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Abstract

Deep and large pre-trained language models
are the state-of-the-art for various natural lan-
guage processing tasks. However, the huge
size of these models could be a deterrent to use
them in practice. Some recent and concurrent
works use knowledge distillation to compress
these huge models into shallow ones. In this
work we study knowledge distillation with a
focus on multi-lingual Named Entity Recogni-
tion (NER). In particular, we study several dis-
tillation strategies and propose a stage-wise op-
timization scheme leveraging teacher internal
representations that is agnostic of teacher ar-
chitecture and show that it outperforms strate-
gies employed in prior works. Additionally,
we investigate the role of several factors like
the amount of unlabeled data, annotation re-
sources, model architecture and inference la-
tency to name a few. We show that our
approach leads to massive compression of
MBERT-like teacher models by upto 35z in
terms of parameters and 51z in terms of la-
tency for batch inference while retaining 95%
of its Fi-score for NER over 41 languages.

1 Introduction

Motivation: Pre-trained deep language mod-
els have shown state-of-the-art performance for
various natural language processing applications
like text classification, named entity recognition,
question-answering, etc. A significant challenge
facing many practitioners is how to deploy these
huge models in practice. For instance, BERT Large
and GPT 2 contain 340M and 1.5B model parame-
ters respectively. Although these models are trained
offline, during prediction we still need to traverse
the deep neural network architecture stack involv-
ing a large number of parameters. This significantly
increases latency and memory requirements.
Knowledge distillation (Hinton et al., 2015; Ba
and Caruana, 2014), originally developed for com-
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puter vision applications, provides one of the tech-
niques to compress huge neural networks into
smaller ones. In this, shallow models (called stu-
dents) are trained to mimic the output of huge
models (called teachers) based on a transfer set.
Similar approaches have been recently adopted for
language model distillation.

Limitations of existing work: Recent works (Liu
etal.,2019; Zhu et al., 2019; Tang et al., 2019; Turc
et al., 2019) leverage only the soft output (logits)
from the teacher as optimization targets for distill-
ing student models, with some notable exceptions
from concurrent work. Sun et al. (2019); Sanh
(2019); Aguilar et al. (2019)!; Zhao et al. (2019)"
additionally use internal representations from the
teacher to provide useful hints for distilling better
students. However, these methods are constrained
by the teacher architecture like embedding dimen-
sion in BERT and transformer architectures. This
makes it difficult to massively compress these mod-
els (without being able to reduce the network width)
or adopt alternate architectures. For instance, we
observe BiLSTMS as students to be more accurate
than Transformers for low latency configurations.
Some of the concurrent works (Turc et al., 2019)';
(Zhao et al., 2019)! adopt pre-training or dual train-
ing to distil student models of arbitrary architecture.
However, pre-training is expensive both in terms
of time and computational resources.

Additionally, most of the above works are geared
for distilling language models for GLUE tasks.
There has been very limited exploration of such
techniques for NER (Izsak et al., 2019; Shi et al.,
2019) or multi-lingual tasks (Tsai et al., 2019).
Moreover, these works also suffer from the same
drawbacks as mentioned before.

Overview of our method: In this work, we com-
pare distillation strategies used in all the above
works and propose a new scheme outperforming

! Currently under review at ICLR or alternate.



prior ones. In this, we leverage teacher internal rep-
resentations to transfer knowledge to the student.
However, in contrast to prior work, we are not re-
stricted by the choice of student architecture. This
allows representation transfer from Transformer-
based teacher model to BiLSTM-based student
model with different embedding dimensions and
disparate output spaces. We also propose a stage-
wise optimization scheme to sequentially trans-
fer most general to task-specific information from
teacher to student for better distillation.

Overview of our task: Unlike prior works mostly
focusing on GLUE tasks in a single language, we
employ our techniques to study distillation for
massive multi-lingual Named Entity Recognition
(NER) over 41 languages. Prior work on multi-
lingual transfer on the same (Rahimi et al., 2019)
(MMNER) requires knowledge of source and target
language whereby they judiciously select pairs for
effective transfer resulting in a customized model
for each language. In our work, instead, we adopt
Multi-lingual Bidirectional Encoder Representa-
tions from Transformer (MBERT) as our teacher
and show that it is possible to perform language-
agnostic joint NER for all languages with a single
model that has a similar performance but massively
compressed in contrast to MBERT and MMNER.

Perhaps, the closest work to this work is that
of (Tsai et al., 2019) where MBERT is leveraged
for multi-lingual NER. We discuss this in details
and use their strategy as one of our baselines. We
show that our distillation strategy is better leading
to a much higher compression and faster inference.
We also investigate several unexplored dimensions
of distillation like the impact of unlabeled trans-
fer data and annotation resources, choice of multi-
lingual word embeddings, architectural variations
and inference latency to name a few.

Our techniques obtain massive compression of
MBERT-like teacher models by upto 35z in terms
of parameters and 512 in terms of latency for batch
inference while retaining 95% of its performance
for massive multi-lingual NER, and matching or
outperforming it for classification tasks. Overall,
our work makes the following contributions:

e Method: We propose a distillation method lever-
aging internal representations and parameter pro-
jection that is agnostic of teacher architecture.

o Inference: To learn model parameters, we pro-
pose stage wise optimization schedule with grad-
ual unfreezing outperforming prior schemes.

e Experiments: We perform distillation for multi-
lingual NER on 41 languages with massive com-
pression and comparable performance to huge
models”. We also perform classification exper-
iments on four datasets where our compressed
models perform at par with huge teachers.

e Study: We study the influence of several factors
on distillation like the availability of annotation
resources for different languages, model archi-
tecture, quality of multi-lingual word embed-
dings, memory footprint and inference latency.

Problem Statement: Consider a sequence x =
(zr) with K tokens and y = (y) as the corre-
sponding labels. Consider D; = {(x), (yx,)} to
be a set of n labeled instances with X = {(z4)}
denoting the instances and Y = {(y; )} the cor-
responding labels. Consider D,, = {(z},,)} to be
a transfer set of N unlabeled instances from the
same domain where n << N. Given a teacher
T(6"), we want to train a student S(0°) with 6
being trainable parameters such that |0%| << |6
and the student is comparable in performance to
the teacher based on some evaluation metric. In
the following section, the superscript ‘t’ always
represents the teacher and ‘s’ denotes the student.

2 Related Work

Model compression and knowledge distillation:
Prior works in the vision community dealing with
huge architectures like AlexNet and ResNet have
addressed this challenge in two ways. Works in
model compression use quantization (Gong et al.,
2014), low-precision training and pruning the net-
work, as well as their combination (Han et al.,
2016) to reduce the memory footprint. On the other
hand, works in knowledge distillation leverage stu-
dent teacher models. These approaches include
using soft logits as targets (Ba and Caruana, 2014),
increasing the temperature of the softmax to match
that of the teacher (Hinton et al., 2015) as well as
using teacher representations (Romero et al., 2015)
(refer to (Cheng et al., 2017) for a survey).

Recent and concurrent Works: Liu et al. (2019);
Zhu et al. (2019); Clark et al. (2019) leverage en-
sembling to distil knowledge from several multi-
task deep neural networks into a single model. Sun
et al. (2019); Sanh (2019);Aguilar et al. (2019)!
train student models leveraging architectural knowl-
edge of the teacher models which adds architec-
tural constraints (e.g., embedding dimension) on

2We will release code and distilled model checkpoints.



the student. In order to address this shortcoming,
more recent works combine task-specific distilla-
tion with pre-training the student model with ar-
bitrary embedding dimension but still relying on
transformer architectures (Turc et al., 2019)!;(Jiao
et al., 2019)!;(Zhao et al., 2019)".

Izsak et al. (2019); Shi et al. (2019) extend these
for sequence tagging for Part-of-Speech (POS) tag-
ging and Named Entity Recognition (NER) in En-
glish. The one closest to our work Tsai et al. (2019)
extends the above for multi-lingual NER.

Most of these works rely on general corpora for
pre-training and task-specific labeled data for dis-
tillation. To harness additional knowledge, (Turc
etal., 2019) leverage task-specific unlabeled data.
(Tang et al., 2019; Jiao et al., 2019) use rule-and
embedding-based data augmentation in absence of
such unlabeled data.

3 Models

The Student: The input to the model are E-
dimensional word embeddings for each token. In
order to capture sequential information in the to-
kens, we use a single layer Bidirectional Long
Short Term Memory Network (BiLSTM). Given
a sequence of K tokens, a BILSTM <ﬂnputes a
set of K vectors h(xp) = [h(zk); h(xg)] as the
concatenation of the states generated by a forward
(m) and backward LSTM (h(zy)). Assuming
the number of hidden units in the LSTM to be H,
each hidden state h(zy) is of dimension 2H. Prob-
ability of the label at timestep ¢ is given by:

PO () = softmaz(h(ey) - W) (1)

where W* € RZH-C and C is number of labels.
We train the student network end-to-end min-
imizing the cross-entropy loss over labeled data:

Leg = — Z Z Zyk,c,l log p{* (zx1) (2)

z, €D k

The Teacher: Pre-trained language models like
ELMO (Peters et al., 2018), BERT (Devlin et al.,
2019) and GPT (Radford et al., 2018, 2019) have
shown state-of-the-art performance for several
tasks. We adopt BERT as the teacher — specifi-
cally, the multi-lingual version of BERT (MBERT)
with 179M M parameters trained on top of 104 lan-
guages with the largest Wikipedias. MBERT does
not use any markers to distinguish languages during
pre-training and learns a single language-agnostic
model trained via masked language modeling over

Wikipedia articles from all languages.
Tokenization: Similar to MBERT, we use Word-
Piece tokenization with 110K shared WordPiece
vocabulary. We preserve casing, remove accents,
split on punctuations and whitespace.
Fine-tuning the Teacher: The pre-trained lan-
guage models are trained for general language
model objectives. In order to adapt them for the
given task, the teacher is fine-tuned end-to-end with
task-specific labeled data D to learn parameters ot
using cross-entropy loss as in Equation 2.

4 Distillation Features

Fine-tuning the teacher gives us access to its task-
specific representations for distilling the student
model. To this end, we use different kinds of infor-
mation from the teacher.

Teacher Logits: Logits as logarithms of predicted
probabilities provide a better view of the teacher by
emphasizing on the different relationships learned
by it across different instances. Consider p’(x) to
be the classification probability of token x, as gen-
erated by the fine-tuned teacher with logit(p'(zy))
representing the corresponding logits. Our objec-
tive is to train a student model with these logits
as targets. Given the hidden state representation
h(zy) for token xy, we can obtain the correspond-
ing classification score (since targets are logits) as:

r*(zr) = W' - h(zg) + 0" 3)

where W™ € RY2H and b" € RC are trainable
parameters and C' is the number of classes. We
want to train the student neural network end-to-
end by minimizing the element-wise mean-squared
error between the classification scores given by the
student and the target logits from the teacher as:
Lee=5 30 ST I (wra)—logit(p (ws ) I

Tu€Dy k

(C))
4.1 Internal Teacher Representations
Hidden representations: Recent works (Sun
et al., 2019; Romero et al., 2015) have shown the
hidden state information from the teacher to be
helpful as a hint-based guidance for the student.
Given a large collection of task-specific unlabeled
data, we can transfer the teacher’s knowledge to
the student via its hidden representations. How-
ever, this poses a challenge in our setting as the
teacher and student models have different architec-
tures with disparate output spaces.



Consider h*(z) and 2} (2x; 0;) to be the repre-
sentations generated by the student and the [*" deep
layer of the fine-tuned teacher respectively for a
token x. Consider z,, € D,, to be the set of unla-
beled instances. We will later discuss the choice of
the teacher layer [ and its impact on distillation.
Projection: To make all output spaces compatible,
we perform a non-linear projection of the parame-
ters in student representation ~° to have same shape
as teacher representation zf for each token xy:

25 (x) = Gelu(W' - 1% (z) + b)) (5)

where W/ e RIF[12H s the projection matrix,
v/ € Rl s the bias, and Gelu (Gaussian Error
Linear Unit) (Hendrycks and Gimpel, 2016) is the
non-linear projection function. |z} | represents the
embedding dimension of the teacher. This transfor-
mation aligns the output spaces of the student and
teacher and allows us to accommodate arbitrary
student architecture. Also note that the projections
(and therefore the parameters) are shared across
tokens at different timepoints.

The projection parameters are learned by min-
imizing the K L-divergence (KLD) between the
student and the [*" layer teacher representations:

Lre= Y > KLD((zku), 2 (Tku; 1))

€Dy k

(6)

Multi-lingual word embeddings: A large num-
ber of parameters reside in the word embeddings.
For MBERT a shared multi-lingual WordPiece vo-
cabulary of V' = 110K tokens and embedding
dimension of D = 768 leads to 92M M param-
eters. To have massive compression, we cannot
directly incorporate MBERT embeddings in our
model. Since we use the same WordPiece vocab-
ulary, we are likely to benefit more from these
embeddings than from Glove (Pennington et al.,
2014) or FastText (Bojanowski et al., 2016).

We use a dimensionality reduction algorithm like
Singular Value Decomposition (SVD) to project
the MBERT word embeddings to a lower dimen-
sional space. Given MBERT word embedding ma-
trix of dimension V' x D, SVD finds the best F-
dimensional representation that minimizes sum of
squares of the projections (of rows) to the subspace.

S Training

We want to optimize the loss functions for repre-
sentation L, logits L, and cross-entropy Leg.
These optimizations can be scheduled differently
to obtain different training regimens as follows.

Algorithm 1: Multi-stage distillation.

Fine-tune teacher on D; and update 6* ;

for stage in {1,2,3} do

Freeze all layers . € {1---L};

if stage=1 then

output = 2°(x4,) ;

target = teacher representations on D,, from
the I'" layer as z{ (,; 0%) ;

loss=Rnrcr ;

end

if stage=2 then

output =7°(xy) 3

target = teacher logits on D,, as
logit(p'(zu; 0Y)) ;

loss=Rerr s

end

if stage=3 then

output =p°(z1) ;

target=y; € Dy ;

loss =Rce ;

end

for layerl e {L---1} do

Unfreeze [ ;

Update parameters 607, 0, ; - - - 0} by
minimizing the optimization loss between
student output and teacher target

end
end

5.1 Joint Optimization

In this, we optimize the following losses jointly:

1
D1 Z o Leg(x,y)+
! {z1, ;i teD;

1
| Du|

> (ﬂ'ﬂnz(muyyu)JrV‘ﬁcc(icuvyu))
{zw,yu} €Dy

@)

where «, 8 and v weigh the contribution of differ-
ent losses. A high value of o makes the student
focus more on easy targets; whereas a high value of
~ leads focus to the difficult ones. The above loss
is computed over two different task-specific data
segments. The first part involves cross-entropy loss
over labeled data, whereas the second part involves
representation and logit loss over unlabeled data.

5.2 Stage-wise Training

Instead of optimizing all loss functions jointly, we
propose a stage-wise scheme to gradually transfer
most general to task-specific representations from
teacher to student. In this, we first train the student
to mimic teacher representations from its /" layer
by optimizing R on unlabeled data. The student
learns the parameters for word embeddings (6%),
BiLSTM (6°) and projections (W7, b/).

In the second stage, we optimize for the cross-
entropy R¢e and logit loss R, jointly on both



Dataset Labels  Train Test Unlabeled Work PT TA Distil.
NER Sanh (2019) Y Y D1
Wikiann-41 11 705K 329K 7.2MM Turc et al. (2019) Y N D1
Classification Liu et al. (2019); Zhu et al. (2019); N N D1
IMDB 2 25K 25K 50K Shi et al. (2019); Tsai et al. (2019);

DBPedia 14 560K 70K - Tang et al. (2019); Izsak et al.

AG News 4 120K 7.6K - (2019); Clark et al. (2019)
Elec 2 2K K 200K Sun et al. (2019) N Y D2
Table 1: Full dataset summary. Jiao et al. (2019) N N D2
. Zhao et al. (2019 Y N D2
labeled and unlabeled data respectively to learn the (2019)
TinyMBERT (ours) N N D4

corresponding parameters W* and (W", b").

The above can be further broken down in two
stages, where we sequentially optimize logit loss
R on unlabeled data and then optimize cross-
entropy loss R¢e on labeled data. Every stage
learns parameters conditioned on those learned in
previous stage followed by end-to-end fine-tuning.

5.3 Gradual Unfreezing

One potential drawback of end-to-end fine-tuning
for stage-wise optimization is ‘catastrophic forget-
ting’ (Howard and Ruder, 2018) where the model
forgets information learned in earlier stages. To
address this, we adopt gradual unfreezing — where
we tune the model one layer at a time starting from
the configuration at the end of previous stage.

We start from the top layer that contains the
most task-specific information and allow the model
to configure the task-specific layer first while oth-
ers remain frozen. The latter layers are gradually
unfrozen one by one and the model trained till con-
vergence. Once a layer is unfrozen, it maintains
the state. When the last layer (word embeddings)
is unfrozen, the entire network is trained end-to-
end. The order of this unfreezing scheme (top-to-
bottom) is reverse of that in (Howard and Ruder,
2018) and we find this to work better in our setting
with the following intuition. At the end of the first
stage on optimizing R, the student learns to gen-
erate representations similar to that of the [*" layer
of the teacher. Now, we need to add only a few
task-specific parameters ((I/", b")) to optimize for
logit loss R, with all others frozen. Next, we
gradually give the student more flexibility to op-
timize for task-specific loss by tuning the layers
below where the number of parameters increases
with depth (| (W7, b0")| << |6y << [0w)).

We tune each layer for n epochs and restore
model to the best configuration based on validation
loss on a held-out set. Therefore, the model re-
tains best possible performance from any iteration.
Algorithm 1 shows overall processing scheme.

Table 2: Different distillation strategies. D1 leverages
soft logits with hard labels. D2 uses representation loss.
PT denotes pre-training with language modeling. TA
depicts students constrained by teacher architecture.

6 Experiments

Dataset Description: We evaluate our model
TinyMBERT for multi-lingual NER on 41 lan-
guages and the same setting as in (Rahimi et al.,
2019). This data has been derived from the
WikiAnn NER corpus (Pan et al., 2017) and parti-
tioned into training, development and test sets. All
the NER results are reported in this test set for a
fair comparison between existing works. We re-
port both the average F}-score (1) and standard
deviation o between scores across 41 languages
for phrase-level evaluation. Refer to Figure 2 for
languages codes and distribution of training labels
across languages.

We also perform experiments with data from
four other domains (refer to Table 1): IMDB (Maas
et al.), SST-2 (Socher et al., 2013) and
Elec (McAuley and Leskovec) for sentiment analy-
sis for movie and electronics product reviews, Db-
Pedia (Zhang et al.) and Ag News (Zhang et al.) for
topic classification of Wikipedia and news articles.
NER Tags: The NER corpus uses IOB2 tagging
strategy with entities like LOC, ORG and PER.
Following MBERT, we do not use language mark-
ers and share these tags across all languages. We
use additional syntactic markers like {CLS, SEP,
PAD} and ‘X’ for marking segmented wordpieces
contributing a total of 11 tags (with shared ‘O’).

6.1 Evaluating Distillation Strategies

Baselines: A trivial baseline (DO0) is to learn mod-
els one per language using only corresponding la-
bels for learning. This can be improved by merging
all instances and sharing information across all lan-
guages (DO0-S). Most of the concurrent and recent
works (refer to Table 2 for an overview) leverage
logits as optimization targets for distillation (D1).



Strategy Features Transfer =0.7MM  Transfer = 1.4MM  Transfer = 7.2MM
DO Labels per lang. 71.26 (6.2) - -

DO-S Labels across all lang. 81.44 (5.3) - -

D1 Labels and Logits 82.74 (5.1) 84.52 (4.8) 85.94 (4.8)

D2 Labels, Logits and Repr. 82.38 (5.2) 83.78 (4.9) 85.87 (4.9)
D3.1 (S1) Repr. (S2) Labels and Logits 83.10 (5.0) 84.38 (5.1) 86.35 (4.9)
D3.2 + Gradual unfreezing 86.77 (4.3) 87.79 (4.0) 88.26 (4.3)
D4.1 (S1) Repr. (S2) Logits (S3) Labels 84.82 (4.7) 87.07 (4.2) 87.87 (4.1)
D4.2 + Gradual unfreezing 87.10 (4.2) 88.64 (3.8) 88.52 (4.1)

Table 3: Comparison of several strategies with average F-score (and standard deviation) across 41 languages over

different transfer data size. .S; depicts separate stages and corresponding optimized loss functions.

A few exceptions also use teacher internal represen-
tations along with soft logits (D2). For our model
we consider multi-stage distillation, where we first
optimize representation loss followed by jointly
optimizing logit and cross-entropy loss (D3.1) and
further improving it by gradual unfreezing of neu-
ral network layers (D3.2). Finally, we optimize the
loss functions sequentially in three stages (D4.1)
and improve it further by unfreezing mechanism
(D4.2). We further compare all strategies while
varying the amount of unlabeled transfer data for
distillation (hyper-parameter settings in Appendix).
Results: From Table 3, we observe all strategies
that share information across languages to work bet-
ter (DO-S vs. D0) with the soft logits adding more
value than hard targets (D1 vs. DO-S). Interestingly,
we observe simply combining representation loss
with logits (D3.1 vs. D2) hurts the model. We
observe this strategy to be vulnerable to the hyper-
parameters («, 3,7 in Eqn. 7) used to combine
multiple loss functions. We vary hyper-parameters
in multiples of 10 and report best numbers.

Stage-wise optimizations remove these hyper-
parameters and improve performance. We also
observe the gradual unfreezing scheme to improve
both stage-wise distillation strategies significantly.

Focusing on the data dimension, we observe all
models to improve as more and more unlabeled
data is used for transferring teacher knowledge to
student. However, we also observe the improve-
ment to slow down after a point where additional
unlabeled data does not yield significant benefits.
Table 4 shows the gradual performance improve-
ment in TinyMBERT after every stage and unfreez-
ing various neural network layers.

6.2 Performance, Compression and Speedup

Performance: We observe TinyMBERT in Ta-
ble 5 to perform competitively with other models.
MBERT-single models are fine-tuned per language

Stage Unfreezing Layer Fy Std. Dev.
2 Linear ((W",b")) 0 0

2 Projection ((W7,b7))  2.85 3.9

2 BiLSTM (6) 81.64 5.2

2 Word Emb (0.,) 85.99 4.4

3 Softmax (W*) 86.38 4.2

3 Projection (W7, bF))  87.65 3.9

3 BiLSTM (6) 88.08 39

3 Word Emb (6.,) 88.64 3.8

Table 4: Gradual F-score improvement over multiple
distillation stages in TinyMBERT.
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Figure 1: Variation in TinyMBERT F}-score with
parameter and latency compression against MBERT.
Each point in the linked scatter plots represents a con-
figuration with corresponding embedding dimension
and BiLSTM hidden states as (¥, H).

84.5 85 85.5 86 86.5 87 87.5 88 88.5 89

Model Avg. F; Std. Dev
MBERT-single (Devlin et al., 2019) 90.76 3.1
MBERT (Devlin et al., 2019) 91.86 2.7
MMNER (Rahimi et al., 2019) 89.20 2.8
TinyMBERT (ours) 88.64 3.8

Table 5: Fj-score comparison of different models with
standard deviation across 41 languages.
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Figure 2: F-score comparison for different models across 41 languages. The y-axis on the left shows the scores,
whereas the axis on the right (plotted against blue dots) shows the number of training labels (in thousands).

with corresponding labels, whereas MBERT is fine-
tuned with data across all languages. MMNER
results are reported from Rahimi et al. (2019).

Figure 2 shows the variation in F}-score across
different languages with variable amount of train-
ing data for different models. We observe all the
models to follow the general trend with some aber-
rations for languages with less training labels.
Parameter compression: TinyMBERT performs
at par with MMNER obtaining atleast 412 compres-
sion by learning a single model across all languages
as opposed to learning language-specific models.

Figure 1a shows the variation in Fj-scores of
TinyMBERT and compression against MBERT
with different configurations corresponding to the
embedding dimension (£) and number of BiLSTM
hidden states (2 x H). We observe that reducing the
embedding dimension leads to great compression
with minimal performance loss. Whereas, reducing
the BiLSTM hidden states impacts the performance
more and contributes less to the compression.
Inference speedup: We compare the runtime in-
ference efficiency of MBERT and our model in a
single P100 GPU for batch inference (batch size
= 32) on 1000 queries of sequence length 32. We
average the time taken for predicting labels for all
the queries for each model aggregated over 100
runs. Compared to batch inference, the speedups
are less for online inference (batch size = 1) at 17x
on Intel(R) Xeon(R) CPU (E5-2690 v4 @2.60GHz)
(refer to Appendix for details).

Figure 1b shows the variation in F}-scores
of TinyMBERT and inference speedup against
MBERT with different (linked) parameter config-
urations as before. As expected, the performance
degrades with gradual speedup. We observe that
parameter compression does not necessarily lead
to an inference speedup. Reduction in the word
embedding dimension leads to massive model com-
pression, however, it does not have a similar effect
on the latency. The BiLSTM hidden states, on

Model #Transfer Samples P
MMNER - 62.1
MBERT - 79.54
TinyMBERT 4.1K 19.12
705K 76.97
1.3MM 77.17
7.2MM 77.26

Table 6: F}-score comparison for low-resource setting
with 100 labeled samples per language and transfer set
of different sizes for TinyMBERT.

the other hand, constitute the real latency bottle-
neck. One of the best configurations leads to 35x
compression, 51z speedup over MBERT retaining
nearly 95% of its performance.

6.3 Low-resource NER and Distillation

Models in all prior experiments are trained on
705K labeled instances across all languages. In
this setting, we consider only 100 labeled samples
for each language with a total of 4.1 K instances.
From Table 6, we observe MBERT to outperform
MMNER by more than 17 percentage points with
TinyMBERT closely following suit.

Furthermore, we observe our model’s perfor-
mance to improve with the transfer set size de-
picting the importance of unlabeled transfer data
for knowledge distillation. As before, a lot of addi-
tional data has marginal contribution.

6.4 Word Embeddings

Random initialization of word embeddings works
well. Multi-lingual 300d FastText embeddings (Bo-
janowski et al., 2016) led to minor improvement
due to 38% overlap between FastText tokens and
MBERT wordpieces. English 300d—Glove does
much better. We experiment with recent dimension-
ality reduction techniques and find SVD to work
better. Surprisingly, it leads to marginal improve-
ment over MBERT embeddings before reduction.
As expected, MBERT embeddings after fine-tuning
perform better than that from pre-trained check-
points (refer to Appendix for F-measures).
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Figure 3: BiLSTM and Transformer F}-score (left y-
axis) vs. inference latency (right y-axis) in 13 different
settings with corresponding embedding dimension and
width / depth of the student as (E, W/D).

Model Transfer Set  Acc.
BERT Large Teacher - 94.95
TinyBERT SST+Imdb  93.35
BERT Base Teacher - 92.78
TinyBERT SST+Imdb  92.89
Sun et al. (2019) SST 92.70
Turc et al. (2019) SST+IMDB  91.10

Table 7: Model accuracy on of SST-2 (dev. set).
6.5 Architectural Considerations

Which teacher layer to distil from? The topmost
teacher layer captures more task-specific knowl-
edge. However, it may be difficult for a shallow
student to capture this knowledge given its limited
capacity. On the other hand, the less-deep represen-
tations at the middle of teacher model are easier to
mimic by shallow student. We observe the student
to benefit most from distilling the 6" or 7¢" layer
of the teacher (results in Appendix).

Which student architecture to use for distilla-
tion? Recent works in distillation leverage both
BiLSTM and Transformer as students. In this ex-
periment, we vary the embedding dimension and
hidden states for BILSTM-, and embedding dimen-
sion and depth for Transformer-based students to
obtain configurations with similar inference latency.
Each of 13 configurations in Figure 3 depict F-
scores obtained by students of different architecture
but similar latency — for strategy DO-S in Table 3.
We observe that for low-latency configurations BiL-
STMs with hidden states {2x100,2x200} work
better than 2-layer Transformers. Whereas, the lat-
ter starts performing better with more than 3-layers
although with a higher latency.

6.6 Distillation for Text Classification

We switch gear and focus on classification tasks. In
contrast to sequence tagging, we use the last hidden
state of the BILSTM as the final sentence represen-
tation for projection, regression and softmax.

Comparison with baselines: Since we focus only

Dataset Student  Distil  Distil BERT BERT
no distil. (Base) (Large) Base Large
Ag News 89.71 92.33 94.33 92.12 94.63
IMDB 89.37 91.22  91.70 91.70 93.22
Elec 90.62 93.55 93.56 93.46 94.27
DbPedia 98.64 99.10  99.06 99.26 99.20

Table 8: Distillation performance with BERT.

Dataset Student Student BERT

no distil.  with distil. ~ Large
AG News 85.85 90.45 90.36
IMDB 61.53 89.08 89.11
Elec 65.68 91.00 90.41
DBpedia 96.30 98.94 98.94

Table 9: Distillation with BERT Large on 500 labeled
samples per class.

on single instance classification in this work, SST-
2 (Socher et al., 2013) is the only GLUE benchmark
to compare against other distillation techniques.
Table 7 shows the accuracy comparison with such
methods reported in SST-2 development set.

We extract 11.7M M sentences from all IMDB
movie reviews in Table 1 to form the unlabeled
transfer set for distillation. We obtain the best per-
formance on distilling with BERT Large (uncased,
whole word masking model) than BERT Base —
demonstrating a better student performance with a
better teacher and outperforming other methods.
Other classification tasks: Table 8 shows the dis-
tillation performance of TinyBERT with different
teachers. We observe the student to almost match
the teacher performance. The performance also im-
proves with a better teacher, although the improve-
ment is marginal as the student model saturates.

Table 9 shows the distillation performance with
only 500 labeled samples per class. The distilled
student improves over the non-distilled version by
19.4 percent and matches the teacher performance
for all of the tasks demonstrating the impact of
distillation for low-resource settings.

7 Conclusions

We develop a multi-stage distillation framework for
massive multi-lingual NER and classification that
performs close to huge pre-trained models with a
massive compression and inference speedup. Our
distillation strategy leveraging teacher representa-
tions agnostic of its architecture and stage-wise
optimization schedule outperforms existing ones.
We perform extensive study of several hitherto less
explored distillation dimensions like the impact
of unlabeled transfer set, embeddings and student
architectures, and make interesting observations.
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A Appendices

A.1 Implementation

The model uses Tensorflow backend. Implementa-
tion code is included in the supplementary.

A.2 Parameter Configurations

All the analyses in the paper — except compres-
sion and speedup experiments that vary embed-
ding dimension F and BiLSTM hidden states H
— are done with the following model configura-
tion in Table 10 with the best F7-score. Optimizer
Adam is used with cosine learning rate scheduler
(Ir_high = 0.001,lr_low = 1le — 8).

The model corresponding to the 35x parameter
compression and 512 speedup for batch inference
uses £ = 50 and H = 2 x 200.

Parameter Value

SVD + MBERT word emb. dim. FE = 300
BiLSTM hidden states H =2 x 600
Dropout 0.2

Batch size 512

Teacher layer 7

Optimizer Adam

Table 10: TinyMBERT config. with best F} = 88.64.

Following hyper-parameter tuning was done to
select dropout rate and batch size at the start of the
parameter tuning process.

Dropout Rate ~ F'i-score
le-4 87.94

0.1 88.36

0.2 88.49

0.3 88.46

0.6 87.26

0.8 85.49

Table 11: Impact of dropout.

Batch size  F}-score
128 87.96

512 88.4

1024 88.24

2048 88.13
4096 87.63

Table 12: Impact of batch size.

Layer (I) F-score  Std. Dev.
11 88.46 3.8
9 88.31 3.8
7 88.64 3.8
6 88.64 3.8
4 88.19 4
2 88.50 4
1 88.51 4

Table 13: Comparison of TinyMBERT F-score and
standard deviation on distilling representations from
[t MBERT layer.

Word Embedding F-score  Std. Dev.
SVD + MBERT (fine-tuned) 88.64 3.8
MBERT (fine-tuned) 88.60 39
SVD + MBERT (pre-trained) 88.54 3.9
PCA + PPA (d=14) (Raunak et al., 2019)  88.35 39
PCA + PPA (d=17) (Raunak et al., 2019)  88.25 4.0
Glove (Pennington et al., 2014) 88.16 4.0
FastText (Bojanowski et al., 2016) 87.91 3.9
Random 87.43 4.1

Table 14: Impact of using various word embeddings for
initialization on multi-lingual distillation. SVD, PCA,
and Glove uses 300-dimensional word embeddings.



BiLSTM | Transformer

Emb Hidden F1 Params (MM) Latency | Emb Depth Params (MM) Latency FI

50 100 80.26 4.7 0.311 48 2 44 0.307  76.67
200 100 79.21 18.1 0354 | 144 1 13.4 0.357 78.49
300 100 79.63 27 0.385 72 2 6.7 0.388  77.98

50 200 81.22 5.1 0.472 96 2 9 0.47 79.19
300 200 80.04 27.7 0593 | 132 2 12.5 0.6 80

50 400 81.98 6.5 0.892 | 204 2 19.7 0.88  80.96
200 400 80.61 20.2 0978 | 228 2 22.1 0.979  80.87
100 400 81.54 11.1 1 240 2 23.3 1.03  80.79
300 400 80.16 29.4 1.06 | 252 2 24.6 1.075 80.84

50 600 81.78 8.5 1.5 | 228 3 227 1.448  83.75
100 600 81.94 13.1 1.53 | 240 3 24 1.498  84.07
200 600 80.7 225 1.628 | 252 3 25.3 1.591 84.08
300 600 81.42 31.8 1.766 | 276 3 28 1.742  84.06

Table 15: BiLSTM and Transformer configurations (with varying embedding dimension, hidden states and depth)
vs. latency and F} scores for distillation strategy D0 — S.

Embedding BiLSTM  Fscore Std. Dev. Params (MM) Params(Compression) Speedup (bsz=32)  Speedup (bsz=1)

300 600 88.64 3.8 31.8 5.6 14 8
200 600 88.5 3.8 22.5 8 15 9
300 400 88.21 4 294 6.1 23 11
200 400 88.16 39 20.2 8.9 25 12
100 600 87.93 4.1 13.1 13.7 16 9
100 400 81.7 4 11.1 16.1 24 13
50 600 87.67 4 8.5 21.1 16 10
300 200 87.54 4.1 27.7 6.5 40 15
200 200 87.47 42 18.7 9.6 46 16
50 400 87.19 4.3 6.5 27.5 27 13
100 200 86.89 42 9.6 18.6 49 15
50 200 86.46 4.3 5.1 35.1 51 16
300 100 86.19 4.3 27 6.6 62 16
200 100 85.88 4.4 18.1 9.9 68 17
100 100 85.64 4.5 9.2 19.5 74 15
50 100 84.6 4.7 4.7 38.1 77 16

Table 16: Parameter compression and inference speedup vs. Fj-score with varying embedding dimension and
BiLSTM hidden states. Online inference is in Intel( R) Xeon(R) CPU (E5-2690 v4 @2.60GHz) and batch inference
is in a single P100 GPU for distillation strategy D4.



Lang #Train-Samples TinyMBERT MBERT-Single MBERT MMNER

af 5 87 89 91 84
hi 5 84 85 88 85
sq 5 91 93 93 88
bn 10 91 &3 95 95
It 10 87 89 90 86
Iv 10 90 92 93 91
mk 10 92 93 94 91
tl 10 94 88 95 93
bs 15 91 93 93 92
et 15 89 92 91 90
sl 15 92 93 94 92
ta 15 77 82 84 84
ar 20 85 88 89 88
bg 20 90 93 93 90
ca 20 91 94 93 91
cs 20 91 92 93 90
da 20 91 93 93 90
de 20 84 89 89 86
el 20 86 90 90 89
en 20 78 &3 84 81
es 20 90 92 93 90
fa 20 90 92 93 93
fi 20 89 91 92 89
fr 20 87 91 91 88
he 20 79 85 85 85
hr 20 90 92 93 89
hu 20 90 93 93 90
id 20 92 92 93 91
it 20 88 93 92 89
ms 20 90 92 93 91
nl 20 89 93 92 89
no 20 91 93 93 90
pl 20 88 91 92 89
pt 20 89 92 93 90
1o 20 93 94 94 92
ru 20 85 88 90 86
sk 20 92 93 94 91
sV 20 94 95 95 93
tr 20 90 92 93 90
uk 20 88 92 93 89
vi 20 89 91 92 88

Table 17: F-scores of different models per language.



