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ABSTRACT
Recent work on “learned indexes” has changed the way we

look at the decades-old field of DBMS indexing. The key idea

is that indexes can be thought of as “models” that predict the

position of a key in a dataset. Indexes can, thus, be learned.

The original work by Kraska et al. shows that a learned index

beats a B+Tree by a factor of up to three in search time and

by an order of magnitude in memory footprint. However, it

is limited to static, read-only workloads.

In this paper, we present a new learned index called ALEX

which addresses practical issues that arise when implement-

ing learned indexes for workloads that contain a mix of point

lookups, short range queries, inserts, updates, and deletes.

ALEX effectively combines the core insights from learned in-

dexeswith proven storage and indexing techniques to achieve

high performance and lowmemory footprint. On read-only

workloads, ALEXbeats the learned index fromKraska et al. by

up to 2.2× on performance with up to 15× smaller index size.

Across the spectrum of read-write workloads, ALEX beats

B+Trees by up to 4.1×while never performing worse, with

up to 2000× smaller index size. We believe ALEX presents

a key step towards making learned indexes practical for a

broader class of database workloads with dynamic updates.

1 INTRODUCTION
Recentwork byKraska et al. [19], whichwewill refer to as the

Learned Index, proposes to replace a standard database index

with a hierarchy of machine learning (ML) models. Given a

key, an intermediate node in the hierarchy is a model to pre-

dict the childmodel to use, and a leaf node in this hierarchy is a

model to predict the location of the key in a densely packed ar-

ray (Fig. 1). Themodels for this Learned Index are trained from

the data. Their key insight is that using (even simple) models

that adapt to the data distribution to make a “good enough”

guess of a key’s actual location significantly improves per-

formance. However, their solution can only handle lookups

on read-only data, with no support for update operations.

This critical drawback makes the Learned Index unusable for

dynamic, read-write workloads, common in practice.

* Work performed while at Microsoft Research.

In this work, we start by asking ourselves the following

research question: Can we design a new high performance in-
dex for dynamic workloads that effectively combines the core
insights from the Learned Index with proven storage & index-
ing techniques to deliver great performance in both time and
space? Our answer is a new in-memory index structure called

ALEX, a fully dynamic data structure that simultaneously pro-

vides efficient support for point lookups, short range queries,

inserts, updates, deletes, and bulk loading. This mix of opera-

tions is commonplace in online transactionprocessing (OLTP)

workloads [6, 8, 32] and is also supported by B+Trees [29].

Implementing writes with high performance requires a

careful design of the underlying data structure that stores

records. [19] uses a sorted, densely packed arraywhichworks

well for static datasets but can result in high costs for shifting

records if new records are inserted. Furthermore, the pre-

diction accuracy of the models can deteriorate as the data

distribution changes over time, requiring repeated retraining.

To address these challenges, we make the following technical

contributions in this paper:

• Storage layout optimized for models: Similar to a

B+Tree, ALEX builds a tree, but allows different nodes

to grow and shrink at different rates. To store records

in a data node, ALEX uses an array with gaps, aGapped
Array, which (1) amortizes the cost of shifting the keys

for each insertion because gaps can absorb inserts, and

(2) allowsmore accurate placement of data usingmodel-
based inserts to ensure that records are located closely
to the predicted position when possible. For efficient

search, gaps are actually filled with adjacent keys.

• Search strategy optimized for models: ALEX ex-

ploits model-based inserts combined with exponential
search starting from the predicted position. This always

beats binary search when models are accurate.

• Keeping models accurate with dynamic data dis-
tributions and workloads: ALEX provides robust

performance evenwhen the data distribution is skewed

or dynamically changes after index initialization. ALEX

achieves this by exploiting adaptive expansion, and

node splittingmechanisms, pairedwith selectivemodel

retraining, which is triggered by intelligent policies



based on simple cost models. Our cost models take the

actual workload into account and thus can effectively

respond to dynamic changes in the workload. ALEX

achieves all the above benefitswithout needing to hand-

tune parameters for each dataset or workload.

• Detailed evaluation:We present the results of an ex-

tensive experimental analysis with real-life datasets

and varying read-writeworkloads and compare against

state of the art indexes that support range queries.

On read-only workloads, ALEX beats the Learned Index by

up to 2.2× on performance with up to 15× smaller index size.

Across the spectrum of read-write workloads, ALEX beats

B+Tree by up to 4.1×while never performing worse, with up

to 2000× smaller index size. ALEX also beats anML-enhanced

B+Tree and the memory-optimized Adaptive Radix Tree,

scales to largedata sizes, and is robust todatadistribution shift.

In the remainder of this paper, we give background (Sec-

tion 2), present the architecture of ALEX (Section 3), describe

the operations on ALEX (Section 4), present an analysis of

ALEX performance (Section 5), present experimental results

(Section 6), review related work (Section 7), and conclude

(Section 8).

2 BACKGROUND
2.1 Traditional B+Tree Indexes
B+Tree is a classic range index structure. It is aheight-balanced
tree which stores either the data (primary index) or pointers

to the data (secondary index) at the leaf level, in a sorted order

to facilitate range queries.

A B+Tree lookup operation can be broken down into two

steps: (1) traverse to leaf, and (2) search within the leaf. Start-

ing at the root, traverse to leaf performs comparisonswith the

keys stored in each node, and branches via stored pointers to

the next level. When the tree is deep, the number of compar-

isons and branches can be large, leading tomany cachemisses.

Once traverse to leaf identifies the correct leaf page, typically

a binary search is performed to find the position of the key

within the node, which might incur additional cache misses.

The B+Tree is a dynamic data structure that supports in-

serts, updates, and deletes; is robust to data sizes and distribu-

tions; and is applicable in many different scenarios, including

in-memory and on-disk. However, the generality of B+Tree

comes at a cost. In some cases knowledge of the data helps

improve performance. As an extreme example, if the keys are

consecutive integers, we can store the data in an array and

perform lookup in O(1) time. A B+Tree does not exploit such

knowledge. Here, “learning” from the input data has an edge.

2.2 The Case for Learned Indexes
Kraska et al. [19] observed thatB+Tree indexes canbe thought

of as models. Given a key, they predict the location of the key

Figure 1: Learned Index by Kraska et al.

within a sorted array (logically) at the leaf level. If indexes are

models, they can be learned using traditional ML techniques

by learning the cumulative distribution function (CDF) of the

input data. The resulting Learned Index is optimized for the

specific data distribution.

Another insight fromKraska et al. is that a singleMLmodel

learned over the entire data is not accurate enough because of

the complexity of the CDF. To overcome this, they introduce

the recursive model index (RMI ) [19]. RMI is a hierarchy of

models, with a static depth of two or three, where a higher-
level model picks the model at the next level, and so on, with

the leaf-level model making the final prediction for the posi-

tion of the key in the data structure (Fig. 1). Logically, the RMI

replaces the internal B+Tree nodes with models. The effect

is that comparisons and branches in internal B+Tree nodes

during traverse to leaf are replaced by model inferences in a

Learned Index.

In [19], the keys are stored in an in-memory sorted array.

Given a key, the leaf-level model predicts the position (array

index) of the key. Since themodel is not perfect, it couldmake

a wrong prediction. The insight is that if the leaf model is

accurate, a local search surrounding the predicted location is

faster thanabinary searchon the entire array.To support local

search, [19] keepsmin andmax error bounds for each model

in RMI and performs binary search within these bounds.

Last, each model in RMI can be a different type of model.

Both linear regression and neural network based models are

considered in [19]. There is a trade-off between model accu-

racy andmodel complexity. The root of the RMI is tuned to be

either a neural network or a linear regression, depending on

which provides better performance, while the simplicity and

the speed of computation for linear regression model is bene-

ficial at the non-root levels. A linear regression model can be

represented as𝑦 = ⌊𝑎∗𝑥+𝑏⌋, where 𝑥 is the key and𝑦 is the
predicted position. A linear regression model needs to store

just two parameters 𝑎 and 𝑏, so storage overhead is low. The

inference with a single linear regression model requires only

onemultiplication, one addition and one rounding, which are

fast to execute on modern processors.

Unlike B+Tree,which could havemany internal levels, RMI

uses two or three levels. Also, the storage space required for

models (two or four 8-byte double values per model) is much

smaller than the storage space for internal nodes in B+Tree



(which store keys and pointers). A Learned Index can be an

order ofmagnitude smaller inmainmemory storage (vs. inter-

nal B+Tree nodes), while outperforming a B+Tree in lookup

performance by a factor of up to three [19].

The main drawback of the Learned Index is that it does

not support any modifications, including inserts, updates, or

deletes. Let us demonstrate a naïve insertion strategy for such

an index. Given a key𝑘 to insert, we first use themodel to find

the insertionposition for𝑘 . Thenwe create a newarraywhose

length is oneplus the length of the old array.Next,we copy the

data from the old array to the new array, where the elements

on the right of the insertion position are shifted to the right

by one position. We insert 𝑘 at the insertion position of the

new array. Finally, we update themodels to reflect the change

in the data distribution. Such a strategy has a linear time com-

plexity with respect to the data size, which is unacceptable in

practice. Kraska et al. suggest building delta-indexes to han-

dle inserts [19], which is complementary to our strategy. In

this paper, we describe an alternative data structure to make

modifications in a learned index more efficient.

3 ALEXOVERVIEW
The ALEX design (Fig. 2) takes advantage of two key insights.

First, we propose a careful space-time trade-off that not only

leads to an updatable data structure, but is also faster for

lookups. To explore this trade-off, ALEX supports aGapped
Array (GA) layout for the leaf nodes, which we present in Sec-
tion 3.2. Second, the Learned Index supports static RMI (SRMI)

only, where the number of levels and the number of models in

each level isfixedat initialization. SRMIperformspoorlyon in-

serts if the data distribution is difficult to model. ALEX can be

updateddynamically andefficiently at runtimeanduses linear

cost models that predict the latency of lookup and insert oper-

ations basedon simple statisticsmeasured fromanRMI.ALEX

uses these cost models to initialize the RMI structure and to

dynamically adapt the RMI structure based on the workload.

ALEX aims to achieve the following goals w.r.t. the B+Tree

and Learned Index. (1) Insert time should be competitive with

B+Tree, (2) lookup time should be faster than B+Tree and

Learned Index, (3) index storage space should be smaller than

B+Tree and Learned Index (4) data storage space (leaf level)

should be comparable to dynamic B+Tree. In general, data

storage space will overshadow index storage space, but the

space benefit from smaller index storage space is still im-

portant because it allows more indexes to fit into the same

memory budget. The rest of this section describes how our

ALEX design achieves these goals.

3.1 Design Overview
ALEX is an in-memory, updatable learned index. ALEX has

a number of differences from the Learned Index [19].
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Figure 2: ALEXDesign

The first difference lies in the data structure used to store

the data at the leaf level. Like B+Tree, ALEX uses a node per
leaf. This allows the individual nodes to expand and splitmore

flexibly and also limits the number of shifts required during

an insert. In a typical B+Tree, every leaf node stores an array

of keys and payloads and has “free space” at the end of the

array to absorb inserts. ALEX uses a similar design but more

carefully chooses how to use the free space. The insight is

that by introducing gaps that are strategically placed between

elements of the array, we can achieve faster insert and lookup

times. As shown in Fig. 2, ALEX uses a Gapped Array (GA)

layout for each data node, which we describe in Section 3.2.

The second difference is thatALEXuses exponential search

to find keys at the leaf level to correct mispredictions of the

RMI, as shown in Fig. 2. In contrast, [19] uses binary search

within the error bounds provided by the models. We exper-

imentally verified that exponential search without bounds

is faster than binary search with bounds (Section 6.3.1). This

is because if the models are good, their prediction is close

enough to the correct position. Exponential search also re-

moves the need to store error bounds in themodels of the RMI.

The third difference is that ALEX inserts keys into data

nodes at the position where the models predict that the key

should be. We call thismodel-based insertion. In contrast, the
Learned Index produces an RMI on an array of records with-

out changing the position of records in the array.Model-based

insertion has better search performance because it reduces

model misprediction errors.

The fourth difference is that ALEX dynamically adjusts the

shape and height of the RMI depending on the workload. We

describe the design of initializing and dynamically growing

the RMI structure in Section 4.

The final difference is that ALEX has no parameters that

need to be re-tuned for each dataset or workload, unlike the

Learned Index, in which the number of models must be tuned.

ALEX automatically bulk loads and adjusts the structure of

RMI to achieve high performance by using a cost model.
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3.2 Node Layout
3.2.1 Data Nodes. Like a B+Tree, the leaf nodes of ALEX
store the data records and thus are referred to as data nodes,
shown as circles in Fig. 2. A data node stores a linear regres-

sionmodel (two double values for slope and intercept), which

maps a key to a position, and two Gapped Arrays (described

below), one for keys and one for payloads. We show only the

keys array in Fig. 2. By default, both keys and payloads are

fixed-size. (Note that payloads could be records or pointers to

variable-sized records, stored in separately allocated spaces
in memory). We also impose a max node size for practical
reasons (see details in Section 4).

ALEX uses aGapped Array layout which uses model-based

inserts to distribute extra space between the elements of the

array, thereby achieving faster inserts and lookups. In con-

trast, B+Treeplaces all the gaps at the endof the array.Gapped

Arrays fill the gaps with the closest key to the right of the

gap, which helps maintain exponential search performance.

In order to efficiently skip gaps when scanning, each data

node maintains a bitmap which tracks whether each location

in the node is occupied by a key or is a gap. The bitmap is fast

to query and has low space overhead compared to the Gapped

Array. We compare Gapped Array to an existing gapped data

structure called Packed Memory Array [4] in Appendix E.

3.2.2 Internal Nodes. We refer to all the nodes which are

part of the RMI structure as internal nodes, shown as rectan-
gles in Fig. 2. Internal nodes store a linear regression model

and an array containing pointers to children nodes. Like a

B+Tree, internal nodes direct traversals down the tree, but un-

like B+Tree, internal nodes in ALEX use models to “compute”

the location, in the pointers array, of the next child pointer

to follow. Similar to data nodes, we impose amax node size.
The internal nodes of ALEX serve a conceptually different

purpose than those of the Learned Index. Learned Index’s

internal nodes have models that are fit to the data; an inter-

nal node with a perfect model partitions keys equally to its

children, and an RMI with perfect internal nodes results in an

equal number of keys in each data node. However, the goal of

the RMI structure is not to produce equally sized data nodes,

but rather data nodes whose key distributions are roughly

linear, so that a linear model can be accurately fit to its keys.

Therefore, the role of the internal nodes in ALEX is to

provide a flexible way to partition the key space. Suppose

internal node A in Fig. 3 covers the key space [0,1) and has
four child pointers. A Learned Index would assign a node to

each of these pointers, either all internal nodes or all data

nodes. However, ALEX more flexibly partitions the space.

Internal node A assigns the key spaces [0,1/4) and [1/2,1)
to data nodes (because the CDF in those spaces are linear),

and assigns [1/4,1/2) to another internal node (because the
CDF is non-linear and the RMI requires more resolution into

this key space). As shown in the figure, multiple pointers can

point to the same child node; this is useful for handling inserts

(Section 4.3.3). We restrict the number of pointers in every

internal node to always be a power of 2. This allows nodes to

split without retraining its subtree (Section 4.3.3).

4 ALEXALGORITHMS
In this section, we describe the algorithms for lookups, inserts

(including how to dynamically grow the RMI and the data

nodes), deletes, out of bounds inserts, and bulk load.

4.1 Lookups and Range Queries
To look up a key, starting at the root node of the RMI, we

iteratively use the model to “compute” a location in the point-

ers array, and we follow the pointer to a child node at the

next level, until we reach a data node. By construction, the

internal node models have perfect accuracy, so there is no

search involved in the internal nodes.We use themodel in the

data node to predict the position of the search key in the keys
array, doing exponential search if needed to find the actual

position of the key. If a key is found, we read the correspond-

ing value at the same position from the payloads array and
return the record. Else, we return a null record. We visually

show (using red arrows) a lookup in Fig. 2. A range query first

performs a lookup to find the position and data node of the

first key whose value is not less than the range’s start value,

then scans forward until reaching the range’s end value, using

the node’s bitmap to skip over gaps and if necessary using

pointers stored in the node to jump to the next data node.

4.2 Insert in non-full Data Node
For the insert algorithm, the logic to reach the correct data

node (i.e., TraverseToLeaf) is the same as in the lookup al-

gorithm described above. In a non-full data node, to find the

insertion position for a new element, we use the model in the

data node to predict the insertion position. If the predicted

position is not correct (if inserting there would not maintain

sorted order), we do exponential search to find the correct

insertion position. If the insertion position is a gap, then we
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insert the element into the gap and are done. Else, we make a

gap at the insertion position by shifting the elements by one

position in the direction of the closest gap. We then insert

the element into the newly created gap. The Gapped Array

achieves𝑂 (log𝑛) insertion time with high probability [3].

4.3 Insert in full Data Node
When a data node becomes full, ALEX uses two mechanisms

to create more space: expansions and splits. ALEX relies on

simple cost models to pick between different mechanisms.

Below, we first define the notion of “fullness,” then describe

the expansion and split mechanisms, and the cost models.

We then present the insertion algorithm that combines the

mechanisms with the cost models. Algorithm 1 summarizes

the procedure for inserting into a data node.

4.3.1 Criteria for Node Fullness. ALEX does not wait for a

data node to become 100% full, because insert performance

on a Gapped Array will deteriorate as the number of gaps

decreases.We introduce lower and upper density limits on the

Gapped Array: 𝑑𝑙 ,𝑑𝑢 ∈ (0,1], with the constraint that 𝑑𝑙 <𝑑𝑢 .
Density is defined as the fraction of positions that are filled by

elements. A node is full if the next insert results in exceeding

𝑑𝑢 . By default we set 𝑑𝑙 =0.6 and 𝑑𝑢 =0.8 to achieve average

data storage utilization of 0.7, similar to B+Tree [13], which

in our experience always produces good results and did not

need to be tuned. In contrast, B+Tree nodes typically have

𝑑𝑙 =0.5 and 𝑑𝑢 =1. Section 5 presents a theoretical analysis of

how the density of the Gapped Array provides a way to trade

off between the space and the lookup performance for ALEX.

4.3.2 Node Expansion Mechanism. To expand a data node
that contains 𝑛 keys, we allocate a new larger Gapped Array

with 𝑛/𝑑𝑙 slots. We then either scale or retrain the linear re-

gression model, and then do model-based inserts of all the

elements in this new larger node using the scaled or retrained

model. After creation, the new data node is at the lower den-

sity limit 𝑑𝑙 . Fig. 4 shows an example data node expansion

where the Gapped Array inside the data node is expanded

from two slots on the left to four slots on the right.

4.3.3 Node Split Mechanism. To split a data node in two, we
allocate the keys to two new data nodes, such that each new

node is responsible for half of the key space of the original

node. ALEX supports two ways to split a node:

(1)Splittingsideways is conceptuallysimilar tohowaB+Tree

uses splits. There are two cases: (a) If the parent internal node

of the split data node is not yet at themaxnode size, we replace
the parent node’s pointers to the split data node with point-

ers to the two new data nodes. The parent internal node’s

pointers arraymight have redundant pointers to the split data

node (Fig. 3). If so, we give half of the redundant pointers to

each of the two new nodes. Else, we create a second pointer

to the split data node by doubling the size of the parent node’s

pointers array andmaking a redundant copy for every pointer,

and then give one of the redundant pointers to each of the two

new nodes. Fig. 5a shows an example of a sideways split that

does not require an expansion of the parent internal node. (b)

If the parent internal node has reachedmax node size, then
we can choose to split the parent internal node, as we show

in Fig. 5b. Note that by restricting all the internal node sizes

to be powers of 2, we can always split a node in a “boundary

preserving”way, and thus require no retraining of anymodels

below the split internal node.Note that the split can propagate

all the way to the root node, just like in a B+Tree.

(2) Splitting down converts a data node into an internal

node with two child data nodes, as we show in Fig. 5c. The

models in the two child data nodes are trained on their respec-

tive keys. B+Tree does not have an analogous splitting down

mechanism.

4.3.4 Cost Models. To make decisions about which mech-

anism to apply (expansion or various types of splits), ALEX

relies on simple linear costmodels that predict average lookup

time and insert time based on two simple statistics tracked

at each data node: (a) average number of exponential search

iterations, and (b) averagenumberof shifts for inserts. Lookup

performance is directly correlated with (a) while insert per-

formance is directly correlatedwith (a) and (b) (since an insert

first needs to do a lookup to find the correct insertion posi-

tion).These intra-node costmodelspredict the time toperform

operations within a data node.

These two statistics are not known when creating a data

node. Tofind the expected cost of a newdata node,we compute

the expected value of these statistics under the assumption

that lookups are done uniformly on the existing keys, and

inserts are done according to the existing key distribution.

Specifically, (a) is computed as the average base-2 logarithm

of model prediction error for all keys; (b) is computed as the

average distance to the closest gap in the GappedArray for all

existingkeys.Theseexpectedvalues canbecomputedwithout

creating thedatanode. If thedatanode is createdusingasubset

of keys from an existing data node, we can use the empirical

ratio of lookups vs. inserts to weight the relative importance

of the two statistics for computing the expected cost.

In addition to the intra-node cost model, ALEX uses a Tra-
verseToLeaf costmodel to predict the time for traversing from
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the root node to a data node. The TraverseToLeaf cost model

uses two statistics: (1) the depth of the data node being tra-

versed to, and (2) the total size (in bytes) of all inner nodes and

data node metadata (i.e., everything except for the keys and

payloads). These statistics capture the cost of traversal: deeper

data nodes requiremore pointer chases to find, and larger size

will decrease CPU cache locality, which slows down the tra-

versal to a data node. We provide more details about the cost

models and show their low usage overhead in Appendix D.

4.3.5 Insertion Algorithm. As lookups and inserts are done
on the data node, we count the number of exponential search

iterations and shifts per insert. From these statistics, we com-

pute the empirical cost of the data node using the intra-node
cost model. Once the data node is full, we compare the ex-

pected cost (computed at node creation time) to the empirical

cost. If they do not deviate significantly, then we conclude

that the model is still accurate, and we perform node expan-

sion (if the size after expansion is less than themax node size),
scaling the model instead of retraining. The models in the

internal nodes of the RMI are not retrained or rescaled. We

define significant cost deviation as occurring when the empir-

ical cost is more than 50% higher than the expected cost. In

our experience, this cost deviation threshold of 50% always

produces good results and did not need to be tuned.

Otherwise, if the empirical cost has deviated from the ex-

pected cost, we must either (i) expand the data node and

retrain themodel, (ii) split the data node sideways, or (iii) split

the data node downwards. We select the action that results in

lowest expected cost, according to our intra-node cost model.

For simplicity, ALEX always splits a data node in two. The

data node could conceptually split into any power of 2, but

deciding the optimal fanout can be time-consuming, and we

experimentally verified that a fanout of 2 is best according to

the cost model in most cases.

4.3.6 Why would empirical cost deviate from expected cost?
This often happens when the distribution of keys that are

inserted does not follow the distribution of existing keys,

which results in the model becoming inaccurate. An inac-

curate model may lead to long contiguous regions without

any gaps. Inserting into these fully-packed regions requires
shifting up to half of the elements within it to create a gap,

which in the worst case takes𝑂 (𝑛) time. Performance may

also degrade simply due to random noise as the node grows

larger or due to changing access patterns for lookups.

4.4 Delete, update, and other operations
To delete a key, we do a lookup to find the location of the key,

and then remove it and its payload. Deletes do not shift any

existing keys, so deletion is a strictly simpler operation than

inserts and does not causemodel accuracy to degrade. If a data

node hits the lower density limit 𝑑𝑙 due to deletions, then we

contract the data node (i.e., the opposite of expanding the data

node) in order to avoid low space utilization. Additionally, we

can use intra-node cost models to determine that two data

nodes should merge together and potentially grow upwards,

locally decreasing the RMI depth by 1.However, for simplicity

we do not implement these merging operations.

Updates thatmodify thekeyare implementedbycombining

an insert and a delete. Updates that only modify the payload

will look up the key and write the new value into the payload.

Like B+Trees, we can merge two ALEX indexes or find the

difference between two ALEX indexes by iterating over their

sorted keys in tandem and bulk loading a new ALEX index.

4.5 Handling out of bounds inserts
A key that is lower or higher than the existing key space

would be inserted into the the left-most or right-most data

node, respectively. A series of out-of-bounds inserts, such as

an append-only insert workload, would result in poor per-

formance because that data node has no mechanism to split

the out-of-bounds key space. Therefore, ALEX has two ways

to smoothly handle out-of-bounds inserts. Assume that the

out-of-bounds inserts are to the right (e.g., inserted keys are

increasing); we apply analogous strategies when inserts are

to the left.

First, when an insert that is outside the existing key space is

detected, ALEX will expand the root node, thereby expanding
the key space, shown in Fig. 6. We expand the size of the child



Algorithm 1 Gapped Array Insertion
1: struct Node { keys[] (Gapped Array); num_keys; 𝑑𝑢 , 𝑑𝑙 ;

model: key→[0, keys.size); }
2: procedure Insert(𝑘𝑒𝑦)
3: if num_keys / keys.size >= 𝑑𝑢 then
4: if expected cost ≈ empirical cost then
5: Expand(retrain=False)

6: else
7: Action with lowest cost /* described in Sec. 4.3.5 */

8: end if
9: end if
10: predicted_pos = model.predict(key)

11: /* check for sorted order */

12: insert_pos = CorrectInsertPosition(predicted_pos)

13: if keys[insert_pos] is occupied then
14: MakeGap(insert_pos) /* described in text */

15: end if
16: keys[insert_pos] = key

17: num_keys++

18: end procedure
19: procedure Expand(𝑟𝑒𝑡𝑟𝑎𝑖𝑛)
20: expanded_size = num_keys * 1/𝑑𝑙
21: /* allocate a new expanded array */

22: expanded_keys = array(size=expanded_size)

23: if retrain == True then
24: model = /* train linear model on keys */

25: else
26: /* scale existing model to expanded array */

27: model *= expanded_size / keys.size

28: end if
29: for key : keys do
30: ModelBasedInsert(key)

31: end for
32: keys = expanded_keys

33: end procedure
34: procedureModelBasedInsert(𝑘𝑒𝑦)

35: insert_pos = model.predict(key)

36: if keys[insert_pos] is occupied then
37: insert_pos = first gap to right of predicted_pos

38: end if
39: keys[insert_pos] = key

40: end procedure

pointers array to the right. Existing pointers to existing chil-

dren are not modified. A new data node is created for every

newslot in the expandedpointers array. In case this expansion

would result in the root node exceeding the max node size,

ALEXwill create a new root node. The first child pointer of

the new root node will point to the old root node, and a new

data node is created for every other pointer slot of the new

root node. At the end of this process, the out-of-bounds key

will fall into one of the newly created data nodes.

M M
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Figure 6: Splitting the root
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Second, the right-most data node of ALEX detects append-

only insertion behavior by maintaining the value of the max-

imum key in the node and keeping a counter for howmany

timesan insert exceeds thatmaximumvalue. Ifmost inserts ex-

ceed the maximum value, that implies append-only behavior,

so the data node expands to the right without doing model-

based re-insertion; the expanded space is kept initially empty

in anticipation of more append-like inserts.

4.6 Bulk Load
ALEX supports a bulk load operation, which is used in prac-

tice to index large amounts of data at initialization or for

rebuilding an index. Our goal is to find an RMI structure with

minimum cost, defined as the expected average time to do

an operation (i.e., lookup or insert) on this RMI. Any ALEX

operation is composed of TraverseToLeaf to the data node

followed by an intra-node operation, so RMI cost is modeled

by combining the TraverseToLeaf and intra-node cost models.

4.6.1 Bulk Load Algorithm. Using the cost models, we grow

an RMI downwards greedily, starting from the root node. At

each node, we independently make a decision about whether

the node should be a data node or an internal node, and in

the latter case, what the fanout should be. The fanout must

be a power of 2, and child nodes will equally divide the key

space of the current node. Note thatwe canmake this decision

locally for each node because we use linear cost models, so

decisions will have a purely additive effect on the overall cost

of the RMI. If we decide the node should be an internal node,

we recurse on each of its child nodes. This continues until all

the data is loaded in ALEX.

4.6.2 The Fanout Tree. As we grow the RMI, the main chal-

lenge is to determine the best fanout at each node. We intro-

duce the concept of a fanout tree (FT), which is a complete

binary tree. An FTwill help decide the fanout for a single RMI



node; in our bulk loading algorithm, we construct an FT each

time we want to decide the best fanout for an RMI node. A

fanout of 1 means that the RMI node should be a data node.

Fig. 7 shows an example FT. Each FT node represents a pos-

sible child of the RMI node. If the key space of the RMI node

is [0,1), then the 𝑖-th FT node on a level with 𝑛 children rep-

resents a child RMI node with key space [𝑖/𝑛,(𝑖+1)/𝑛). Each
FT node is associated with the expected cost of constructing

a data node over its key space, as predicted by the intra-node

costmodels. Our goal is to find a set of FT nodes that cover the

entire key space of the RMI node with minimum overall cost.

The overall cost of a covering set is the sum of the costs of its

FT nodes, as well as the TraverseToLeaf cost due tomodel size

(e.g., going a level deeper in the FT means the RMI node must

have twice as many pointers). This covering set determines

the optimal fanout of the RMI node (i.e., the number of child

pointers) as well as the optimal way to allocate child pointers.

We use the following method to find a low-cost covering

set: (1) Starting from the FT root, grow entire levels of the

FT at a time, and compute the cost of using each level as the

covering set. Continue doing so until the costs of each succes-

sive level start to increase. In Fig. 7, we find that level 2 has

the lowest combined cost, and we do not keep growing after

level 3. In concept, a deeper level might have lower cost, but

computing the cost for each FT node is expensive. (2) Starting

from the level of the FT with lowest combined cost, we start

merging or splitting FT nodes locally. If the cost of two adja-

cent FT nodes is higher than the cost of its parent, then we

merge (e.g., the nodes with cost 20 and 25 are merged to one

with cost 40); this might happen when the two nodes have

very few keys, or when their distributions are similar. In the

other direction, if the cost of a FT node is higher than the cost

of its two children, we split the FT node (e.g., the node with

cost 10 is split into two nodes each with cost 1); this might

happen when the two halves of the key space have different

distributions. We continue with this process of merging and

splitting adjacent nodes locally until it is no longer possible.

We return the resulting covering set of FT nodes.

5 ANALYSIS OF ALEX
In this section, we provide bounds on the RMI depth and com-

plexity analysis. Bounds on the performance of model-based

search are found in Appendix F.

5.1 Bound on RMI depth
In this section we present a worst-case bound onmaximum

RMIdepth anddescribe how to achieve it. Note that the goal of

ALEX is tomaximize performance, not tominimize tree depth;

though the two are correlated, the latter is simply a proxy for

the former (e.g., depth is one input to our cost models). There-

fore, this analysis is useful for gaining intuition about RMI

depth, but does not reflect worst-case guarantees in practice.

Let𝑚 be themaximumnode size, defined in number of slots

(in the pointers array for internal nodes, in the Gapped Array

for data nodes). We constrain node size to be a power of 2:

𝑚 = 2𝑘 . Internal nodes can have up to𝑚 child pointers, and

data nodes must contain no more than𝑚𝑑𝑢 keys. Let all keys

to be indexed fallwithin the key space 𝑠 . Let𝑝 be theminimum

number of partitions such thatwhen the key space 𝑠 is divided

into 𝑝 partitions of equal width, every partition contains no

more than𝑚𝑑𝑢 keys. Define the root node depth as 0.

Theorem 5.1. We can construct an RMI that satisfies the
max node size and upper density limit constraints whose depth
is no larger than ⌈log𝑚𝑝⌉—we call this the maximal depth. Fur-
thermore, we can maintain maximal depth under inserts. (Note
that 𝑝 might change under inserts.)

In other words, the depth of the RMI is bounded by the

density of the densest subregion of 𝑠 . In contrast, B+Trees

bound depth as a function of the number of keys. Theorem 5.1

can also be applied to a subspace within 𝑠 , which would cor-

respond to some subtree within the RMI.

Proof. ConstructinganRMIwithmaximaldepth is straight-

forward. The densest subregion, which spans a key space of

size |𝑠 |/𝑝 , is allocated to a data node. The traversal path from
the root to this densest region is composed of internal nodes,

each with𝑚 child pointers. It takes ⌈log𝑚𝑝⌉ internal nodes
to narrow the key space size from |𝑠 | to |𝑠 |/𝑝 . To minimize

depth in other subtrees of the RMI, we apply this construction

mechanism recursively to the remaining parts of the space 𝑠 .

Starting fromanRMI that satisfiesmaximal depth,wemain-

tainmaximal depthusing themechanisms inSection4.3under

the following policy: (1) Data nodes expand until they reach

max node size. (2) When a data node must split due to max

node size, it splits sideways to maintain current depth (poten-

tially propagating the split up to some ancestor internal node).

(3)When splitting sideways is no longer possible (all ancestor

nodes are at max node size), split downwards. By following

this policy, RMI only splits downward when 𝑝 grows by a

factor of𝑚, thereby maintaining maximal depth. □

5.2 Complexity analysis
Here we provide complexity of lookups and inserts, as well

as themechanisms from Section 4.3. Both lookups and inserts

do TraverseToLeaf in ⌈log𝑚 𝑝⌉ time. Within the data node,

exponential search for lookups is bounded in the worst case

by𝑂 (log𝑚). In the best case, the data node model predicts

the key’s position perfectly, and lookup takes𝑂 (1) time. We

show in the next sub-section that we can reduce exponential

search time according to a space-time trade-off.



Inserts into a non-full node are composed of a lookup, po-

tentially followed by shifts to introduce a gap for the new

key. This is bounded in the worst case by 𝑂 (𝑚), but since
Gapped Array achieves𝑂 (log𝑚) shifts per insert with high
probability [3], we expect𝑂 (log𝑚) complexity in most cases.

In the best case, the predicted insertion position is correct

and is a gap, and we place the key exactly where the model

predicts for insert complexity of𝑂 (1); furthermore, a later

model-based lookup will result in a direct hit in𝑂 (1).
Thereare three importantmechanisms inSection4.3,whose

costs are defined by howmany elements must be copied: (1)

Expansion of a data node, whose cost is bounded by𝑂 (𝑚). (2)
Splitting downwards into two nodes, whose cost is bounded

by𝑂 (𝑚). (3) Splitting sideways into two nodes and propagat-
ing upwards in the path to some ancestor node, whose cost is

boundedby𝑂 (𝑚⌈log𝑚𝑝⌉) because every internalnodeon this
path must also split. As a result, the worst-case performance

for insert into a full node is𝑂 (𝑚⌈log𝑚𝑝⌉).

6 EVALUATION
We compare ALEXwith the Learned Index, B+Tree, a model-

enhanced B+Tree, and Adaptive Radix Tree (ART), using a

variety of datasets and workloads. This evaluation demon-

strates that:

• On read-only workloads, ALEX achieves up to 4.1×,
2.2×, 2.9×, 3.0×higher throughput and 800×, 15×, 160×,
8000× smaller index size than the B+Tree, Learned In-

dex, Model B+Tree, and ART, respectively.

• On read-write workloads, ALEX achieves up to 4.0×,
2.7×, 2.7× higher throughput and 2000×, 475×, 36000×
smaller index size than the B+Tree, Model B+Tree, and

ART, respectively.

• ALEX has competitive bulk load times and maintains

an advantage over other indexes when scaling to larger

datasets and under distribution shift due to data skew.

• Gapped Array and the adaptive RMI structure allow

ALEX to adapt to different datasets and workloads.

6.1 Experimental Setup
We implement ALEX in C++

1
. We perform our evaluation via

single-threaded experiments on an Ubuntu Linux machine

with Intel Core i9-9900K 3.6GHz CPU and 64GB RAM. We

compare ALEX against four baselines. (1) A standard B+Tree,

as implemented in the STX B+Tree [5]. (2) Our best-effort

reimplementation of the Learned Index [19], using a two-

level RMI with linear models at each node and binary search

for lookups.
2
(3) Model B+Tree, which maintains a linear

1
https://github.com/microsoft/ALEX

2
Inprivate communicationwith the authors of [19],we learned that the added

complexity of using a neural net for the root model usually is not justified by

the resultingminorperformancegains,whichwealso independently verified.

model in every node of the B+Tree, stores each node as a

Gapped Array, and uses model-based exponential search in-

stead of binary search, implemented on top of [5]; this shows

the benefit of using models while keeping the fundamental

B+Tree structure. (4) Adaptive Radix Tree (ART) [21], a trie

that adapts to the data which is optimized for main memory

indexing, implemented in C [9]. Since ALEX supports all op-

erations common in OLTP workloads, we do not compare to

hash tables and dynamic hashing techniques, which cannot

efficiently support range queries.

For each dataset and workload, we use grid search to tune

the page size for B+Tree andModel B+Tree and the number

of models for Learned Index to achieve the best throughput.

In contrast, no tuning is necessary for ALEX, unless users

place additional constraints. For example, usersmightwant to

bound the latencyof a single operation.We set amaxnode size

of 16MB to achieve tail latency (99.9th percentile) of around

2𝜇speroperation, butmaxnodesize canbeadjustedaccording

to user’s desired limits (Fig. 15).

Index size ofALEXandLearned Index is the sumof the sizes

of all models used in the index and metadata; index size for

ALEX also includes internal node pointers. For ALEX, each

linear model consists of two 64-bit doubles which represent

the slope and intercept. Learned Index keeps two additional

integers per model that represent the error bounds. The index

size of B+Tree and Model B+Tree is the sum of the sizes of all

inner nodes, which for Model B+Tree includes the models in

eachnode. The index size ofART is the sumof inner node sizes

minus the total size of keys, since keys are encoded into the in-

ner nodes. The data size of ALEX is the sum of the sizes of the

arrays containing the keys and payloads, including gaps, as

well as the bitmap in each data node. The data size of B+Tree

is the sum of the sizes of all leaf nodes. At initialization, the

Gapped Arrays in data nodes are set to have 70% space utiliza-

tion, comparable to B+Tree leaf node space utilization [13].

6.1.1 Datasets. We run all experiments using 8-byte keys

from some dataset and randomly generated fixed-size pay-

loads. We evaluate ALEX on 4 datasets, whose characteris-

tics and CDFs are shown in Table 1 and Fig. 8. The longi-
tudes dataset consists of the longitudes of locations around
the world from Open Street Maps [2]. The longlat dataset
consists of compound keys that combine longitudes and lati-

tudes from Open Street Maps by applying the transformation

𝑘 =180·floor(longitude)+latitude to every pair of longitude
and latitude. The resulting distribution of keys𝑘 is highly non-

linear. The lognormal dataset has values generated according
to a lognormal distribution with 𝜇 = 0 and 𝜎 = 2, multiplied

by 10
9
and rounded down to the nearest integer. The YCSB

dataset has values representing user IDs generated according

to the YCSB Benchmark [8], which are uniformly distributed

across the full 64-bit domain, and uses an 80-byte payload.

https://github.com/microsoft/ALEX
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Figure 8: Dataset CDFs, and zoomed-in CDFs.

Table 1: Dataset Characteristics

longitudes longlat lognormal YCSB

Numkeys 1B 200M 190M 200M

Key type double double 64-bit int 64-bit int

Payload size 8B 8B 8B 80B

Total size 16GB 3.2GB 3.04GB 17.6GB

These datasets do not contain duplicate values. Unless other-

wise stated, these datasets are randomly shuffled to simulate

a uniform dataset distribution over time.

6.1.2 Workloads. Our primary metric for evaluating ALEX

is average throughput. We evaluate throughput for five work-

loads: (1) a read-only workload, (2) a read-heavy workload

with95%readsand5% inserts, (3) awrite-heavyworkloadwith

50% reads and 50% inserts, (4) a short range query workload

with 95% reads and 5% inserts, and (5) a write-only workload,

to complete the read-write spectrum. For the first three work-

loads, reads consist of a lookup of a single key. For the short

range workload, a read consists of a key lookup followed by

a scan of the subsequent keys. The number of keys to scan is

selected randomly from a uniform distribution with a maxi-

mum scan length of 100. For all workloads, keys to look up are

selected randomly from the set of existing keys in the index

according to a Zipfian distribution. The first four workloads

roughlycorrespond toWorkloadsC,B,A, andE fromtheYCSB

benchmark [8], respectively. For a given dataset, we initialize

an index with 100 million keys. We then run the workload

for 60 seconds, inserting the remaining keys. We report the

throughputof operations completed in that time,whereopera-

tions are either inserts or reads. For the read-write workloads,

we interleave the operations: for the read-heavy workload

and short range workload, we perform 19 reads/scans, then

1 insert, then repeat the cycle; for the write-heavy workload,

we perform 1 read, then 1 insert, then repeat the cycle.

Table 2: ALEX Statistics after Bulk Load

longitudes longlat lognormal YCSB

Avg depth 1.01 1.56 1.80 1

Max depth 2 4 3 1

Num inner nodes 55 1718 24 1

Numdata nodes 4450 23257 757 1024

MinDN size 672B 16B 224B 12.3MB

Median DN size 161KB 39.6KB 2.99MB 12.3MB

MaxDN size 5.78MB 8.22MB 14.1MB 12.3MB

6.2 Overall Results
6.2.1 Read-only Workloads. For read-only workloads,

Figs. 9a and 9f show that ALEX achieves up to 4.1×, 2.2×,
2.9×, 3.0× higher throughput and 800×, 15×, 160×, 8000×
smaller index size than the B+Tree, Learned Index, Model

B+Tree, and ART, respectively.

On the longlat and YCSB datasets, ALEX performance is

similar to Learned Index. The longlat dataset is highly non-

uniform, soALEX is unable to achievehighperformance, even

with adaptive RMI. The YCSB dataset is nearly uniform, so

the optimal allocation of models is uniform; ALEX adaptively

finds this optimal allocation, and Learned Index allocates this

way by nature, so the resulting RMI structures are similar. On

the other two datasets, ALEX has more performance advan-

tage over Learned Index, which we explain in Section 6.3.

In general, Model B+Tree outperforms B+Tree while also

having smaller index size, because the tuned page size of

Model B+Tree is always larger than those of B+Tree. The ben-

efit of models inModel B+Tree is greatest when the key distri-

butionwithin eachnode ismore uniform,which iswhyModel

B+Tree has least benefit on non-uniform datasets like longlat.

The index size ofALEX is dependent onhowwellALEXcan

model the data distribution. On the YCSB dataset, ALEX does

not require a largeRMI toaccuratelymodel thedistribution, so

ALEX achieves small index size. However, on datasets that are

more challenging to model such as longlat, ALEX has a larger

RMI with more nodes. ALEX has smaller index size than the

Learned Index, even when throughput is similar, for two rea-

sons. First,ALEXusesmodel-based inserts toobtainbetterpre-

dictive accuracy for eachmodel,whichwe show in Section 6.3,

and therefore achieves high throughputwhile using relatively

fewer models. Second, ALEX adaptively allocates data nodes

to different parts of the key space and does not use any more

models than necessary (Fig. 3), whereas Learned Index fixes

the number ofmodels and ends upwithmany redundantmod-

els. The index size ofART is higher than all other indexes. [21]

claims that ART uses between 8 and 52 bytes to store each

key, which is in agreement with the observed index sizes.

Table 2 shows ALEX statistics after bulk loading, including

data node (DN) sizes. The root has depth 0. Average depth is

averaged over keys. The max depth of the tuned B+Tree is



Figure 9: ALEX vs. Baselines: Throughput & Index Size. Throughput includesmodel retraining time.

4 on the YCSB dataset and 5 on the other datasets. Datasets

that are easier to model result in fewer nodes. For uniform

datasets like YCSB, the data node sizes are also uniform.

6.2.2 Read-WriteWorkloads. Forread-writeworkloads,Figs. 9b
to 9d and 9g to 9i show that ALEX achieves up to 4.0×, 2.7×,
2.7× higher throughput and 2000×, 475×, 36000× smaller

index size than the B+Tree, Model B+Tree, and ART, respec-

tively. The Learned Index has insert time orders of magnitude

slower thanALEXandB+Tree, sowe do not include it in these

benchmarks.

The relative performance advantage of ALEX over base-

lines decreases as the workload skews more towards writes,

because all indexes must pay the cost of copying when split-

ting/expanding nodes. Copying has an especially big impact

for YCSB, for which payloads are 80 bytes. ART achieves com-

parable throughput to ALEX on the write-only workload for

YCSB because ART does not keep payloads clustered, so it

avoids the high cost of copying 80-byte payloads. Note that

ALEX could similarly avoid copying large payloads by storing

unclustered payloads separately and keeping a pointer with

every key; however, this would impact scan performance. On

datasets that are challenging to model such as longlat, ALEX

only achieves comparable write-only throughput to Model

B+Tree and ART, but is still faster than B+Tree.

6.2.3 Range Query Workloads. Figs. 9e and 9j show that

ALEXmaintains its advantage over B+Tree on the short range

workload, achieving up to 2.27×, 1.77× higher throughput

and 1000×, 230× smaller index size than B+Tree andModel

B+Tree, respectively. However, the relative throughput ben-

efit decreases, compared to Fig. 9b. This is because as scan

time begins to dominate overall query time, the speedups that

ALEX achieves on lookups become less apparent. The ART

implementation from [9] does not support range queries; we

suspect range queries on ARTwould be slower than for the

other indexes because ART does not cluster payloads, leading

Figure 10: (a) When scan length exceeds 1000 keys,
ALEX is slower on range queries than a B+Tree whose
page size is re-tuned for different scan lengths. (b)
However, throughput of the re-tuned B+Tree suffers
for other operations, such as point lookups and inserts
in the write-heavy workload.

to poor scan locality. Appendix C.2 shows that ALEX contin-

ues to outperform other indexes on a workload that mixes

inserts, point lookups, and short range queries.

To show how performance varies with range query selec-

tivity, we compare ALEX against two B+Tree configurations

with increasingly larger range scan length over the longitudes

dataset (Fig. 10a). In the first B+Tree configuration, we use

the optimal B+Tree page size on the write-heavy workload

(Fig. 9c), which is 1KB (solid green line). In the second B+Tree

configuration, we tune the B+Tree page size for each different

scan length (dashed green line).

Unsurprisingly, Fig. 10a shows as scan length increases, the

throughput in terms of keys scanned per second increases

for all indexes due to better locality and a smaller fraction of

time spent on the initial point lookup. Furthermore, ALEX

outperforms the 1KB-page B+Tree for all scan lengths due to

ALEX’s larger nodes;medianALEXdatanode size is 161KBon

the longitudes dataset (Table 2), which benefits scan locality—

scanning larger contiguous chunks of memory leads to better

prefetching and fewer pointer chases. This makes up for the

Gapped Array’s overhead.



Figure 11:ALEX takes 50%more than time thanB+Tree
to bulk load on average, but quickly makes up for this
by having higher throughput.

However, if we re-tune the B+Tree page size for each scan

length (dashed green line), the B+Tree outperforms ALEX

when scan length exceeds 1000 keys because past this point,

the overhead of Gapped Array outpaces ALEX’s scan local-

ity advantage from having larger node sizes. However, this

comes at the cost of performance on other operations: Fig. 10b

shows that if we run the re-tuned B+Tree on the write-heavy

workload, which includes both point lookups and inserts, its

performance would begin to decline when scan length ex-

ceeds 100 keys. In particular, larger B+Tree pages lead to a

higher number of search iterations for lookups and shifts for

inserts; ALEX avoids both of these problems for large data

nodes by using Gapped Arrays with model-based inserts. We

show in Appendix C.1 that this behavior also occurs on the

other three datasets.

6.2.4 Bulk Loading. We compare the time to initialize each

index with bulk loading, which includes the time to sort keys.

Fig. 11a shows that on average, ALEX only takes 50% more

time to bulk load thanB+Tree, and in theworst case is only 2×
slower than B+Tree. On the YCSB dataset, B+Tree and Model

B+Tree take longer to bulk load due to the larger payload

size, but bulk loadingALEX remains efficient due to its simple

structure (Table 2). Model B+Tree is slightly slower to bulk

load than B+Tree due to the overhead of training models for

each node. ART is slower to bulk load than B+Tree, Model

B+Tree, and ALEX.

ALEX can quickly make up for its slower bulk loading

time than B+Tree by having higher throughput performance.

Fig. 11b shows that when running the read-heavy workload

on the longitudes dataset, ALEX’s total time usage (bulk load-

ing plus workload) drops below all other indexes after only

3 million inserts. We provide a more detailed bulk loading

evaluation in Appendix A.

6.2.5 Scalability. ALEX performance scales well to larger

datasets. We again run the read-heavy workload on the longi-

tudes dataset, but instead of initializing the indexwith 100mil-

lion keys, we vary the number of initialization keys. Fig. 12a

shows that as the number of indexed keys increases, ALEX

maintains higher throughput than B+Tree andModel B+Tree.

Figure 12: ALEX maintains high throughput when
scaling to large datasets and under data distribution
shifts. (RH = Read-Heavy,WH =Write-Heavy)

In fact, as dataset size increases, ALEX throughput decreases

at a surprisingly slow rate. This occurs because ALEX adapts

its RMI structure in response to the incoming data.

6.2.6 Dataset Distribution Shift. ALEX is robust to dataset

distribution shift. We initialize the index with the 50 million

smallest keys and run read-write workloads by inserting the

remaining keys in random order. This simulates distribution

shift because the keys we initialize with come from a com-

pletely disjoint domain than the keys we subsequently insert

with. Fig. 12b shows that ALEXmaintains up to 3.2× higher

throughput than B+Tree in this scenario. ALEX is also robust

to adversarial patterns such as sequential inserts in sorted

order, in which new keys are always larger than the maxi-

mum key currently indexed. Fig. 12c shows that when we

initialize with the 50 million smallest keys and insert the re-

maining keys in ascending sorted order, ALEX has up to 3.6×
higher throughput than B+Tree. Appendix B further shows

that ALEX is robust to radically changing key distributions.

6.3 Drilldown into ALEXDesign Trade-offs
In this section, we delve deeper into how node layout and

adaptive RMI help ALEX achieve its design goals.

Part of ALEX’s advantage over Learned Index comes from

using model-based insertion with Gapped Arrays in the data

nodes, but most of ALEX’s advantage for dynamic workloads

comes from the adaptive RMI. To demonstrate the effects of

each contribution, Fig. 13 shows that taking a 2-layer Learned

Index and replacing the single dense array of values with a

Gapped Array per leaf (LI w/Gapped Array) already achieves

significant speedup over Learned Index for the read-only

workload. However, a Learned Index with Gapped Arrays

achieves poor performance on read-write workloads due to

the presence of fully-packed regions which require shifting

many keys for each insert. ALEX’s ability to adapt the RMI

structure to the data is necessary for good insert performance.

During lookups, the majority of the time is spent doing

local search around the predicted position. Smaller prediction

errors directly contribute to decreased lookup time. To ana-

lyze the prediction errors of the Learned Index and ALEX, we



Figure 13: Impact of Gapped
Array and adaptive RMI. Figure 14: ALEX achieves smaller prediction error than the Learned Index.

Table 3: Data Node ActionsWhen Full (Write-Heavy)

longitudes longlat lognormal YCSB

Expand + scale 26157 113801 2383 1022

Expand + retrain 219 2520 2 1026

Split sideways 79 2153 7 0

Split downwards 0 230 0 0

Total times full 26455 118704 2392 2048

initialize an index with 100 million keys from the longitudes

dataset, use the index to predict the position of each of the 100

million keys, and track the distance between the predicted po-

sition and the actual position. Fig. 14a shows that the Learned

Index has prediction error with mode around 8-32 positions,

with a long tail to the right. On the other hand, ALEX achieves

much lower prediction error by using model-based inserts.

Fig. 14b shows that after initializing, ALEX often has no pre-

diction error, the errors that do occur are often small, and the

long tail of errors has disappeared. Fig. 14c shows that even

after 20million inserts, ALEXmaintains lowprediction errors.

Once a data node becomes full, one of four actions happens:

if there is no cost deviation, then (1) the node is expanded and

themodel is scaled. Otherwise, the node is either (2) expanded

and its model retrained, (3) split sideways, or (4) split down-

wards. Table 3 shows that in the vast majority of cases, the

data node is simply expanded and the model scaled, which

implies that models usually remain accurate even after in-

serts, assuming no radical distribution shift. The number of

occurrences of a data node becoming full is correlated with

the number of data nodes (Table 2). On YCSB, expansion with

model retraining is more common because the data nodes are

large, so cost deviation often results simply from randomness.

Users can adjust the max node size to achieve target tail la-

tencies, if desired. In Fig. 15,we run thewrite-heavyworkload

on the longitudes dataset, measuring the latency for every

operation. Aswe increase themax node size,median and even

p99 latency of ALEX decreases, because ALEX has more flex-

ibility to build a better-performing RMI (e.g., ability to have

higher internal node fanout). However, maximum latency in-

creases, because an insert that triggers an expansion or split of

Figure 15: Latency of a
single operation.

Figure 16: Exponential vs.
other searchmethods.

a large node is slow. If the user has strict latency requirements,

theycandecrease themaxnodesizeaccordingly.After increas-

ing the max node size beyond 64MB, latencies do not change

because ALEX never decides to use a node larger than 64MB.

6.3.1 SearchMethodComparison. In order to show the trade-

off between exponential search and other search methods,

we perform a microbenchmark on synthetic data. We cre-

ate a dataset with 100 million perfectly uniformly distributed

doubles.We thenperform searches for 10million randomly se-

lected values from this dataset. We use three search methods:

binary search and biased quaternary search (proposed in [19]

to take advantage of accurate predictions), each evaluated

with two different error bound sizes, as well as exponential

search. For each lookup, the search method is given a pre-

dicted position that has some synthetic amount of error in the

distance to the actual position value. Fig. 16 shows that the

search time of exponential search increases proportionally

with the logarithm of error size, whereas the binary search

methods take a constant amount of time, regardless of error

size. This is because binary search must always begin search

within its error bounds, and cannot take advantage of cases

when the error is small. Therefore, exponential search should

outperform binary search if the prediction error of the RMI

models in ALEX is small. As we showed in Section 6.3, ALEX

maintains low prediction errors through model-based inserts.

Therefore, ALEX is well suited to take advantage of expo-

nential search. Biased quaternary search is competitive with

exponential search when error is below 𝜎 (we set 𝜎 = 8 for

this experiment; see [19] for details) because search can be



confined to a small range, but performs similarly to binary

search when error exceeds 𝜎 because the full error bound

must be searched.We prefer exponential search to biased qua-

ternary search due to its smoother performance degradation

and simplicity of implementation (e.g., no need to tune 𝜎).

7 RELATEDWORK
Learned Index Structures: The most relevant work is the

Learned Index [19], discussed inSection2.2.Learned Indexhas

similarities to priorwork that explored how to compute down

a tree index. Tries [17] use key prefixes instead of B+Tree

splitters.Masstree [25] andAdaptive Radix Tree [21] combine

the ideas of B+Tree and trie to reduce cache misses. Plop-

hashing [20] uses piecewise linear order-preserving hashing

to distribute keys more evenly over pages. Digital B-tree [22]

uses bits of a key to compute down the treemore flexibly. [23]

proposes to partially expand the space instead of always dou-

bling when splitting in B+Tree. [12] proposes the idea of

interpolation searchwithin B+Tree nodes; this idea was revis-

ited in [28]. The interpolation-based search algorithms in [33]

can complement ALEX’s search strategy. Hermit [34] creates

a succinct tree structure for secondary indexes.

Other works propose replacing the leaf nodes of a B+Tree

with other data structures in order to compress the index,

while maintaining search and update performance. FITing-

tree [11] uses linear models in its leaf nodes, while BF-tree [1]

uses bloom filters in its leaf nodes.

All theseworks share the idea that using extra computation

or data structures canmake search faster by reducing thenum-

ber of binary search hops and corresponding cache misses,

while allowing largernode sizes andhencea smaller index size.

However,ALEXisdifferent in severalways: (1)Weuseamodel

to split the key space, similar to a trie, but no search is required

untilwe reach the leaf level. (2)ALEX’s accurate linearmodels

enable larger node sizeswithout sacrificing search and update

performance. (3) Model-based insertion reduces the impact of

model’s misprediction. (4) ALEX’s cost models automatically

adjust the index structure to dynamic workloads.

Memory Optimized Indexes: There is a large body of

work on optimizing tree index structures for main memory

by exploiting hardware features such as CPU cache, multi-

core, SIMD, and prefetching. CSS-trees [30] improve B+Tree’s

cache behavior by matching index node size to CPU cache-

line size and eliminating pointers in index nodes by using

arithmetic operations to find child nodes. CSB
+
-tree [31] ex-

tends the static CSS-trees by supporting incremental updates

without sacrificing CPU cache performance. [14] evaluates

the effect of node size on the performance of CSB
+
-tree ana-

lytically and empirically. pB+-tree [7] uses larger index nodes

and relies on prefetching instructions to bring index nodes

into cachebeforenodes are accessed. In addition tooptimizing

for cache performance, FAST [15] further optimizes searches

within index nodes by exploiting SIMD parallelism.

MLinotherDBcomponents:Machine learninghasbeen

used to improve cardinality estimation [10, 16], query opti-

mization [26], workload forecasting [24], multi-dimensional

indexing [27], and data partitioning [35]. SageDB [18] envi-

sions a database system inwhich every component is replaced

by a learned component. These studies show that the use of

machine learning enables workload-specific optimizations,

which also inspired our work.

8 CONCLUSION
We build on the excitement of learned indexes by proposing

ALEX, a new updatable learned index that effectively com-

bines the core insights from the Learned Index with proven

storage and indexing techniques. Specifically, we propose a

Gapped Array node layout that uses model-based inserts and

exponential search, combinedwith an adaptive RMI structure

drivenbysimplecostmodels, toachievehighperformanceand

lowmemory footprint on dynamic workloads. Our in-depth

experimental results show that ALEX not only consistently

beats B+Tree across the read-write workload spectrum, it

even beats the existing Learned Index, on all datasets, by up

to 2.2×with read-only workloads.

We believe this paper presents important learnings to our

community and opens avenues for future research in this area.

We intend to pursue open theoretical problems about ALEX

performance, supporting secondary storage for larger than

memory datasets, and new concurrency control techniques

tailored to the ALEX design.
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Figure 17: With both optimizations (AMC and ACC),
ALEX only takes 50% more than time than B+Tree to
bulk load when averaged across four datasets.

A Extended Bulk Loading Evaluation
In this section,weprovide anextendedversionof Section6.2.4,

which evaluates the speed ofALEX’s bulk loadingmechanism

against other indexes. ALEX uses two optimizations for bulk

loading—approximatemodel computation (AMC) and approx-

imate cost computation (ACC)—which we explain in more

detail below.

For each index, we bulk load 100 million keys from each of

the four datasets from Section 6. This includes the time used

to sort the 100 million keys. Fig. 17, which is a more detailed

version of Fig. 11a, shows that on average, ALEX with no

optimizations takes 3.6×more time to bulk load than B+Tree,

which is the fastest index to bulk load. However, with the

AMC optimization, ALEX takes 2.6×more time on average

than B+Tree. With both optimizations, ALEX only takes 50%

more than time on average than B+Tree, and in the worst

case is only 2× slower than B+Tree. The results for ALEX in

Section 6.2.4 use both optimizations. On the YCSB dataset,

ALEX’s structure is very simple (Table 2), and therefore is

very efficient to bulk load even when unoptimized; in fact,

ALEX’s large node sizes allow ALEX to bulk load faster than

other indexes due to the benefits of locality.

Fig. 18 shows the impact of the two optimizations on the

throughput of running a read-heavy or write-heavy work-

load on ALEX after bulk loading. The AMC optimization has

negligible impact on throughput for all datasets and for both

workloads. Adding the ACC optimization has negligible im-

pact on the read-heavy workload, but decreases throughput

by up to 9.6% on the write-heavy workload; we provide expla-

nation for this behavior below.

Based on these results, we conclude that theAMCoptimiza-

tion should always be used to improve bulk loading perfor-

mance, whereas the ACC optimization might cause a slight

Figure 18: Using the AMC optimization when bulk
loading does not cause any noticeable change in ALEX
performance, but ACC can cause a slight decrease in
throughput for write-heavy workloads.

decrease in throughput performance and therefore should be

used only if faster bulk loading is required. We now explain

the two optimizations in more detail.

A.1 Approximate Model Computation. We perform approx-

imate model computation (AMC) efficiently while achieving

accuracy through progressive systematic sampling. Given a

data node of sorted keys, we perform systematic sampling
(i.e., sampling every𝑛th key) to obtain a small sample of keys,

and compute a linear regression model using that sample.

We then repeatedly double the sample size and recompute

the linear model using the larger sample. When the relative

change in the model parameters (i.e., the slope and intercept)

both change by less than 1% from one sample to the next, we

terminate the process. In our experience, this 1% threshold

strikes a balance between achieving accuracy and using small

sample sizes, and did not need to be tuned.

Note that by using systematic sampling, all keys in the

sample used to compute the current model will also appear in

all subsequent samples. Therefore, each linear model can be

computed progressively starting from the existing model com-

puted from the previous sample, instead of from scratch. No

redundantwork is done, and even in theworst case, AMCwill

take no more time than computing one linear model from all

keys (if we ignoreminor overheads and the effects of locality).

A.2 Approximate Cost Computation. We also perform ap-

proximate intra-node cost computation (ACC) for a data node

of sortedkeys throughprogressive systematic sampling.How-

ever, ACC differs from AMC in two ways. First, the cost for

a data node must be computed from scratch for each sample;

the cost depends on where keys are placed within a Gapped

Array, which itself depends on which keys are present in the

sample. Second, andmore importantly, the cost of a data node

naturally increases with the number of keys in the node. This

makes ACC an extrapolation problem (i.e., use the cost of

a small sample to predict the cost of the entire data node),

whereas AMC is an estimation problem (i.e., use a small sam-

ple to directly estimate the model parameters).



ACC repeatedly doubles its sample size. Let the latest three

samples be 𝑠1, which is half the size of 𝑠2, which is half the

size of 𝑠3. Let the costs computed from these samples be 𝑐1, 𝑐2,

and 𝑐3, respectively. We use the 𝑐1 and 𝑐2 to perform a linear

extrapolation to predict 𝑐3. If this prediction is accurate (i.e.,

if relative error with the true 𝑐3 is within 20%), then we use

𝑐2 and 𝑐3 to perform a linear extrapolation to predict the cost

of the entire data node, and we terminate the process.
3
Oth-

erwise, we continue doubling the sample size. The intuition

behind this process is that we want to verify the accuracy of

extrapolation using small samples before extrapolating to the

entire data node. We allow a higher relative error than for

AMC because the extrapolation process is inherently impre-

cise, since it is impossible to accurately predict the cost using

a sample without a priori knowledge of the data distribution.

We cannowexplainwhyFig. 18 shows that adding theACC

optimization decreases throughput on the write-heavy work-

load by up to 9.6%. It is because the average number of shifts

per insert, which is one component of the intra-node cost, is

difficult to estimate accurately. Therefore, if ACC underesti-

mates the component of cost related to shifts, the bulk loaded

ALEX structure may be inefficient for inserts (e.g., an insert

that requiresmore shifts than expected can be very slow). The

intra-node cost is more difficult to approximate accurately for

the longitudes and longlat datasets,which iswhy the decrease

in throughput is most noticeable for those two datasets. How-

ever, note that over time, the dynamic nature of ALEX will

eventually correct for incorrectly estimated costs, so through-

put performance in the long run will be independent of the

bulk loading mechanism.

B Extreme Distribution Shift Evaluation
In order to evaluate the performance of ALEX under a radi-

cally changing key distribution, we combine the four datasets

from Section 6 into one dataset by randomly selecting 50 mil-

lion keys from each of the four datasets in order to create one

combined dataset with 200 million keys. We scaled keys from

each dataset to fit in the same domain. Note that we would

not typically expect a single table to contain keys from four

independent distributions. Therefore, this complex combined

dataset is an extreme stress test for the adaptibility of ALEX.

We run a write-heavy workload (50% point lookups and

50% inserts) over the combined dataset, but we vary the order

in which keys are bulk loaded and inserted. For all variants,

we bulk load using 50 million keys and run the write-heavy

workload until the remaining 150million keys are all inserted.

We create four variants that represent distribution shift; each

3
In reality, we do not predict the cost directly, but rather each component

of the cost (search iterations per lookup and shifts per insert) independently.

This is because the expected extrapolation behavior differs: iterations per

lookup grows logarithmically with sample size, whereas shifts per insert

grows linearly with sample size.

Figure 19: ALEX maintains high performance un-
der radically changing key distribution, although
performance does differ slightly depending on the
distribution used for bulk loading.

variant bulk loads using the 50 million keys selected from

one of the four original datasets, then gradually inserts keys

from the other three original datasets, in order. For exam-

ple, the “L-LN-LL-Y” variant bulk loads using the 50 million

keys selected from the longitudes (L) dataset, then runs the

write-heavy workload by inserting the 50 million keys from

the lognormal (LN) dataset, then the longlat (LL) dataset, and

finally the YCSB (Y) dataset. For reference, we also include a

variant in which all 200 million keys are shuffled, so that no

key distribution shift is observed.

Fig. 19 provides three insights. First, on the workload that

represents no distribution shift (“Shuffled”), ALEX continues

to outperform other indexes. It is interesting to note that the

throughput of ALEX on the combined dataset is between the

throughputs achieved on each dataset individually (Fig. 9c):

higher than for longlat, and lower than for the other three

datasets. Second, ALEX achieves lower throughput in the

four variants that represent distribution shift than without

distribution shift, but still outperforms other indexes. This

result aligns with the intuition that ALEXmust spend extra

time restructuring itself to adapt to the changing key distribu-

tion. Third, the throughput differs based on which dataset’s

keys are used to bulk load ALEX. When bulk loading using

keys from a complex key distribution, such as longlat, ALEX

achieves throughput similar to the variant with no distribu-

tion shift; on the other hand, when bulk loading using keys

from a simple key distribution, such as YCSB, ALEX through-

put suffers. This is because when bulk loading with a simple

key distribution, the bulk loaded structure of ALEX will be

shallow, with few nodes (Table 2). When the subsequently

inserted keys come from a much more complex key distri-

bution, ALEXmust quickly adapt its structure to be deeper



and have more nodes, which can incur significant overhead.

On the other hand, when bulk loading with a complex key

distribution, the bulk loaded structure is already deep, with

many nodes, and so can more readily adapt to changes in the

key distribution without too much overhead.

To allow ALEX to more quickly adapt the RMI structure to

radically changing key distributions: (1) we check data nodes

periodically for cost deviation instead of only when the data

node is full, and (2) if the number of shifts per insert in a data

node is extremely high, we force the data node to split (as

opposed to expanding and retraining the model). When no

distribution shift occurs, these two checks have negligible

impact on performance, because checking for cost deviation

has minimal overhead and cost deviation occurs infrequently

(Table 3). By default, we check for cost deviation for every 64

inserts into that data node, and over 100 shifts per insert is

considered extremely high.

C Extended Range Query Evaluation
C.1 Varying Range Query Scan Length. We extend the ex-

periment from Fig. 10 to all four datasets. Fig. 20 shows that

across all datasets, ALEXmaintains its advantage over fixed-

page-size B+Tree, and re-tuning the B+Tree page size can

lead to better range query performance but will decrease per-

formance on point lookups and inserts. For both ALEX and

B+Tree, performance on YCSB is slower than for the other

three datasets because YCSB has a larger payload size, which

worsens scan locality.

C.2 MixedWorkload Evaluation. We evaluate a mixed work-

loadwith 5% inserts, 85%point lookups, and 10% rangequeries

with a maximum scan length of 100. The remainder of the

experimental setup is the same as in Section 6.1. Fig. 21 shows

that ALEXmaintains its performance advantage over other

indexes. The ART implementation from [9] does not support

range queries.

D Drilldown into Cost Computation
In this section, we first provide more details about the cost

model introduced in Section 4.3.4. We then evaluate the per-

formance of computing costs using cost models.

D.1 Cost Model Details. We formally define the cost model

using the terms in Table 4. At a high level, the intra-node

cost of a data node represents the average time to perform an

operation (i.e., a point lookup or insert) on that data node, and

the TraverseToLeaf cost of a data node represents the time for

traversing from the root node to the data node.

For a given data node 𝑁 ∈D, the intra-node cost𝐶𝐼 (𝑁 ) is
defined as

𝐶𝐼 (𝑁 )=𝑤𝑠𝑆 (𝑁 )+𝑤𝑖 𝐼 (𝑁 )𝐹 (𝑁 ) (1)

Table 4: Terms used to describe the cost model

Term Description

A An instantiation of ALEX

N Set of all nodes inA
D Set of data nodes inA. This means thatD⊆N

𝑆 (𝑁 ) Average number of exponential search iterations

for a lookup in 𝑁 ∈D
𝐼 (𝑁 ) Average number of shifts for an insert into 𝑁 ∈D
𝐾 (𝑁 ) Number of keys in 𝑁 ∈D

𝐹 (𝑁 ) Fraction of operations that are inserts (as opposed

to lookups) in 𝑁 ∈D
𝐶𝐼 (𝑁 ) Intra-node cost of 𝑁 ∈D
𝐶𝑇 (𝑁 ) TraverseToLeaf cost of 𝑁 ∈D
𝐷 (𝑁 ) Depth of 𝑁 ∈N (root node has depth 0)

𝐵(A) Total size in bytes of all nodes inA
𝑤𝑠 ,𝑤𝑖 ,𝑤𝑑 ,𝑤𝑏 Fixed pre-defined weight parameters

Both lookups and insertsmust perform an exponential search,

whereas only inserts must perform shifts. This is why 𝐼 (𝑁 )
is weighted by 𝐹 (𝑁 ).
For a given data node 𝑁 ∈ D, the TraverseToLeaf cost

𝐶𝑇 (𝑁 ) of traversing from the root node to 𝑁 is defined as

𝐶𝑇 (𝑁 )=𝑤𝑑𝐷 (𝑁 )+𝑤𝑏𝐵(A) (2)

The depth of 𝑁 is the number of pointer chases needed to

reach the data node. In our cost model, every traverse to leaf

has a fixed cost that is caused by the total size of the ALEX

RMI, because larger RMI causes worse cache locality.

For an instantiation of ALEXA, the cost ofA represents

the average time to perform a query (i.e., a point lookup or

insert) starting from the root node, and is defined as

𝐶 (A)=
∑

𝑁 ∈D (𝐶𝐼 (𝑁 )+𝐶𝑇 (𝑁 ))𝐾 (𝑁 )∑
𝑁 ∈D𝐾 (𝑁 ) (3)

In other words, the cost ofA is the sum of the intra-node cost

and TraverseToLeaf cost of each data node, normalized by

howmany keys are contained in the data node.We normalize

because each data node does not contribute equally to average

query time. For example, a data node that has high intra-node

cost but is rarely queried might not have as much impact on

average query time as a data node with lower intra-node cost

that is frequently queried. We use the number of keys in each

data node as a proxy for its impact on the average query time.

An alternative is to normalize using the true query access

frequency of each data node.

Theweightparameters𝑤𝑠 ,𝑤𝑖 ,𝑤𝑑 ,𝑤𝑏 donotneed tobe tuned

for each dataset or workload, because they represent fixed

quantities. For our evaluation, we set𝑤𝑠 =10,𝑤𝑖 =1,𝑤𝑑 =10,

and𝑤𝑏 =10
−6
. In terms of impact on throughput performance,

these weights intuitively mean that each exponential search

iteration takes 10 ns, each shift takes 1 ns, each pointer chase

to traverse down one level of the RMI takes 10 ns, and each

MB of total size contributes a slowdown of 1 ns due to worse



Figure 20: Across all datasets, ALEX maintains an advantage over fixed-page-size B+Tree even for longer range
scans.

Figure 21: ALEX maintains high performance under
a mixed workload with 5% inserts, 85% point lookups,
and 10% short range queries.

cache locality. As a side effect,𝑤𝑏 acts as a regularizer to pre-

vent the RMI from growing unnecessarily large. We found

that our simple cost model performed well throughout our

evaluation. However, it may still be beneficial to formulate

a more complex cost model that more accurately reflects true

runtime; this is left as future work.

D.2 Cost Computation Performance. The cost of the entire
RMI, 𝐶 (A), is never explicitly computed. Instead, all deci-

sions based on cost are made locally. This is possible due to

the linearity of the cost model. For example, when deciding

between expanding a data node and splitting the data node in

two, we compare the incremental impact on𝐶 (A) between
the two options. This only involves computing the intra-node

cost of the expanded data node and each of the two split data

Table 5: Fraction of time spent on cost computation

longitudes longlat lognormal YCSB

Read-Only 0 0 0 0

Read-Heavy 0.000271 0.000214 0.000617 0

Write-Heavy 0.00142 0.00901 0.00452 0.116

Write-Only 0.0270 0.0732 0.0237 0.149

nodes; the intra-node costs of all other data nodes in the RMI

remain the same.

Cost computation occurs at two points duringALEX opera-

tion (Section 4.3.5): (1) when a data node becomes full, the ex-

pected intra-nodecost is compared to theempirical intra-node

cost to check for cost deviation. This comparison has very low

performance overhead because the empirical values of 𝑆 (𝑁 )
and 𝐼 (𝑁 ) are maintained by the data node, so computing the

empirical intra-node cost merely involves three multiplica-

tions and an addition. (2) If cost deviation is detected, ALEX

must make a cost-based decision about how to adjust the RMI

structure. This involves computing the expected intra-node

cost of candidate data nodes which may be created as a re-

sult of adjusting the RMI structure. Since the candidate data

nodes do not yet exist, we must compute the expected 𝑆 (𝑁 )
and 𝐼 (𝑁 ), which involves implicitly building the candidate

data node. The majority of time spent on cost-based decision

making is spent on computing expected 𝑆 (𝑁 ) and 𝑆 (𝐼 ).
Table 5 shows the fraction of overall workload time spent

on computing costs and making cost-based decisions. On

the read-only workload, no time is spent on cost-based de-

cision because nodes never become full. As the fraction of

writes increases, an increasing fraction of time is spent on

cost computation because nodes become full more frequently.

However, even on thewrite-only workload, cost computation

takes up a small fraction of overall time spent on theworkload.



YCSB sees the highest fraction of time spent on cost computa-

tion, due to two factors: data nodes are larger, so computing

𝑆 (𝑁 ) and 𝐼 (𝑁 ) for larger candidate nodes takes more time,

and lookups and inserts on YCSB are efficient, so data nodes

become full more quickly. Longlat sees the next highest frac-

tion of time spent on cost computation, which is due to the

high frequency with which data nodes become full (Table 3).

E Comparison of Gapped Array and PMA
The Gapped Array structure introduced in Section 3.2 has

some similarities to an existing data structure known as the

Packed Memory Array (PMA) [4]. In this section, we first

describe the PMA, and then we describe why we choose to

not use the PMAwithin ALEX.

Like the Gapped Array, PMA is an array with gaps. Unlike

the Gapped Array, PMA is designed to uniformly space its

gaps between elements and to maintain this property as new

elements are inserted. The PMA achieves this goal by rebal-

ancing local portions of the arraywhen the gaps are no longer

uniformly spaced. Under random inserts from a static distri-

bution, the PMA can insert elements in𝑂 (log𝑛) time, which

is the same as the Gapped Array. However, when inserts do

not come from a static distribution, the PMA can guarantee

worst-case insertion in𝑂 (log2𝑛) time, which is better than

the worst case of the Gappd Array, which is𝑂 (𝑛) time.

We now describe the PMAmore concretely; more details

can be found in [4]. The PMA is an array whose size is always

a power of 2. The PMA divides itself into equally spaced seg-

ments, and the number of segments is also a power of 2. The

PMA builds an implicit binary tree on top of the array, where

each segment is a leaf node, each inner node represents the re-

gionof the array coveredby its twochildren, and the rootnode

represents the entire array. The PMA places density bounds

on each node of this implicit binary tree, where the density

bounddetermines themaximumratio of elements to positions

in the region of the array represented by the node. The nodes

nearer the leaves will have higher density bounds, and the

nodes nearer the root will have lower density bounds. The

density bounds guarantee that no region of the array will be-

come toopacked. If an insertion into a segmentwill violate the

segment’s density bounds, thenwe can find some local region

of the array and uniformly redistribute all elements within

this region, such that after the redistribution, none of the

density bounds are violated. As the array becomes more full,

ultimately no local redistribution can avoid violating density

bounds.At thispoint, thePMAexpandsbydoubling insizeand

inserting all elements uniformly spaced in the expanded array.

We do not use the PMA as the underlying storage structure

for ALEX data nodes because the PMA negates the benefits

of model-based inserts, which is critical for search perfor-

mance. For example, when rebalancing a local portion of the

array, the PMA spreads the keys in the local region over more

space, which worsens search performance because the keys

aremoved further away fromtheir predicted location. Further-

more, themain benefit of PMA—efficient inserts for non-static

or complex key distributions—is already achieved by ALEX

through the adaptive RMI structure. In our evaluation, we

found that ALEX using data nodes built on Gapped Arrays

consistently outperformed data nodes built on PMA.

F Analysis ofModel-based Search
Model-based inserts try to place keys inGappedArray in their

predictedpositions.Weanalyze the trade-offbetweenGapped

Array space usage and search performance in terms of 𝑐 , the

ratio of Gapped Array slots to number of actual keys. Assume

the keys in the data node are 𝑥1<𝑥2< ···<𝑥𝑛 , and the linear
model before rounding is𝑦=𝑎𝑥+𝑏 when 𝑐 =1, i.e., when no
extra space is allocated. Define 𝛿𝑖 =𝑥𝑖+1−𝑥𝑖 ,Δ𝑖 =𝑥𝑖+2−𝑥𝑖 . We

first present a condition under which all the keys in that data

node are placed in the predicted location, i.e., search for all

keys are direct hits.

Theorem .1. When 𝑐 ≥ 1

𝑎min
𝑛−1
𝑖=1

𝛿𝑖
, every key in the data node

is placed in the predicted location exactly.

Proof. Consider two keys in the leaf node 𝑥𝑖 and 𝑥 𝑗 ,𝑖≠ 𝑗 .

The predicted locations before rounding are 𝑦𝑖 and 𝑦 𝑗 , re-

spectively. When |𝑦𝑖 −𝑦 𝑗 | ≥ 1, we know that the rounded

locations ⌊𝑦𝑖⌋ and ⌊𝑦 𝑗 ⌋ cannot be equal. Under the linear

model𝑦=𝑐 (𝑎𝑥+𝑏), we can write the condition as:

|𝑦𝑖−𝑦 𝑗 |= |𝑐𝑎(𝑥𝑖−𝑥 𝑗 ) | ≥ 1 (4)

If this condition is true for all the pairs (𝑖, 𝑗),𝑖≠ 𝑗 , then all the
keys will have a unique predicted location. For the condition

Eq. (4) to be true for all 𝑖≠ 𝑗 , it suffices to have:

𝑛−1
min

𝑖=1
𝑐𝑎(𝑥𝑖+1−𝑥𝑖 ) ≥ 1 (5)

which is equivalent to 𝑐 ≥ 1

𝑎min
𝑛−1
𝑖=1

𝛿𝑖
. □

We now understand that 𝑐 =1 corresponds to the optimal

space, and 𝑐 ≥ 1

𝑎min
𝑛−1
𝑖=1

𝛿𝑖
= 𝑐𝑚𝑎𝑥 corresponds to the optimal

search time (ignoring the effect of cache misses). We now

bound the number of keys with direct hits when 𝑐 <𝑐𝑚𝑎𝑥 .

Theorem .2. The number of keys placed in the predicted
location is no larger than 2 +

��{1≤ 𝑖 ≤𝑛−2|Δ𝑖 >
1

𝑐𝑎
}
��, where��{1≤ 𝑖 ≤𝑛−2|Δ𝑖 >

1

𝑐𝑎
}
�� is the number of Δ𝑖 ’s larger than 1

𝑐𝑎
.

Proof. We define a mapping 𝑓 : [𝑛−2]→ [𝑛], where 𝑓 (𝑖)
is defined recursively according to the following cases:

Case (1): 𝑦𝑖+2 −𝑦𝑖 > 1. Let 𝑓 (𝑖) = 1. Case (2): 𝑦𝑖+2 −𝑦𝑖 ≤
1, ⌊𝑦𝑖+1⌋ = ⌊𝑦𝑖⌋, 𝑓 (𝑖 − 1) ≤ 𝑖 or 𝑖 = 1. Let 𝑓 (𝑖) = 𝑖 + 1. Case (3):
Neither case (1) or (2) is true. Let 𝑓 (𝑖)=𝑖+2.



We prove that ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛−2, if 𝑓 (𝑖) > 1, 𝑓 ( 𝑗) > 1, then

𝑖+1≤ 𝑓 (𝑖) ≤ 𝑖+2, 𝑗+1≤ 𝑓 ( 𝑗) ≤ 𝑗+2, and 𝑓 (𝑖)< 𝑓 ( 𝑗).
First, when 𝑓 (𝑖)>1,𝑓 ( 𝑗)>1, we know that case (1) is false

for both 𝑖 and 𝑗 . So 𝑓 (𝑖) is either 𝑖+1 or 𝑖+2, and 𝑓 ( 𝑗) is either
𝑗+1 or 𝑗+2.
Second, if 𝑖+1< 𝑗 , then 𝑓 (𝑖) ≤ 𝑖+2< 𝑗+1≤ 𝑓 ( 𝑗). So we only

need to prove 𝑓 (𝑖) < 𝑓 ( 𝑗) when 𝑖 +1 = 𝑗 . Now consider the

only two possible values for 𝑓 ( 𝑗), 𝑗+1 and 𝑗+2, when 𝑖+1= 𝑗 .
If 𝑓 ( 𝑗)= 𝑗+1=𝑖+2, by definition we know that case (2) is true

for 𝑓 ( 𝑗). That means 𝑓 ( 𝑗−1) = 𝑗 or 1. But we already know
𝑓 ( 𝑗−1) = 𝑓 (𝑖) > 1. So 𝑓 (𝑖) = 𝑓 ( 𝑗−1) = 𝑗 = 𝑖+1< 𝑖+2= 𝑓 ( 𝑗). If
𝑓 ( 𝑗)= 𝑗+2, then 𝑓 (𝑖) ≤ 𝑖+2< 𝑗+2= 𝑓 ( 𝑗).
So far, we have proved that 𝑓 (𝑖) is unique when 𝑓 (𝑖) > 1.

Nowwe prove that the key 𝑥 𝑓 (𝑖) is not placed in ⌊𝑦𝑓 (𝑖)⌋ when
𝑓 (𝑖)>1, i.e., either case (2) or case (3) is true for 𝑓 (𝑖). In both
cases,𝑦𝑖+2−𝑦𝑖 ≤ 1, and the rounded integers ⌊𝑦𝑖+2⌋ and ⌊𝑦𝑖⌋
must be either equal or adjacent: ⌊𝑦𝑖+2⌋−⌊𝑦𝑖⌋ ≤ 1. Thatmeans

⌊𝑦𝑖+1⌋ must be equal to either ⌊𝑦𝑖+2⌋ or ⌊𝑦𝑖⌋.
We prove by mathematical induction. For the minimal 𝑖 s.t.

𝑓 (𝑖)>1, if case (2) is true, ⌊𝑦𝑖+1⌋= ⌊𝑦𝑖⌋. Thatmeans𝑥𝑖+1 cannot
be placed at ⌊𝑦𝑖+1⌋ because that location is already occupied
before 𝑥𝑖+1 is inserted. And 𝑓 (𝑖)=𝑖+1 by definition. If case (2)
is false, since we already know𝑦𝑖+2−𝑦𝑖 ≤ 1, 𝑓 (𝑖−1)=1 or 𝑖 =1,
it follows that ⌊𝑦𝑖+1⌋ > ⌊𝑦𝑖⌋. That implies ⌊𝑦𝑖+1⌋ = ⌊𝑦𝑖+2⌋. So
𝑥𝑖+2 cannot be placed at ⌊𝑦𝑖+2⌋. And 𝑓 (𝑖)= 𝑖+2 because case
(3) happens.

Given that the key 𝑥 𝑓 (𝑖−1) is not placed at ⌊𝑦𝑓 (𝑖−1)⌋ when
𝑓 (𝑖−1)>1,wenowprove it is also true for 𝑖 . Theproof for case

(2) is the same as above. If case (2) is false, and ⌊𝑦𝑖+1⌋ > ⌊𝑦𝑖⌋,
the proof is also the same as above. The remaining possibil-

ity of case (3) is that ⌊𝑦𝑖+1⌋ = ⌊𝑦𝑖⌋, and 𝑓 (𝑖 − 1) = 𝑖 + 1. The
inductive hypothesis states that 𝑥𝑖+1 is not placed at ⌊𝑦𝑖+1⌋.
That means 𝑥𝑖+1 is placed at a location equal or larger than

⌊𝑦𝑖+1⌋ +1 = ⌊𝑦𝑖⌋ +1. But we also know that ⌊𝑦𝑖+2⌋ ≤ ⌊𝑦𝑖⌋ +1.
So 𝑥𝑖+2 cannot be placed at ⌊𝑦𝑖+2⌋ which is not on the right of
𝑥𝑖+1’s location. Since case (3) is false, 𝑓 (𝑖)=𝑖+2.

By induction, we show that when 𝑓 (𝑖) > 1, the key 𝑥 𝑓 (𝑖)
cannot be placed at ⌊𝑦𝑓 (𝑖)⌋. That means when we look up

𝑥 𝑓 (𝑖) , we cannot directly hit it from the model prediction.

Since we also proved that 𝑓 (𝑖) has a unique value when

𝑓 (𝑖) > 1, the number of misses from the model prediction

is at least the size of 𝑆 = {𝑖 ∈ [𝑛 − 2] |𝑓 (𝑖) > 1}. By the def-

inition of 𝑓 (𝑖), 𝑆 = {𝑖 ∈ [𝑛 − 2] |𝑦𝑖+2 − 𝑦𝑖 ≤ 1}. Therefore,
the number of direct hits by the model is at most 𝑛 − |𝑆 | =
2+|{𝑖 ∈ [𝑛−2] |𝑦𝑖+2−𝑦𝑖 >1}|=2+

��{1≤ 𝑖 ≤𝑛−2|Δ𝑖 ≥ 1

𝑐𝑎
}
��
.

□

This result presents an upper bound on the number of di-

rect hits from themodel, which is positively correlated with 𝑐 .

This upper bound also applies to the Learned Index,which has

𝑐 =1. This explains why the Gapped Array has the potential

to dramatically decrease the search time. Similarly, we can

lower bound the number of direct hits.

Theorem .3. The number of keys placed in the predicted
location is no smaller than 𝑙 +1, where 𝑙 is the largest integer
such that ∀1≤ 𝑖 ≤ 𝑙,𝛿𝑖 ≥ 1

𝑐𝑎
, ı.e., the number of consecutive 𝛿𝑖 ’s

from the beginning equal or larger than 1

𝑐𝑎
.

The proof is not hard based on the ideas from the previous

two proofs.
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