake-up word detection task in our
E2E detection framework. We use one keyword as an example; it
can be easily extended to detect multiple keywords. Suppose we
have a predefined keyword or keyphrase α. For each time frame t,
we denote its feature vector as xt. The wake-up word detector Q
assigns a score yt for each xt. As soon as yt > γ, we say keyword
α has occurred. γ ∈ (0, 1) is a threshold tuned on a development
dataset.

To model the acoustic sequence for keyword spotting, recurrent
neural networks (RNNs) and TCNs are two common choices for E2E
modeling Q [18, 19, 20, 21, 26]. An RNN models long contex-
tual information by its memory mechanism and recurrent connec-
tions, while a TCN models long contextual information through the
stacked temporal convolutions with dilate connections. On top of the
RNN (here, a GRU) or TCN, a linear layer with a sigmoid activation
is applied to do the binary classification.

2.2. Loss function with cross entropy

E2E KWS is a sequence binary classification problem. The cross-
entropy (CE) loss for binary classification is formulated as follows,
for each mini-batch of size M :

Loss(CE) =
1

M

M∑
i=1

CE(yi, y
∗
i ) (1)

=
1

M

M∑
i=1

[−y∗i ln yi − (1− y∗i ) ln(1− yi)]

where y∗i ∈ {0, 1} is the ground-truth class label for frame i, yi =
Q(xi; θ) ∈ (0, 1) is the posterior probability of the keyword cate-
gory estimated by the model Q with parameter θ.

2.3. Baseline max-pooling

Max-pooling based loss is first proposed by Sun et al. [21] for train-
ing RNN-based E2E KWS. Assume each positive training utterance
contains one single occurrence of the keyword and its beginning and
ending timestamps are denoted as (tb, te). For each positive ut-
terance, constrained max-pooling selects the single frame with the
highest positive posterior within (tb, te) as a positive training ex-
ample. The frames outside the keyword segment in the positive ut-
terance and all frames from each negative utterance are treated as
negative training examples. Within a mini-batch, let P denote the
total number of positive training frames and N the total number of
negative training frames, thenM = N+P . It is easy to see that this
data labeling often results in N � P , i.e., severe data imbalance.

The baseline max-pooling loss we conduct in this paper is
slightly different from [21] in the following ways. We use a single
output node with a sigmoid activation instead of two output nodes
with a softmax to get the posterior probability. We do max-pooling
over the ending area of each keyword, as in [18], instead of within
the keyword. We also discard the rest of data in the positive train-
ing utterance, rather than use it as negative data. To reduce false
triggering of similar frames matching the initial segment of the key-
word, [21] stacked the current frame with left and right neighboring
frames. Patching the input feature with future frames can cause
latency at run-time; this is not required by our proposed method.

In this paper, we call the keyword ending segment of (te ± δ)
the trigger region or TR for short, and keep δ = 30 as a constant.

2.4. Proposed max-pooling

Different from [18], we do not use all data from negative utterances
for back-propagation. Instead we strategically down-sample nega-
tive frames to keep data in check between the two classes. Moreover,
constrained max-pooling is used only at early stages of training.

2.4.1. Mining regional hard examples (RHE) in negative utterances

To alleviate the class-imbalance issue with max-pooling, we pro-
pose a simple algorithm to down-sample negative frames, choosing
difficult time samples from negative utterances, as detailed in Al-
gorithm 1. For each negative utterance in a mini-batch, we select
the most difficult frame with the top positive posterior probability
computed by the current model. This frame is put into a collection
I. Then, we mask ∆ neighboring frames (both left and right neigh-
bors) of the selected hardest frame. These masked frames are not
selected, as they are assumed to be acoustically similar to the se-
lected frame. We continue the RHE mining based on the remaining
frames until no more negative frames are left. After processing all
the negative utterances in a mini-batch, we rank all negative frames
in I by their posterior probabilities and select the top rP frames for
training the negative class, thereby keeping the data ratio between
these two classes to be under r.

Algorithm 1 Mining regional hard examples in a negative utterance
Input: y = (y1, y2, ..., yT ): Given a negative utterance of T

frames, yi is the positive posterior probability of frame i com-
puted by the current model. A region parameter ∆ is pre-defined
to indicate the neighborhood region for frame i: (i−∆, i+ ∆).

Output: I: A collection of selected negative frames.
1: Sort y descendingly according to the posteriors, yielding s =

(s1, s2, ..., sT ), the frame indices after sorting. ysi corresponds
to i-th largest posterior in y.

2: Denote the availability of the T frames with a binary array: a =
(a1, a2, ..., aT ). ai = 1 means frame i in the original input is
available for selection. ai = 1 ∀i initially.

3: for (i = 1; i ≤ T ; i+ +) do
4: if sum(a) == 0 then
5: break
6: end if
7: if asi == 1 then
8: push(I , frame si)
9: t1 = max(si −∆, 1)

10: t2 = min(si + ∆, T )
11: a[t1 : t2] = 0
12: end if
13: end for

2.4.2. Weakly constrained max-pooling for positive utterances

In max-pooling based training, the frame, within TR, that gets the
highest positive posterior probability, is used for training. How-
ever, TR usually comes from automatic force-alignment by existing
acoustic models, which may not be accurate. To alleviate the inac-
curate TR/force-alignment problem, we propose a simple strategy
which selects the positive frame in TR only at early stages of net-
work training (we do so in the first two epochs in our experiments).



Table 1. Corpus statistics (#speakers/#utterances)
Data set Train (60%) Dev (10%) Test (30%)

Hi Xiaowen 474/ 21,825 78/ 3,680 236/10,641
Nihao Wenwen 474/ 21,800 78/ 3,677 236/10,641

Non-keyword 418/113,898 67/17,522 203/51,613
All 474/157,523 78/24,879 236/72,895

This enables the network converge faster and makes training more
stable. In later epochs, we relax the TR constraint to select the sin-
gle frame from any frame in the positive utterance since the model
now is better trained. We call the early-epoch TR constraint, the
weak constraint.

2.5. Data Augmentation

SpecAugment [23] strategy was first proposed for E2E speech recog-
nition and achieved a great success. We apply time masking and
frequency masking in this paper. For each training utterance, we
randomly select 0 − 50 consecutive frames and set all of their mel-
filter banks to zero, for time masking. For frequency masking, we
randomly select 0 − 30 consecutive dimensions of the 40 mel-filter
banks and set their values to zero for all frames of the utterance.
For all the utterances in a training mini-batch, one-third of them re-
ceive only the time masking, one-third of them only the frequency
masking, and the rest of them both maskings. Though this method
deforms instead of doubling the original data set, it is considered
augmentation as each mini-batch at different epoches is deformed
differently. The training observes data with a lot more varieties than
the original data amount. Hence it is considered a data-augmentation
method.

3. EXPERIMENTS

3.1. Corpus

A wake-up word detection corpus collected from a commercial smart
speaker is used to verify our algorithm. The dataset is identical
to the corpus in [20], where the corpus consists of two keywords:
”Hi Xiaowen” and ”Nihao Wenwen”. All speakers are recorded say-
ing both keywords, and the keyword lengths range from 30 to 200
frames. Here we train separate models for each keyword, different
from [20], which treated this as a multi-class classification problem.
When we train a model for one keyword, the other keyword’s utter-
ances are used as negative training data. Detailed corpus statistics
can be found in Table 1. 40-dimensional mel-filter banks features
with 25ms frame length and 10ms frame shift are extracted as input
features for model training. To obtain the TR region for the posi-
tive utterances, keyword timestamps are automatically generated by
force alignment using Kaldi [27] HMM-TDNN (time delay neural
network) acoustic model trained on general Mandarin speech data.

3.2. Setups

3.2.1. Neural network architecture

Two different neural network architectures are used to verify our pro-
posed method. One is GRU and the other one is dilated TCN.

For GRU, 2 layers of unidirectional GRU and a projection layer
with ReLU activation are used. Each GRU layer has 128 cells. The
projection layer also has 128 output nodes.

For TCN, 1 preprocessing 1×1 1-d causal convolution layer and
8 dilated causal convolution (with a filter size of 8) layers are used.

Table 2. Systems with different data strategies
Methods Positive utterances Negative utterances Data ratio

δ = 30 ∆ = 200 r
B1 All TR frames All 35
B2 Max-pooling in TR All 2114
B3 Max-pooling in TR Random 200
S1 Max-pooling in TR RHE 10
S2 Weak constraint RHE 10
S2+SpecA Weak constraint RHE 10

The 8 dilated rates are {1,2,4,8,1,2,4,8}, resulting in a receptive field
of 210 frames. For each layer, ReLU activation is used, the number
of filters is 64.

We choose a mini-batch size of M=400. For all systems, we use
the warm-up strategy in the first 200 mini-batches by starting from
a small learning rate and gradually increasing the learning rate to
a predefined maximum value, which is tuned individually for each
system, ranging from 0.0005 to 0.01. Adam optimization is used
throughout the paper. After each epoch, we evaluate the loss on
the validation set. If there is no reduction in loss, the learning rate
begins to decay, by a factor of 0.7. Each model is trained for at
least 15 epochs. After that, if there is no decrease in the loss on the
validation set, we terminate the training.

3.2.2. Baseline systems

As listed in Table 2, three different baseline methods are imple-
mented in this paper. All systems are trained independently with
both GRU and TCN architectures.

B1 mainly follows [18]. It uses all TR frames in positive utter-
ances, and all frames in negative utterances, to train a binary classi-
fier. The ratio of negative training data vs. positive training data for
”Hi Xiaowen” is 35. For ”Nihao Wenwen”, it is roughly the same
ratio.

B2 is the max-pooling based method proposed by [21], with
modifications described in Sec. 2.3. The data ratio is 2114, deter-
mined by the roughly 60-frame duration of the TR (due to δ = 30).

B3 is also a max-pooling based method. Different from B2, we
do not use all the frames in negative utterances. Instead, we ran-
domly down-sample negative training data, setting r to be 200 in
each mini-batch.

For all systems we tuned the learning rates to achieve the best
for each system. For B1 method, learning rate of 0.005 is chosen
to train both GRU and TCN model. For B2, learning rates of 0.003
and 0.0005 are chosen to train GRU and TCN, respectively. For B3,
learning rates of 0.005 and 0.0005 are chosen to train GRU and TCN,
respectively.

3.2.3. Proposed systems

The bottom three rows in Table 2 apply our proposed algorithms.
For S1, instead of using all the frames in negative utterances, it uses
the proposed negative RHE mining algorithm to select non-keyword
training frames. S2 applies weakly constrained max-pooling de-
scribed in Sec. 2.4.2 on top of S1. That is, TR is used by positive
utterances only at the first two epoches of training. S2+SpecA ap-
plies SpecAugment based on S2. ∆ = 200 and r = 10 were tuned
on the S1 GRU ”Hi Xiaowen” system, and then are applied directly
to the rest of experiments without further tuning. Optimal learning
rates for GRU vs. TCN is 0.01 and 0.006 respectively.



Fig. 1. DET curves on ”Hi Xiaowen” with GRU.

Fig. 2. DET curves on ”Hi Xiaowen” with TCN.

3.3. Results

3.3.1. Effect of negative RHE mining

In Fig. 1 and Fig. 2, we analyze the effect of negative data mining
on ”Hi Xiaowen” KWS. Comparing the Detection Error Trade-off
(DET) curves of all baseline systems (B1, B2, B3), it shows that
max-pooling for the positive utterances degrades the performance
significantly. Only when max-pooling is combined with our pro-
posed negative data down-sampling that we see significant improve-
ment over B1 and B2.

In order to analyze whether the improvement from B2 to S1 is
completely due to data imbalance, we tried a few variations of B3,
which randomly sample the negative examples to control the data
ratio. We tried data ratio of 200, 100, 40, and 10. Among those, 200
gave us the best performance, shown in Fig. 1 and Fig. 2. Although
adjusting the data ratio yields some improvement, B3 is still much
worse than B1, not to mention S1. This means that it is crucial to
sub-sample negative frames smartly. Specifically, when FAR is fixed
at once per hour, S1 achieves 46% and 23% relative FRR decreases
with GRU and TCN respectively, compared with B1.

The hyper-parameters ∆ = 200 and r = 10 are tuned based on
S1 GRU ”Hi Xiaowen” system, and then frozen without further tun-
ing for the rest of experiments. It shows that these hyper-parameters
are robust, at least in our data sets.

3.3.2. Weakly constrained max-pooling and SpecAugment

Based on S1, we further validate the effect of weakly constrained
max-pooling (for positive utterances) and SpecAugment. The results
are shown in Fig. 3 and 4. As illustrated in the DET curves, we
find that weakly constrained max-pooling (S2) has more impact on
TCN than GRU. We conjecture that TCN training is more sensitive
to accurate alignment. When weakly constrained max-pooling and
SpecAugment are combined, both GRU and TCN models are better

Fig. 3. DET curves on ”Nihao Xiaowen” with GRU.

Fig. 4. DET curves on ”Nihao Xiaowen” with TCN.

than S1. When FAR is fixed at once per hour, S2+SpecA obtains
18% and 28% relative FRR decreases compared with S1 on GRU
and TCN respectively.

3.3.3. More comparisons on the second keyword

Finally, we verify our algorithms on the second keyword (”Nihao
Wenwen”) with the same optimal hyper parameters, by comparing
the best baseline, B1, and our best system, S2+SpecA. The results in
Table 3 confirm the consistent significant improvements in different
configurations, with FRR reductions of 45-58%.

4. SUMMARY

We propose a smart negative data mining algorithm, RHE, to dy-
namically select non-keyword training frames in negative utterances.
The proposed algorithm is able to deal with the class-imbalance issue
in keyword spotting tasks. We also propose a weakly-constrained
max-pooling strategy that restricts the max-pooling region only at
early stages of training. We verified the effectiveness of our propos-
als on two commercial wake-up keywords, using two different neural
network architectures. Combining with SpecAugment, our proposed
method is 45-58% better than our strongest baseline system.

Table 3. Comparison of B1 and S2+SpecA with different neural
network architectures and keywords with FAR fixed at one per hour.
Results are given with the percent reduction in FRR%.

Keywords
Networks GRU TCN

Hi Xiaowen 7.1/3.1 (56%) 7.4/4.1 (45%)
Nihao Wenwen 6.4/2.7 (58%) 7.3/3.5 (52%)
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