ABSTRACT

Bitvector filtering is an important query processing technique that can significantly reduce the cost of execution, especially for complex decision support queries with multiple joins. Despite its wide application, however, its implication to query optimization is not well understood.

In this work, we study how bitvector filters impact query optimization. We show that incorporating bitvector filters into query optimization straightforwardly can increase the plan space complexity by an exponential factor in the number of relations in the query. We analyze the plans with bitvector filters for star and snowflake queries in the plan space of right deep trees without cross products. Surprisingly, with some simplifying assumptions, we prove that, the plan of the minimal cost with bitvector filters can be found from a linear number of plans in the number of relations in the query. This greatly reduces the plan space complexity for such queries from exponential to linear.

Motivated by our analysis, we propose an algorithm that accounts for the impact of bitvector filters in query optimization. Our algorithm optimizes the join order for an arbitrary decision support query by choosing from a linear number of candidate plans in the number of relations in the query. We implement our algorithm in Microsoft SQL Server as a transformation rule. Our evaluation on both industry standard benchmarks and customer workload shows that, compared with the original Microsoft SQL Server, our technique reduces the total CPU execution time by 22%-64% for the workloads, with up to two orders of magnitude reduction in CPU execution time for individual queries.

CCS CONCEPTS

• Information systems → Query optimization; Query planning.

KEYWORDS
database; query optimization; query processing; bitvector filter; Bloom filter; join order enumeration

* This technical report is an extended version of the ACM SIGMOD 2020 paper Bitvector-aware Query Optimization for Decision Support Queries [14].
both A and C, the bitvector filter created from H_J consists of columns from both A and C. Thus, the lowest possible level to push down this bitvector filter is H_J. Bitvector filters can also be adapted for merge joins.

Surprisingly, despite the wide application of and decades of research on bitvector filters for query processing, the impact of bitvector filters on query optimization is not well understood. To the best of our knowledge, most state-of-the-art DBMSs add bitvector filters to the query plans produced by the query optimizer as a post-processing step.

Neglecting the impact of bitvector filters in query optimization can miss out opportunities of significant plan quality improvement. Figure 2 shows an example of such an opportunity with a query using the JOB [25] benchmark schema:

```
SELECT COUNT(*)
FROM movie_keyword mk, title t, keyword k
WHERE mk.movie_id = t.id AND mk.keyword_id = k.id
AND t.title LIKE '%(' AND k.keyword LIKE '%ge%'
```

Figure 2a shows the join graph of the query, where each edge is annotated with the join cardinality of the corresponding tables. Figure 2b shows the best query plan P_1 without using bitvector filters. Each operator is annotated with the number of tuples after filter predicates being applied and the operator cost (tuple/cost).

Figure 2c shows the query plan after adding bitvector filters to P_1 as a post-processing step. Although the cost of P_1 is reduced after adding bitvector filters, it still costs $3\times$ as much as the best plan when the impact of bitvector filters is considered during query optimization (Figure 2d).

Because P_2 is more expensive than P_1 without using bitvector filters (Figure 2e), the optimizer will choose P_1 as the best plan if it neglects the impact of bitvector filters during query optimization. Therefore, the optimizer will choose a much worse plan (Figure 2c) if the bitvector filters are only considered as a post-processing step after query optimization.

Incorporating bitvector filters into query optimization is surprisingly challenging. Existing top-down or bottom-up dynamic programming (DP) based query optimization framework cannot directly integrate the bitvector filters into its optimization, because the cost of bitvector filters can violate the substructure optimality property in DP. In a DP-based query optimization framework, either top-down or bottom-up, an optimal subplan is stored for each subset A of relations involved in a query. With bitvector filters, however, in addition to the relations in A, the optimal subplan also depends on what bitvector filters are pushed down to A and how these bitvector filters apply to the relations in A based on the structure of the subplan. For example, Figure 2c and Figure 2d both contain a subplan of joining (mk, t). The cost of the two subplans, however, is more than $3\times$ different due to the different bitvector filters pushed down to the subplan.

Motivated by this observation, we study the impact of bitvector filters on query optimization. We focus on an important class of queries, i.e., complex decision support queries, and the plan space of right deep trees without cross products, which is shown to be an important plan space for such queries [12, 17]. Our first contribution is to systematically analyze the impact of bitvector filters on optimizing the join order of star and snowflake queries with primary-key-foreign-key (PKFK) joins in the plan space of right deep trees without cross products (Section 3-5). Prior work has shown that, without bitvector filters, the number of plans for star and snowflake queries in this plan space is exponential in the number of relations in the query [31]. Intuitively, the plan space complexity should further increase with bitvector filters integrated into query optimization due to violation of substructure optimality. Our key observation is that, when the bitvector filters have no false positives, certain join orders can be equivalent or inferior to others with respect to the cost function C_{out} [28, 30], regardless of the query parameters or the data distribution. By exploiting this observation, we prove that, with some simplifying assumption, for star and snowflake queries with PKFK joins, the plan of the minimal C_{out} with bitvector filters can be found by choosing from a linear number of plans in the number of relations in the query in this plan space. To the best of our knowledge, this is the first work that analyzes the interaction between bitvector filters and query optimization for a broad range of decision support queries and a wide plan search space.

While star and snowflake queries are common patterns for decision support queries, in practice, the join graphs can include multiple fact tables and non-PKFK joins. Our second contribution is to propose an algorithm that optimizes the join order for arbitrary decision support queries motivated by our analysis (Section 6). Our technique applies to queries with arbitrary join graphs. Since creating and applying bitvector filters adds overhead, we further optimize our algorithm by selectively adding bitvector filters based on their estimated benefit (Section 6.3). Our algorithm can be
integrated into a query optimization framework as a transformation rule [19, 20]. Depending how a DBMS handles bitvector filters in query optimization, we propose three options to integrate our technique into the DBMS (Section 6.4).

We implement our algorithm in Microsoft SQL Server (Section 7.1). We evaluate our technique on industry benchmarks TPC-DS [1] and JOB [25] as well as a customer workload (Section 7). We show that, comparing to the query plans produced by the original Microsoft SQL Server, our technique reduces the total CPU execution time of a workload by 22% to 64%, with up to two orders of magnitude reduction in CPU execution time for individual queries. We show that our technique is especially effective in reducing execution cost for expensive queries with low selectivity, where right deep trees is a preferable plan space [12, 17]. We discuss related work in Section 8 and conclude the work in Section 9.

2 BITVECTOR FILTER ALGORITHM

In this section, we describe the details of bitvector filters creation and push-down algorithm following [18].

At a high level, each hash join operator creates a single bitvector filter from the equi-join columns on the build side. This bitvector filter is then pushed down to the lowest possible level on the subtree rooted at the probe side so that it can eliminate tuples from that subtree as early as possible.

Algorithm 1 shows how to push down bitvectors given a query plan. The algorithm takes a query plan as its input. Starting from the root of the query plan, the set of bitvector pushed down to the root is initialized to be empty (line 3) and each operator is then processed recursively in a pre-order traversal. At each operator, it takes the set of bitvector filters pushed down to this operator as an input. If the operator is a hash join, a bitvector filter is created from the build side with the equi-join columns of this hash join as the keys of the bitvector filter and is added to the set of bitvector filters applied to the probe side of this hash join (line 8-10). Now consider every bitvector filter that is pushed down to this hash join operator. If one of the child operator of the join operator contains all the columns in the bitvector filter, the bitvector filter is added to the set of bitvector filters pushed down to this child operator; otherwise, the bitvector filter cannot be pushed down further, and it is added to the set of bitvector filters pushed down to this join operator (line 12 - 23). If the set of bitvector filters pushed down to this join operator is non-empty, add a filter operator on top of this join operator to apply the bitvector filters. In this case, update the root of this subplan to the filter operator (line 24-29). Recursively process the bitvector filters pushed down to the child operators and update the children accordingly (line 30 - 33). Finally, return the updated root operator of this subplan (line 34). An example of creating and pushing down bitvector filters with Algorithm 1 is shown in Figure 1.

3 OVERVIEW AND PRELIMINARIES

3.1 Overview

We start with the properties of bitvector filters and the cost function (Section 3). We then show that, with bitvector filters, the number of candidate plans of the minimal cost is linear for star and snowflake queries with PKFK joins in the plan space of right deep trees without cross products (Section 4 and Section 5). We finally describe the general bitvector-aware query optimization algorithm for arbitrary decision support queries and how to integrate it with a Volcano / Cascades style optimizer (Section 6). Table 1 summarizes the notations. Table 2 summarizes the results of our analysis.

3.2 Properties of bitvector filters

We start with the properties of bitvector filters:

Property 1. Commutativity: \(R/(R_1, R_2) = R/(R_2, R_1) \)

Property 2. Reduction: \(|R / R_1| \leq |R| \)

Property 3. Redundancy: \((R_1 \bowtie R_2) / R_2 = R_1 \bowtie R_2 \)

Property 4. Associativity: \(R/(R_1, R_2) = (R/R_1)/R_2 \) if there are no false positives with the bitvector filters created from \((R_1, R_2), R_1, \) and \(R_2\).
Now we prove the absorption rule of bitvector filters for PKFK joins. The absorption rule says that, if R_1 joins R_2 with a key in R_2, the result of joining R_1 and R_2 is a subset of the result of semi-joining R_1 and R_2. Formally:

Lemma 1. Absorption rule: If $R_1 \rightarrow R_2$, then $R_1 / R_2 \supseteq \prod_{R_1}(R_1 \bowtie R_2)$ and $|R_1 / R_2| \geq |R_1| \bowtie |R_2|$. The equality happens if the bitvector filter created from R_2 has no false positives.

Proof. For every tuple r in R_1, it can join with a tuple in R_2 if and only if the join columns in r exist in R_2. Because $R_1 \rightarrow R_2$, there is at most one such tuple in R_2. Thus, $R_1 / R_2 \subseteq \prod_{R_1}(R_1 \bowtie R_2)$. □

3.3 Cost function

Since our analysis focuses on the quality of logical join ordering, we measure the intermediate result sizes (i.e., $Cost$) as our cost function similar to prior work on join order analysis [28, 30]. In practice, $Cost$ is a good approximation for comparing the actual execution cost of plans.

<table>
<thead>
<tr>
<th>Table 1: List of notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
</tr>
<tr>
<td>q</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>\mathcal{R}</td>
</tr>
<tr>
<td>$T = T(R_1, \ldots, R_n)$</td>
</tr>
<tr>
<td>$S(R_1, \ldots, R_n, B_1, \ldots, B_m)$</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>R_1 / R_2</td>
</tr>
<tr>
<td>$R_1 / (R_2, \ldots, R_n)$</td>
</tr>
<tr>
<td>$R_1 \rightarrow R_2$</td>
</tr>
<tr>
<td>$Cost$</td>
</tr>
<tr>
<td>$\Pi_{R_1}(R_2)$</td>
</tr>
</tbody>
</table>
Table 2: Summary of the plan space complexity for star and snowflake queries with unique key joins

<table>
<thead>
<tr>
<th>join graph</th>
<th>graph size</th>
<th># of relations</th>
<th>original complexity</th>
<th>complexity w/ our analysis</th>
<th>candidate plans with minimal C_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>star</td>
<td>n dimension tables</td>
<td>$n + 1$</td>
<td>exponential to n</td>
<td>$n + 1$</td>
<td>$T(R_0, R_1, \ldots, R_n)$, ${T(R_k, R_0, R_1, R_2, \ldots, R_{k-1}, R_{k+1}, \ldots, R_n), 1 \leq k \leq n}$</td>
</tr>
<tr>
<td>snowflake</td>
<td>m branches of lengths $n_i, 1 \leq i \leq m$</td>
<td>$n + 1, n = \sum_{i=1}^{m} n_i$</td>
<td>exponential to n</td>
<td>$n + 1$</td>
<td>$T(R_0, R_{1,1}, \ldots, R_{1,n_1}, \ldots, R_{n,1}, \ldots, R_{n,n})$, ${T(R_i, R_{i,1}, \ldots, R_{i,n}, R_0, R_1, \ldots, R_{i-1,1}, \ldots, R_{i-1,n-1}, R_{i+1,1}, \ldots, R_{i+1,n-1}, \ldots, R_{n,1}, \ldots, R_{n,n})}$ (see Section 5 for a_1, \ldots, a_n)</td>
</tr>
</tbody>
</table>

Figure 3: Star query graph with PKFK joins, where the fact table is R_0 and dimension tables are R_1, R_2, R_3

C_{out} measures the cost of a query plan by the sum of intermediate result sizes. Because bitvector filters also impact the cardinality of a base table, we adapt C_{out} to include the base table cardinality as well. Formally,

$$C_{out}(T) = \begin{cases} |T| & \text{if } T \text{ is a base table} \\ |T| + C_{out}(T_1) + C_{out}(T_2) & \text{if } T = T_1 \bowtie T_2 \end{cases}$$ (1)

Note that $|T|$ has reflected the impact of bitvector filters, where $|T|$ represents the cardinality after bitvector filters being applied for both base tables and join results.

4 ANALYSIS OF STAR QUERIES WITH PKFK JOINS

We define star queries with PKFK joins as the following:

Definition 1. Star query with PKFK joins: Let $\mathcal{R} = \{R_0, R_1, \ldots, R_n\}$ be a set of relations and q be a query joining relations in \mathcal{R}. The query q is a star query with PKFK joins if $R_0 \rightarrow R_k$ for $1 \leq k \leq n$. R_0 is called a fact table, and $R_k, 1 \leq k \leq n$, is called a dimension table.

Figure 3 shows an example of a star query, where R_0 is the fact table and R_1, R_2, R_3 are dimension tables.

Now we analyze the plan space complexity for star queries with PKFK joins. We show that, in the plan space of right deep trees without cross products, we can find the query plan of the minimal cost (under the cost function from Section 3) from $n + 1$ plans with bitvector filters if the bitvector filters have no false positives, where $n + 1$ is the number of relations in the query. In contrast, the original plan space complexity for star queries in this plan space is exponential to n [31].

Our key intuition is that, in the plan space of right deep trees without cross products, the cost of plans of a star query with PKFK joins can be the same with different join orders of dimension tables. This is because all the bitvector filters for a star query will be pushed down to the fact table; and by Lemma 1, we can show the cost of many join orders is the same. Figure 4 shows an example of two plans of a star query with PKFK joins using different join orders of dimension tables but having the same cost.

![Figure 4: Example of two plans of a star query with PKFK joins using bitvector filters. Each operator is annotated with the intermediate result size. Plan P_1 and P_2 have different join orders of dimension tables but the same cost.](image)

Figure 4 shows an example of two plans of a star query with PKFK joins using different join orders of dimension tables but having the same cost.

Formally, our key results in this section are:

Theorem 4.1. Minimal cost right deep trees for star query: Let \mathcal{R} be the set of relations of a star query as defined in Definition 1. Let $\mathcal{A} = \{T(X_0, \ldots, X_n)\}$ be the set of right deep trees without cross products for q, where X_0, \ldots, X_n is a permutation of R_0, \ldots, R_n. If $C_{min} = \min (C_{out}(T), T \in \mathcal{A})$, then there exists a plan $T \in \mathcal{A}_{candidates} = \{T(R_0, R_1, \ldots, R_n)\} \cup \{T(R_k, R_0, R_1, \ldots, R_{k-1}, R_{k+1}, \ldots, R_n), 1 \leq k \leq n\}$ such that $C_{out}(T) = C_{min}$.

Theorem 4.2. Plan space complexity for star query: Let \mathcal{R} be the set of $n + 1$ relations of a star query as defined in Definition 1. We can find the query plan with the minimal cost
in the place space of right deep trees without cross products from \(n + 1 \) candidate plans.

We start the analysis by understanding the plan space of right deep trees without cross products for star queries:

Lemma 2. **Right deep trees for star query:** Let \(\mathcal{R} \) be the set of relations of a star query as defined in Definition 1. Let \(\mathcal{T} = (X_0, X_1, X_2, \cdots, X_n) \) be a query plan, where \(X_0, \cdots, X_n \) is a permutation of \(\{R_0, R_1, R_2, \cdots, R_n\} \). Then \(\mathcal{T} \) is a right deep tree without cross products if and only if \(X_0 = R_0 \) or \(X_1 = R_0 \).

The proof can be found in Appendix B.

By Lemma 2, we divide the plans into two cases: whether \(R_0 \) is the right most leaf or not.

We first generalize Lemma 1 to multiple relations:

Lemma 3. **Star query absorption rule:** Let \(\mathcal{R} \) be a star query as defined in Definition 1, then \(R_0/(R_1, R_2, \cdots, R_n) \cong \prod_{i=0}^{n} (R_0 \bowtie R_1 \bowtie \cdots \bowtie R_n) \) and \(|R_0/(R_1, R_2, \cdots, R_n)| \geq |R_0 \bowtie R_1 \bowtie \cdots \bowtie R_n| \). The equality happens when the bitvector filters created from \((R_0, R_1, \cdots, R_n) \) has no false positives.

The proof can be found in Appendix B.

Figure 5: Snowflake query with PKFK joins, where the fact table is \(R_0 \) and the branches are \(\{R_{1,1}, \{R_{2,1}, R_{2,2}\}, \{R_{3,1}, R_{3,2}\}\} \)

The proof can be found in Appendix B.

By combining Lemma 4 and Lemma 5, we can prove Theorem 4.1 and Theorem 4.2.

5 ANALYSIS OF SNOWFLAKE QUERIES WITH PKFK JOINS

We define snowflake queries with PKFK joins as below:

Definition 2. **Snowflake query with PKFK joins:** Let \(\mathcal{R} = \{R_0, R_{1,1}, \cdots, R_{1,n_1}, R_{2,1}, \cdots, R_{2,n_2}, \cdots, R_{m,1}, \cdots, R_{m,n_m}\} \) be a set of relations and \(q \) be a query joining relations in \(\mathcal{R} \). The query \(q \) is a snowflake query with PKFK joins if

- \(R_0 \to R_{1,i} \) for \(1 \leq i \leq m \) and
- \(R_{i,j-1} \to R_{i,j} \) for \(1 \leq i \leq m, 1 < j \leq n_i \).

We call \(R_0 \) the fact table and \(R_{1,1}, R_{2,1}, \cdots, R_{i,n_i} \) a branch. We denote the branch \(\{R_{i,1}, R_{i,2}, \cdots, R_{i,n_i}\} \) as \(\mathcal{R}_i \).

Figure 5 shows an example of a snowflake query, where \(R_0 \) is the fact table, and \(\{R_{1,1}, \{R_{2,1}, R_{2,2}\}, \{R_{3,1}, R_{3,2}\}\} \) are three branches of dimension tables.

Now we analyze the plan space complexity for the snowflake query (Definition 2). We will show that, in the plan space of right deep trees without cross products, we can find the query plan of the minimal cost (under the cost function from Section 3.3) from \(n + 1 \) query plans with bitvector filters if the bitvector filters have no false positives, where \(n + 1 \) is the number of relations in the snowflake query. In contrast, the original plan space complexity for snowflake queries in this plan space is exponential to \(n \).

We divide the plans into two cases: whether \(R_0 \) is the right most leaf or not. We start with the case where \(R_0 \) is the right most leaf. Then we analyze a subproblem of the plan space for a branch in a snowflake query. We finally analyze the case where \(R_0 \) is not the right most leaf.

Formally, our key results in this section are:

Theorem 5.1. **Minimal cost right deep trees for snowflake query:** Let \(\mathcal{R} \) be the set of relations of a snowflake query \(q \) as defined in Definition 2. Let \(C_{\text{min}} = \min(C_{\text{out}}(X_0, X_1, \cdots, X_n)) \), where \(X_0, X_1, \cdots, X_n \) is a permutation of \(\mathcal{R} \), and \(T(X_0, X_1, \cdots, X_n) \) is a right deep tree without cross products for \(q \). Then there exists a right deep tree \(T' \) in \(\{T(R_{i,a_i}, R_{i,a_{i+1}}, \cdots, R_{i,n_i}, R_0, R_{1,1}, \cdots, R_{i-1,n_i}, R_{i+1,1}\} \)
\[\cdots, R_{i+1,n_{i+1}}, \cdots, R_{n,1}, \cdots, R_{n,n_m}) \cup \{T(R_0, R_{1,1}, R_{1,2}, \cdots, R_{n,1}, \cdots, R_{n,n_m})\}, \] where \(a_1, a_2, \cdots, a_n \) is a permutation of 1, 2, \cdots, \(n \), such that \(C_{out}(T') = C_{min} \).

Theorem 5.2. Plan space complexity for snowflake query: Let \(\mathcal{R} \) be the set of \(n+1 \) relations of a snowflake query \(q \) as described in Definition 2. We can find the query plan with the minimal cost in the space of right deep trees without cross products from \(n+1 \) candidate plans.

5.1 \(R_0 \) is the right most leaf

Let’s first look at the right deep trees where \(R_0 \) is the right most leaf. Our key insight is to extend our analysis on star queries and show that all the trees in this plan space have the same \(C_{out} \).

We define a class of right deep trees where a relation with a PKFK join condition only appears on the right side of the relations it joins with in a snowflake query. Formally,

Definition 3. Partially-ordered right deep tree: Let \(\mathcal{R} \) be the set of relations of a snowflake query \(q \) as described in Definition 2. Let \(T = T(R_0, X_1, \cdots, X_n) \) be a plan for \(q \), where \(X_1, \cdots, X_n \) is a permutation of \(\mathcal{R} - \{R_0\} \). If for any \(X_i, 1 \leq i \leq n \), either \(X_i = R_{p,1} \) or there exists \(X_j, 1 \leq j < i \) such that \(X_j \rightarrow X_i \), we call \(T \) a partially-ordered right deep tree.

Now we show that the plans in the space of right deep trees without cross products are partially-ordered trees if \(R_0 \) is the right most leaf. Formally,

Lemma 6. Right deep tree without cross products for snowflake query: Let \(\mathcal{R} \) be the set of relations of a snowflake query \(q \) as described in Definition 2. If \(T = T(R_0, X_1, X_2, \cdots, X_n) \) is a right deep tree without cross products for \(q \), then \(T \) is a partially-ordered right deep tree.

Proof. If \(T \) is not partially ordered, then there exists \(X_i \) such that \(X_i \notin \{R_{1,1}, R_{2,1}, \cdots, R_{n,1}\} \) and there does not exist \(X_j, i < j \leq n \) such that \(X_j \rightarrow X_i \). Then \(X_i \) does not join with \(R_0, X_{n-1}, X_{n-2}, \cdots, X_{i+1} \). So there exists a cross product. \(\Box \)

Now we show all the partially-ordered right deep trees have the same cost if \(R_0 \) is the right most leaf.

Follow Lemma 6 and Algorithm 1, we have

Lemma 7. Bitvector filters in partially-ordered right deep tree: Let \(\mathcal{R} \) be the set of relations of a snowflake query \(q \) as described in Definition 2. If \(T = T(R_0, X_1, X_2, \cdots, X_n) \) is a right deep tree without cross products for \(q \), then the bitvector filter created from \(R_{i,j} \) will be pushed down to \(R_{i,j-1} \) if \(j > 1 \) or \(R_0 \) if \(j = 1 \).

The proof can be found in Appendix B.

Follow Lemma 7, we have

Lemma 8. Equal cost for partially-ordered right deep tree: Let \(\mathcal{R} \) be the set of relations of a snowflake query \(q \) as described in Definition 2. Let \(T = T(R_0, X_1, X_2, \cdots, X_n) \) and \(T' = T(R_0, Y_1, Y_2, \cdots, Y_n) \) be two partially ordered right deep trees of \(q \). Then \(C_{out}(T') = C_{out}(T) \).

The proof can be found in Appendix B.

5.2 Branch of a snowflake query

Before diving into the case where \(R_0 \) is not the right most leaf, first we analyze a subproblem of a branch in a snowflake query in the plan space of right deep trees with cross products. We show that the plan space complexity is linear in the number of relations in the branch. Formally, we define a branch as the following:

Definition 4. Branch of a snowflake query: Let \(\mathcal{R} = \{R_0, R_1, \cdots, R_n\} \) be a set of relations and \(q \) be a query joining relations in \(\mathcal{R} \). The query \(q \) is a branch if \(R_{k-1} \rightarrow R_k \) for all \(1 \leq k \leq n \).

Figure 5 shows an example of a snowflake query with three branches.

We show that, in the plan space of right deep trees without cross products, we can find the query plan with minimal \(C_{out} \) from \(n+1 \) plans with bitvector filters if the bitvector filters have no false positives, where \(n+1 \) is the number of relations in the query. In contrast, the original plan space complexity for a branch is \(n^2 \) [31].

Our key insight is that, for a plan with right most leaf \(R_k \), where \(1 \leq k \leq n \), if the plan has minimal cost, it must join \(R_k, R_{k+1}, \cdots, R_n \) consecutively in its right subtree. Otherwise, we can reduce the plan cost by altering the join order and ‘pushing down’ the relations \(R_{k}, R_{k-1}, \cdots, R_{n+1} \) into the right subtree. Figure 6 shows an example of how the plan cost can be reduced by ‘pushing down’ the relations.

Formally, our key results in this subsection are:

![Figure 6: Example of two plans for a branch \(\{R_0, R_1, R_2, R_3\} \) of a snowflake query with PKFK joins using bitvector filters. Each operator is annotated with the intermediate result size. Plan \(P_1 \) does not join \(R_2 \) and \(R_3 \) consecutively in its right subtree. Pushing down \(R_3 \) to join with \(R_2 \) consecutively results in plan \(P_2 \) with reduced cost.](image-url)
Theorem 5.3. Minimal cost right deep trees for a branch: Let \(R \) be the set of relations of a branch as described in Definition 4. Let \(\mathcal{A} = \{T(X_0, X_1, \ldots, X_n)\} \) be the set of right deep trees without cross products for \(q \), where \(X_0, X_1, \ldots, X_n \) is a permutation of \(R_0, R_1, \ldots, R_n \). If \(C_{\text{min}} = \min(\mathcal{C}_{\text{out}}(T(X_0, X_1, \ldots, X_n))) \), then there exists a plan \(T \in \mathcal{A}_{\text{candidates}} = \{T(R_0, R_1, \ldots, R_n) \} \cup \{T(R_k, R_{k+1}, \ldots, R_n, R_{k-1}, R_{k-2}, \ldots, R_0), 0 \leq k \leq n-1\} \) such that \(\mathcal{C}_{\text{out}}(T) = C_{\text{min}} \).

Theorem 5.4. Plan space complexity for a branch: Let \(R \) be the set of \(n + 1 \) relations of a branch as described in Definition 4. We can find the query plan with the minimal cost in the place space of right deep trees without cross products from \(n + 1 \) candidate plans.

Consider the query plan for a branch \(\{R_0, R_1, \ldots, R_n\} \) of the snowflake in the plan space of right deep trees without cross products. Let’s first look at the query plans where \(R_n \) is the right most leaf. Formally,

Lemma 5.9. Let \(R \) be the set of relations of a branch as described in Definition 4. There exists only one right deep tree without cross products such that \(R_n \) is the right most leaf, that is, \(T(R_0, R_{n-1}, \ldots, R_0) \).

The proof can be found in Appendix B.

Now we look at the query plans where \(R_n \) is not the right most leaf. Let \(T(X_0, \ldots, X_n) \) be a right deep tree without cross products where \(X_0, \ldots, X_n \) is a permutation of \(R_0, \ldots, R_n \). We show that, without joining \(R_n, R_{n-1}, \ldots, R_k \) consecutively, a plan cannot have the minimal cost. Formally,

Lemma 5.10. Cost reduction by pushing down \(R_n \): Let \(R \) be the set of relations of a branch as described in Definition 4. Let \(T = T(X_0, X_1, \ldots, X_n) \) be a right deep tree without cross products for \(R_0, R_1, \ldots, R_n \). Assume \(X_k = R_n \) for some \(1 \leq k \leq n \). If \(X_{k-1} \neq R_{n-1} \), then \(T' = T(X_0, X_1, \ldots, X_{k-1}, X_{k+1}, X_{k+2}, \ldots, X_n) \) is a right deep tree without cross products and \(\mathcal{C}_{\text{out}}(T') \leq \mathcal{C}_{\text{out}}(T) \).

The proof can be found in Appendix B.

Lemma 5.11. Cost reduction by pushing down \(R_i, R_{i-1}, \ldots, R_{i-m} \): Let \(R \) be the set of relations of a branch as described in Definition 4. Let \(T = T(X_0, X_1, \ldots, X_n) \) be a right deep tree without cross products for \(R_0, R_1, \ldots, R_n \). Let \(X_k = R_{m+1}, X_{k-1} = R_{m+1}, \ldots, X_{k-m} = R_{n-m} \) for some \(m \leq k \leq n \). If \(X_{k-m} \neq R_{n-m-1} \), then \(T' = T(X_0, X_1, \ldots, X_{k-m-2}, X_{k-m}, X_{k-m+1}, \ldots, X_k, X_{k-m-1}, X_{k+1}, \ldots, X_n) \) is a right deep tree without cross products and \(\mathcal{C}_{\text{out}}(T') \leq \mathcal{C}_{\text{out}}(T) \).

The proof can be found in Appendix B.

By combining Lemma 5.9 and Lemma 5.11, we can prove Theorem 5.3 and Theorem 5.4.

5.3 \(R_0 \) is not the right most leaf

Now let’s look at the right deep trees where \(R_0 \) is not the right most leaf for a snowflake query with PKFK joins.

We first show that the relations appear on the left side of \(R_0 \) can only come from a single branch given the join graph of a snowflake query. Formally,

Lemma 5.12. Single branch in right most leaves: Let \(R \) be the set of relations of a snowflake query as described in Definition 2. Let \(T = T(X_0, X_1, \ldots, X_n) \) be a right deep tree without cross products for \(q \), where \(X_0, X_1, \ldots, X_n \) is a permutation of \(R \). If \(X_k = R_0 \), then \(X_0, X_1, \ldots, X_{k-1} \) is a permutation of \(R_1, R_2, \ldots, R_{k-1} \) for some \(1 \leq i \leq m \).

The proof can be found in Appendix B.

Now we show that the relations on the left side of \(R_0 \) are partially ordered. Formally,

Lemma 5.13. Partially-ordered subtree: Let \(R \) be the set of relations of a snowflake query as described in Definition 2. Let \(T = T(X_0, X_1, \ldots, X_n) \) be a right deep tree without cross products for \(q \), where \(X_0, X_1, \ldots, X_n \) is a permutation of \(R \). If \(X_k = R_0 \), then \(X_0, X_1, \ldots, X_{k-1} \) is a partially ordered right deep tree of the new relation \(R'_0 = X_0 \bowtie X_1 \bowtie \cdots \bowtie X_k \).

The proof can be found in Appendix B.

Now we show that if a subset of relations of a single branch \(R_i \) is on the right side of \(R_0 \), there exists a query plan with lower cost where all the relations in \(R_i \) are on the right side of \(R_0 \).

Lemma 5.14. Cost reduction by consolidating a single branch: Let \(R \) be the set of relations of a snowflake query as described in Definition 2. Let \(T = T(X_0, X_1, \ldots, X_{k-1}, R_0, X_{k+1}, \ldots, X_n) \) be a right deep tree without cross products for \(q \), where \(X_0, X_1, \ldots, X_{k-1} \) is a permutation of \(R_1, R_2, \ldots, R_{k-1} \) for some \(1 \leq i \leq m \), \(1 \leq k \leq n_i - 1 \). Then there exists a right deep tree without cross products \(T' = T(X_0, X_1, \ldots, X_{k-1}, R_{i+1}, X_{k+1}, \ldots, X_n) \) for such that \(\mathcal{C}_{\text{out}}(T') \leq \mathcal{C}_{\text{out}}(T) \).

The proof can be found in Appendix B.

By combining Lemma 5.8 and Lemma 5.14, we can prove Theorem 5.1, and Theorem 5.2 directly follows from Theorem 5.4 and Theorem 5.1.

6. BITVECTOR-AWARE QQ FOR GENERAL SNOWFLAKE QUERIES

While star and snowflake queries with PKFK joins are important patterns in decision support queries, in practice, such queries can have more complicated join graphs. For example, a decision support query can join multiple fact tables, where the joins may not be PKFK joins. In addition, there can be join conditions between the dimension tables or branches, where the bitvector filters created from the dimension tables are partially ordered. Formally,

Lemma 6.1. Partially-ordered subtree: Let \(R \) be the set of relations of a snowflake query as described in Definition 2. Let \(T = T(X_0, X_1, \ldots, X_n) \) be a right deep tree without cross products for \(q \), where \(X_0, X_1, \ldots, X_n \) is a permutation of \(R \). If \(X_k = R_0 \), then \(X_0, X_1, \ldots, X_{k-1} \) is a partially ordered right deep tree of the new relation \(R'_0 = X_0 \bowtie X_1 \bowtie \cdots \bowtie X_k \).

The proof can be found in Appendix B.

By combining Lemma 5.8 and Lemma 6.1, we can prove Theorem 5.1, and Theorem 5.2 directly follows from Theorem 5.4 and Theorem 5.1.
We then sort the branches in descending order by their prior-
violations of the snowflake pattern as defined in Definition 2.

In this section, we first propose an algorithm to ex-
tend bitvector-aware query optimization to an arbitrary
snowflake query with a single fact table. We then gen-
eralize it to arbitrary decision support queries with multiple
fact tables. Our algorithm applies to queries with arbitrary
join graphs. We further optimize our algorithm with cost-
based bitvector filters. We also discuss options to integrate
our algorithm into a Volcano / Cascades query optimizer.

6.1 Queries with a single fact table
We propose an algorithm (Algorithm 2) with simple heuris-
tics to construct the join order for an arbitrary snowflake
query with a single fact table. The key insight is to leverage
the candidate plans of minimal cost analyzed in Section 5.
Algorithm 2 shows how to construct the join order for a
decision support query with a single fact table.

We first assign priorities to the branches based on their
violations of the snowflake pattern as defined in Definition 2. We then sort the branches in descending order by their prior-
ities (line 1). Intuitively, if the bitvector filters created from
dimension tables are all pushed down to the fact table except
for one, where the corresponding dimension table either
joins with another dimension table or is not on the build side.
Since this dimension table does not create a bitvector filter
that is pushed down to the fact table, joining this dimension
table early with the fact table can eliminate the unnecessary
tuples that do not qualify the join condition early in the plan.

Specifically, we assign priorities to branches for snowflake
queries with the following heuristics:

- Group P0: Relations that do not have join condition or
PKFK joins with the fact table (line 23). This can happen
when joining multiple fact tables. As a heuristic, we join
these branches by descending selectivity on the fact table
(line 23).

- Group P1: Branches that do not join with any other
branches and have smaller cardinality than the fact ta-
table (line 24). These branches are joined with the fact table
before joining the branches in group P0.

- Group P2: Branches joining with other branches (line 21).
Such branches should be joined consecutively in the right
deep tree to allow pushing down bitvector filters created
by these branches. As a heuristic, within a set of connected
branches, we join these branches with descending select-
ivity on the fact table (line 31); across sets of connected
branches, we prioritize the sets of larger numbers of con-
nected branches (line 21).

- Group P3: Branches that are larger than the fact table (line
25). Since it is clearly suboptimal to put these branches on
the build side, we reorder the build and probe sides for
them (line 12-13). Joining these branches early allows
pushing down the bitvector filters created from the fact
table. As a heuristic, we order the branches in this group
with descending selectivity on the fact table (line 31).

Based on the analysis in Section 5, we construct the can-
didate plans by two cases. If \(R_0 \) is the right most leaf, we join
all the branches with the fact table (line 2); otherwise, for
each branch, we optimize the branch based on the analysis
in Section 5.2, join the remaining branches to complete the
plan, and update the best plan if the estimated cost of the
new plan is lower (line 3-7).

6.2 Queries with multiple fact tables
In addition to snowflakes with a single fact table, complex
decision support queries can include multiple fact tables. We further extend our algorithm to arbitrary join graphs by iteratively extracting and optimizing snowflake join graphs.

At a high level, our algorithm produces a joint order for a
join graph by alternating two stages iteratively as shown in
Algorithm 3. In the snowflake extraction stage (line 2), we ex-
tract a snowflake subgraph from a join graph by identifying
a single fact table and its related dimension tables, poten-
tially with non-PKFK joins. In the snowflake optimization
stage (line 3), we use Algorithm 2 to produce a joint order
for the extracted subgraph. The resulting snowflake will be
marked as ‘optimized’ and considered as a new relation in
the updated join graph (line 4-5). Our algorithm alternates
the two stages until the full join graph is optimized (line 1).

Specifically, when extracting a snowflake (line 8-19), a
relation is considered as a fact table if it does not join with
any other table where the join predicate is an equi-join on
its key columns. Among all the unoptimized fact tables in
\(G \), we find the one with the smallest cardinality and expand
from this table recursively to include all related dimension
relations (line 4-9). If there is only one fact table in \(G \), we
simply return the original join graph (line 11).

6.3 Cost-based Bitvector Filter
In practice, creating and applying bitvector filters has over-
heads. Consider a hash join with build side \(R \) and probe side
\(S \). Assume the bitvector filter eliminates \(\lambda \) percent of the tu-
uples from \(S \). The ratio \(\lambda \) can be estimated by the optimizer the
same way as an anti-semi join operator, and it can include
the estimated false positive rate of the bitvector filter.

Assume the cost of a hash join consists of building the
hash table \(g_b \), probing the hash table \(g_p \), and outputing the
resulting tuples \(g_o \). Let the cost of creating and applying a
OptimizeSnowflake(G):

Input: Join graph G

Output: Query plan $plan$

1. $B ← SortedBranches(G.Branches)$
2. $best ← JoinBranches(B,G.Fact,∅)$
3. foreach branch b in B do
 4. $p ← Join(OptimizeChain(b,G.Fact),G.Fact)$
 5. $p ← JoinBranches(B \ b,G.Fact,p)$
4. return $best$

JoinBranches(B, f, p):

Input: A set of branches B, fact table f, a plan p

Output: A query plan p'

1. $p' ← p$
2. foreach branch b in B do
 3. foreach table t in b do
 4. if $t.Card > f.Card$ then
 5. $p' ← Join(p',t)$
 6. else $p' ← Join(t,p')$
3. return p'

SortBranches(G):

Input: Join graph G

Output: Sorted branches $sortedBranches$

1. $groups ← GroupBranches(G)$
2. $sortedG ← SortBySizeDesc(groups)$
3. $priority ← []$
4. for $i = 0; i < groups.Count(); i + +$ do
 5. if $sortedG[i].Size > 1$ then
 6. $priority[i] ← sortedG[i].Size$
 7. else if IsNonUniqueKeyJoin($g[0], f$) then
 8. $priority[i] ← 0$
 9. if $g[0].Card < f.Card$ then
 10. $priority[i] ← 1$
 11. else $priority[i] ← |G| + 1$
2. $sortedG ← SortByPriorityDesc(groups,priority)$
3. $sortedBranches ← []$
4. foreach group in $sortedG$ do
 5. $branches ← SortBySelectivityDesc(group)$
 6. foreach branch b in $branches$ do
 7. $sortedBranches.Add(b)$
3. return $sortedBranches$

Algorithm 2: Construct a join order for a snowflake query with a single fact table

OptimizeJoinGraph(G):

Input: Join graph G

Output: Join graph G'

1. $G' ← ExtractSnowflake(G)$
2. $p ← OptimizeSnowflake(G')$
3. $G ← UpdateJoinGraph(G',p)$
4. $plan ← UpdateQueryPlan(plan,p)$
5. return $plan$

ExtractSnowflake(G):

Input: Join graph G

Output: Snowflake G'(1)

1. $n ← 0$
2. $G_{sorted} ← SortByCardinalityAsc(G)$
3. foreach g in G_{sorted} do
 4. if g is an unoptimized fact table then
 5. if $n == 0$ then
 6. $G' ← ExpandSnowflake(g)$
 7. $n ← n + 1$
 8. end
 9. end
10. if $n == 1$ then $G' ← G$
11. return G'

Algorithm 3: Construct a join order for a decision support query with an arbitrary join graph

bitvector filter be h and f. The cost difference of the hash join with and without using the bitvector filter is

$$Cost_h = g_p(|S|) - g_p(|S| - f(|R|) - h(|S|))$$

Assume the cost of probing a tuple is C_p, the cost of checking a tuple against a bitvector filter is C_f, and creating a bitvector filter is relatively cheap, i.e., $f(|R|) << h(|S|)$. Then

$$Cost_h = |S|(1 - \lambda)C_p - C_f - f(|R|) - |S|(1 - \lambda)C_p - C_f$$

Using a bitvector filter reduces the cost of a hash join if

$$Cost_h < 0 \Rightarrow (1 - \lambda)C_p - C_f < 0 \Rightarrow \lambda > 1 - C_f/C_p$$

Let $\lambda_{thresh} = 1 - C_f/C_p$. Note that λ_{thresh} is independent of R and S. We can run a micro-benchmark to profile C_f and C_p and compute λ_{thresh}. When the bitvector filter is pushed down below the root of the probe side, a more detailed analysis is needed to account for the cascading effect of tuple elimination. Empirically, choosing a threshold that is slightly smaller than $1 - C_f/C_p$ works well.

6.4 Integration

Our algorithm can transform a query plan by optimizing the join order with the underlying join graph. Thus, our algorithm can be used as a new transformation rule in a Volcano / Cascades query optimization framework upon detecting a
snowflake join (sub)graph. There are three integration options depending on how the underlying optimizer accounts for the impact of bitvector filters:

- Full integration: When applying join order transformation to a (sub)plan, the placement of bitvector filters and their selectivity can change. If the underlying Volcano / Cascades query optimization framework can correctly account for the placement and the selectivity of bitvector filters during query optimization, the new transformation rule can be transparently integrated into the query optimizer the same way as any existing transformation rule.

- Alternative-plan integration: If the query optimizer can account for the placement and the selectivity of bitvector filters in a final plan after query optimization, the new transformation rule can be used to produce an alternative plan. The optimizer can then choose the plan with the cheaper estimated cost from the alternative plan and the plan produced by the original query optimization.

- Shallow integration: We mark a (sub)plan after it is transformed by our new transformation rule. The underlying query optimization framework works as usual, except additional join reordering on marked (sub)plans is disabled.

7 EVALUATION

7.1 Implementation

We implement Algorithm 3 in Microsoft SQL Server as a transformation rule. Microsoft SQL Server has a cost-based, Volcano / Cascades style query optimizer. Starting from an initial query plan, the optimizer detects various patterns in the plan and fires the corresponding transformation rules. Due to the importance of decision support queries, Microsoft SQL Server has implemented heuristics to detect snowflake patterns and transform the corresponding subplans.

We leverage the snowflake detection in Microsoft SQL Server and transform the corresponding subplan as described in Algorithm 3. We implement a shallow integration (Section 6.4), where join reordering is disabled on the transformed subplan. The subplan is subject to other transformations in Microsoft SQL Server. We use the original cardinality estimator and cost modeling in Microsoft SQL Server, and the selectivity of a bitvector filter is estimated the same way as the existing semi-join operator. We implement the cost-based bitvector filter as described in Section 6.3, and we will discuss how we profile the elimination threshold λ_{thresh} in Section 7.3. The final plan is chosen with the existing cost-based query optimization framework.

7.2 Experimental Setup

Workload. We evaluate our technique on three workloads: TPC-DS [1] 100GB with columnstores, JOB [25] with columnstores, primary key indexes, and foreign key indexes, and a customer workload (CUSTOMER) with B+ -tree indexes. Table 3 summarizes the statistics of our workloads. In particular, CUSTOMER has the highest number of average joins per query, and JOB has the most complex join graphs, including joining multiple fact tables, large dimension tables, and joins between dimension tables. Our workloads also cover the range of different physical configurations, with B+ -trees (CUSTOMER), columnstores (TPC-DS), or both (JOB).

Baseline. We use the query plans produced by the original Microsoft SQL Server as our baseline. Bitvector filters are widely used in the query plans of Microsoft SQL Server. As shown in Appendix A, 97% queries in JOB, 98% queries in TPC-DS, and 100% queries in CUSTOMER have bitvector filters in their original plans. A bitvector filter can be created from a hash join operator, and it is pushed down to the lowest level on the probe side as described in Algorithm 1. The query optimizer in Microsoft SQL Server uses heuristics to selectively add bitvector filters to the query plan without fully accounting for the impact of bitvector filters during the query optimization stage. In particular, the heuristics used in its snowflake transformation rules neglect the impact of bitvector filters. We use a generous timeout for the query optimizer in Microsoft SQL Server so that it can explore a large fraction of the relevant plan search.

Overhead. Our technique adds very low overhead to query optimization. In fact, since we disable join reordering on the snowflake subplan after it is optimized by our transformation rule, the query optimization time with our transformation rule is one third of that with the original Microsoft SQL Server in average. We also measure the memory consumption for query execution. We observe some increase in memory consumption with our technique, since it favors right deep trees. The overall increase in memory consumption is not significant.

Environment. All the experiments are run on a machine with Intel Xeon CPU E5 - 2660 v3 2.6GHz, 192GB memory, a 6.5TB hard disk, and Windows Server 2012 R2. To reduce runtime variance, all the queries are running in isolation at
the same level of parallelism. The query CPU time reported is an average over ten warm runs.

7.3 Overhead of bitvector filters

As discussed in Section 6.3, we can choose a tuple elimination threshold to selectively create bitvector filters. We profile the overhead of bitvector filters with a micro-benchmark by running the following query in TPC-DS:

```sql
SELECT COUNT(*) FROM store_sales, customer WHERE c_customer_sk = c_customer_sk AND c_customer_sk % 1000 < @P
```

The query plan joins `customer` and `store_sales` with a hash join. A bitvector filter is created from `customer` on the build side and pushed down to `store_sales` on the probe side, where tuples are eliminated before the join. We control the selectivity of the bitvector filter with the parameter @P.

Figure 7 shows the CPU time of execution of the query varying its selectivity with and without bitvector filtering, normalized by the same constant. We further break down the CPU time by the hash join operator, the probe side, and the build side. Since the CPU time for reading `customer` is very small, we omit it in Figure 7 for readability. Note that the Y axis uses a logarithmic scale.

With selectivity 1, no tuples are eliminated by the bitvector. With bitvector filtering, the hash join operator is slightly more expensive due to creating the bitvector filter, and the probe side operator has higher execution CPU due to the overhead of checking the tuples from `store_sales` against the bitvector filter. As the selectivity increases, the bitvector filter eliminates more tuples from the probe side and the execution cost of the hash join operator reduces. The plan with bitvector filtering becomes cheaper than the other plan once the bitvector filter eliminates more than 10% of the tuples. The cost reduction can be even more with queries of multiple joins. Empirically, we find 5% to be a good threshold, and we set λ_{thresh} to 5% in our implementation.

In Appendix A, we further evaluate the effectiveness and applicability of bitvector filters as a query processing technique. As shown in Table 4, Microsoft SQL Server uses bitvector filters for 97% – 100% queries in the benchmarks, with 10% – 80% workload-level execution CPU cost reduction. This confirms that bitvector filters is a widely applicable query processing technique, and thus bitvector-aware query optimization can potentially impact a wide range of queries.

7.4 Evaluation on bitvector-aware query optimization

Figure 8 shows the total amount of CPU execution time reduction with our technique. We sum up the total CPU execution time of the plans produced by Microsoft SQL Server with our technique and divide it by that of the plans produced by the original Microsoft SQL Server. On average, the total workload execution CPU time has been reduced by 37%. We observe that workloads with more complicated decision support queries benefit more from our technique, with the highest reduction of 64% in CPU execution time for JOB. Since Microsoft SQL Server has been heavily tuned to optimize for these benchmarks, the degree of reductions in CPU execution time is very significant.

We break down the CPU execution cost by query types. We divide the queries into three groups based on their selectivity, i.e., high (S), moderate (M), low (L). We approximate the query selectivity by the execution CPU cost of the original query plans, with the cheapest 33.3% queries in group S, the 33.3% most expensive queries in group L, and the rest in group M. We showed that, our technique is especially effective in reducing CPU execution cost for expensive queries or queries with low selectivity, i.e., with execution CPU reduced by 4.8x for expensive queries in JOB benchmark. This is because that right deep trees is a preferable plan space for queries with low selectivities ([12, 17]), and our technique produces a better join order for right deep trees.

Figure 9 shows the total number of tuples output by operators in the query plans produced by the original query optimizer (Original) and the bitvector-aware query optimizer (BQO), normalized by the total number of tuples output by the original query plans in each workload. We sum up the number of tuples by the type of operators, including leaf operators, join operators, and other operators. Figure 9 sheds some insight on the amount of logical work done by operators and the quality of query plans. With BQO, both the number of tuples processed by join operators as well as leaf operators reduces. In particular, for JOB benchmark, BQO reduces the normalized number of tuples output by join operators from 0.50 to 0.24, i.e., a 52% reduction. This again confirms that BQO improves query plan quality by producing a better join order.

Figure 10 shows the normalized CPU execution time for individual queries with the plans using our technique and these from the original Microsoft SQL Server. The queries are sorted by the CPU execution time of their original query plans, and the top 60 most expensive queries are shown for readability. Note that the Y axis uses a logarithmic scale. We observe a reduction of up to two orders of magnitude in CPU execution time for individual queries. Again, Figure 10 confirms that our technique is especially effective in reducing the CPU execution time for expensive decision support queries.

Our technique can improve plan quality for two reasons. First, if a query optimizer does not fully integrate bitvector filters into query optimization, it can consider the best plan with bitvector filters as 'sub-optimal' as shown in Figure 2.
Second, due to the importance of decision support queries, many commercial DBMSs have developed dedicated heuristics to identify and optimize snowflake queries [3, 17, 37]. If these heuristics do not consider the impact of bitvector filters, they can explore a different plan space which does not even contain the plans considered by our technique.

Inevitably, there are regressions compared with the original plans. We investigate such regressions and discover three major reasons. First, our cost function C_{out} does not capture the physical information of operators and can be inaccurate. Second, our technique favors right deep trees, which can become suboptimal when the query is highly selective. Finally, our algorithm uses heuristics to extend to complex decision support queries, which can be suboptimal in some cases.

8 RELATED WORK

We discuss two lines of related work: plan search and bitvector filters.

Plan search. Many query optimization (QO) frameworks in DBMSs are based on either top-down [19, 20, 35] or bottom-up [4] dynamic programming (DP). There has been a large body of prior work on join ordering and plan space complexity analysis with such QO frameworks [16, 26, 27, 29, 31].

Due to the importance of decision support queries, many commercial DBMSs have developed dedicated heuristics for optimizing complex decision support queries [3, 17, 37] based on the plan space of snowflake queries [22].

In this work, we adapt the cost function used in analyzing join order enumeration [28, 30] for our analysis. We analyze the space of right deep trees without cross products, which has been shown to be a favorable plan space for decision support queries and bitvector filters [12, 17, 38].

Bitvector filter and its variants. Semi-join is first introduced to reduce communication cost of distributed queries [6]. Efficient implementation of semi-joins have been heavily studied...
in the past [8, 18, 36]. Several prior work has explored different schedules of bitvector filters for various types of query plan trees [10–12]. Sideways information passing and magic sets transformation generalize the concept of bitvector filters and combines them with query rewriting [5, 33].

Many variants of bitvector filters have also been studied in the past, such as Bloom filters [7], bitvector indexes [9], cuckoo filters [15], performance-optimal filters [24] and others [2, 32]. The focus of this line of research is on the trade-off between space and accuracy, the efficiency of filter operations, and the extensions of Bloom filter.

Due to the effectiveness of bitvector filters in reducing query execution cost, several commercial DBMSs have implemented bitvector filter or its variants as query processing techniques for decision support queries [13, 17, 21, 23].

In this work, our analysis is based on the classic bitvector filter algorithm described in [18]. We mainly study the interaction between bitvector filters and query optimization, which is orthogonal to the prior work on bitvector filters as query processing techniques.

Lookahead Information Passing (LIP) [38] is the closest prior work to our work. LIP studies the star schema where Bloom filters created from dimension tables are all applied to the fact table. The focus is on the order of applying Bloom filters, and they observe such query plans are robust with different permutations of dimension tables. Compared with LIP, our work systematically analyzes a much broader range of decision support queries and plan search space. Their conclusion on plan robustness can be derived from our analysis.

9 CONCLUSION

In this work, we systematically analyze the impact of bitvector filters on query optimization. Based on our analysis, we propose an algorithm to optimize the join order for arbitrary decision support queries. Our evaluation shows that, instead of using bitvector filters only as query processing techniques, there is great potential to improve query plan quality by integrating bitvector filters into query optimization for commercial databases.

This work is the first step to understand the interaction between bitvector filters and query optimization, and it opens new opportunities for query optimization with many open challenges. Extending the analysis to additional plan space, query patterns, operators beyond hash joins, and more complex cost modeling is challenging. Efficient full integration of bitvector filters for commercial databases with various architectures remains an open problem. Since our analysis shows that bitvector filters result in more robust query plans, which is also observed in [38], understanding how bitvector filters impact robust and interleaved query optimization is also an interesting direction.

A ADDITIONAL EVALUATION

We evaluate the effectiveness of bitvector filters by executing the same query plan with and without bitvector filtering. We use the original Microsoft SQL Server to produce a query plan p with bitvector filters. Microsoft SQL Server provides an option to ignore bitvector filters during query processing. For comparison, we execute the same plan p with bitvector filters ignored.

Table 4 shows the performance of the plans with and without bitvector filters for the three benchmarks. At a workload level, using bitvector filters reduces the execution CPU cost by 10% – 80% (CPU ratio). In addition, for 97% – 100% of the queries (Ratio of queries w/ bitvector filters), the original query plan uses bitvector filters. At an individual query level, 48% – 88% of the queries has CPU execution cost reduced by more than 20% (Improved queries), with no regression on CPU execution cost by more than 20% (Regressed queries).

This confirms that bitvector filtering is a widely applicable query processing technique, and thus bitvector-aware query optimization can potentially impact a wide range of queries.

B ADDITIONAL PROOFS

LEMMA 2. Right deep trees for star query: Let \mathcal{R} be the set of relations of a star query as defined in Definition 1. Let $\mathcal{T} = T(X_0, X_1, X_2, \ldots, X_n)$ be a query plan, where X_0, \ldots, X_n is a permutation of $\{R_0, R_1, R_2, \ldots, R_n\}$. Then \mathcal{T} is a right deep tree without cross products if and only if $X_0 = R_0$ or $X_1 = R_0$.

PROOF. Assume $X_0 = R_i, X_1 = R_j, i \neq 1, j \neq 1$. Then R_i and R_j do not have a join condition based on Definition 1. Thus, $T(X_0, X_1)$ has a cross product, which is a contradiction.

If $X_0 = R_0$ or $X_1 = R_0$, since R_0 joins with R_1, \ldots, R_n, then $\mathcal{T} = T(X_0, X_1, \ldots, X_n)$ does not contain any cross product. □

LEMMA 3. Star query absorption rule: Let \mathcal{R} be a star query as defined in Definition 1, then $R_0/(R_1, R_2, \ldots, R_n) \supseteq \prod_{R_i} (R_0 \bowtie R_i \bowtie \cdots \bowtie R_n)$ and $|R_0/(R_1, R_2, \ldots, R_n)| \geq |R_0 \bowtie R_1 \bowtie \cdots \bowtie R_n|$. The equality happens when the bitvector filters created from (R_1, R_2, \ldots, R_n) has no false positives.

PROOF. By Property 4, $R_0/(R_1, R_2) = (R_0/R_1)/R_2$. Since $R_0 \rightarrow R_1$, by Lemma 1, $R_0/R_1 = \prod_{R_i} (R_0 \bowtie R_i)$. Since $R_0 \rightarrow
Let $R = (R_0 \bowtie R_1 \rightarrow R_2$. By applying Lemma 1 again, we have $(R_0 \bowtie R_1)/R_2 = \prod R/R_2 (R_0 \bowtie R_1 \rightarrow R_2)$. Thus, $R_0/(R_1, R_2) = \prod R/R_0 (R_0 \bowtie R_1 \rightarrow R_2)$.

By induction, we can prove $R_0/(R_1, R_2, \ldots, R_n) = \prod R/R_0 (R_0 \bowtie R_1 \rightarrow \cdots \rightarrow R_n)$.

Lemma 5. Minimal cost right deep tree for star query with right most leaf R_k: Let R be the set of relations of a star query as defined in Definition 1. The cost of the right deep tree $C_{\text{out}}(T(R_k, R_0, X_1, X_2, \ldots, X_{n-1})$ is the same for every permutation $X_1, X_2, \ldots, X_{n-1}$ of $R_2, R_3, \ldots, R_k, R_{k+1}, \ldots, R_n$.

Proof. Because R_1, \ldots, R_n only connects to R_0, the bitvector filters created from $R_1, \ldots, R_{k-1}, R_{k+1}, \ldots, R_n$ will be pushed down to R_0, and the bitvector created from R_0 will be pushed down to R_k. Thus, $C_{\text{out}}(R_0) = |R_0/(R_1, \ldots, R_{k-1}, R_{k+1}, \ldots, R_n)|$. Let $R'_0 = R_0(R_1, \ldots, R_{k-1}, R_{k+1}, \ldots, R_n)$, then $C_{\text{out}}(R'_0) = |R'_0/R'_0|$.

By Lemma 3 and Property 3, $|S(R_k/R'_0, R'_0, X_1, X_2, \ldots, X_k)| = |S(R_0, R_1, \ldots, R_n)|$. Thus, the total cost of the plan is $C_{\text{out}}(T(R_k, R_0, X_1, X_2, \ldots, X_{n-1})) = \sum_{i=1}^{n} \sum_{i \leq k} |R_i| + C_{\text{out}}(R_0) + C_{\text{out}}(R'_0) + (n - 1) \cdot |(R_0, R_1, \ldots, R_n)|$. Thus, $C_{\text{out}}(T(R_k, R_0, X_1, X_2, \ldots, X_{n-1}))$ is the same for every permutation $X_1, X_2, \ldots, X_{n-1}$ of $R_1, R_2, \ldots, R_k, R_{k+1}, \ldots, R_n$.

Lemma 7. Bitvector filters in partially-ordered right deep tree: Let R be the set of relations of a snowflake query q as described in Definition 2. If $T = T(R_0, X_1, X_2, \ldots, X_n)$ is a right deep tree without cross products for q, then the bitvector filter created from $R_{i,j}$ will be pushed down to $R_{i,j-1}$ if $j > 1$ or R_0 if $j = 1$.

Proof. Because T is partially ordered, for every relation $X_k = R_{i,j} > 1$, there exists one and only one relation $X_p, p < k$ such that X_k connects to X_p. Thus, the bitvector filter created from X_k will be pushed down to X_p. If $X_k = R_{1,1}$, it only connects to R_0. Thus, the bitvector filter created from X_k will be pushed down to R_0.

Lemma 8. Equal cost for partially-ordered right deep tree: Let R be the set of relations of a snowflake query q as described in Definition 2. Let $T = T(R_0, X_1, X_2, \ldots, X_n)$ and $T' = T(R_0, Y_1, Y_2, \ldots, Y_n)$ be two partially ordered right deep trees of q. Then $C_{\text{out}}(T) = C_{\text{out}}(T')$.

Proof. Consider the bitvector filters created in both T and T'. By Lemma 7, the bitvector filters created from T and T' from the same relation $R_{i,j}$ will be pushed down to the same relation $R_{i,j-1}$ if $j > 1$ or R_0 if $j = 1$.

Since, $S(R_{i,n})$ is the same in T and T'. By induction, we can show that $S(R_{i,n})$ is the same in T and T'. Since, $S(R_0) = R_0/(S(R_{1,1}), S(R_{2,1}), \ldots, S(R_{n,1}))$, $S(R_0)$ is the same in T and T'.

Now consider the join cardinality in T and T'. By Lemma 3, $S(R_{i,j}) = S(R_{i,j}, R_{i,j+1}, \ldots, R_{i,n})$. Thus, $S(R_0) = R_0/(S(R_{1,1}), S(R_{2,1}), \ldots, S(R_{n,1})) = S(R_0, R_{1,1}, R_{1,2}, \ldots, R_{1,n}, R_{2,1}, R_{2,2}, \ldots, R_{2,m}, \ldots, R_{n,1}, R_{n,2}, \ldots, R_{n,m})$.

Thus, $S(R_0, X_1, X_2, \ldots, X_n) = S(R_0), 1 \leq u \leq n$ and $S(R_0, Y_1, Y_2, \ldots, Y_n) = S(R_0), 1 \leq u \leq n$. Thus, $C_{\text{out}}(S(R_0, X_1, X_2, \ldots, X_n)) = C_{\text{out}}(S(R_0, Y_1, Y_2, \ldots, Y_n), 1 \leq u \leq n.$

Thus, $C_{\text{out}}(T) = C_{\text{out}}(T')$.

Lemma 9. Let R be the set of relations of a branch as described in Definition 4. There exists only one right deep tree without cross products such that R_n is the right most leaf, then $T(R_n, R_{n-1}, \ldots, R_0)$.

Proof. If R_n is the right most leaf and there is no cross product in the query plan, then R_0 can only join with R_{n-1}. Thus, the right most subplan with two relations is $T_2 = T(R_n, R_{n-1})$. Similarly, if the right most subplan is $T_k = T(R_n, R_{n-1}, \ldots, R_{n-k+1})$ and there is no cross product, then T_k can only join with R_{n-k}. By induction, $T(R_n, R_{n-1}, \ldots, R_0)$ is the right most leaf tree without cross products where R_n is the right most leaf.

Lemma 10. Cost reduction by pushing down R_k: Let R be the set of relations of a branch as described in Definition 4. Let $T = T(X_0, X_1, \ldots, X_n)$ be a right deep tree without cross products for R_0, R_1, \ldots, R_n. Assume $X_k = R_n$.

Proof. Since there is no cross product in $T = T(X_0, X_1, \ldots, X_k-1, X_{k+1}, \ldots, X_n)$, one relation in $\mathcal{A} = \{X_0, X_1, \ldots, X_{k-1}\}$ must connect to R_n. Since R_{n-1} is the only relation that connects to R_n in the join graph, $R_{n-1} \in \{X_0, X_1, \ldots, X_{k-1}\}$. By induction, we can show that $R_{n-k}, R_{n-k-1}, \ldots, R_{n-k} \in \mathcal{A}$. Thus, $\mathcal{A} = \{R_{n-k}, R_{n-k-1}, \ldots, R_{n-1}\}$.

If $X_k \neq R_{n-k}$, then $X_{k-1} = R_{n-k}$; otherwise, the join graph of $X_0, X_1, \ldots, X_{k-2}$ is not connected and the subplan $T(X_0, X_1, \ldots, X_{k-2})$ has cross products.

Now consider the relations $\{X_{k+1}, X_{k+2}, \ldots, X_n\}$. Because X_k joins with $\{X_0, X_1, \ldots, X_k\} = \{R_n, R_{n-1}, \ldots, R_{n-k}\}$, $X_{k+1} = R_{n-k-1}$. Similarly, we can show that $X_i = R_{n-i}$ for $k < i \leq n$.

If we swap R_n and R_{n-k}, we get a new plan $T' = T(X_0, X_1, \ldots, X_{k-2}, R_n, R_{n-k}, X_{k+1}, \ldots, X_n)$. Because $\{X_0, X_1, \ldots, X_{k-2}\} \setminus \{R_{n-k}\} = \{R_{n-k}, R_{n-k+1}, \ldots, R_{n-1}\}$. Thus, T' has no cross product.

Now we prove $C_{\text{out}}(T') \leq C_{\text{out}}(T)$.

First, consider X_i for $k < i \leq n$. Since there is no change in bitvector filters, it is easy to see that $C_{out}(X_i)$ is the same for \mathcal{T} and \mathcal{T}'.

Next, consider X_i for $0 \leq i < k$. Since $\mathcal{B} = \{X_0, X_1, \ldots, X_{k-1}\} = \{R_{n-k+1}, \ldots, R_{n-1}\}$, only R_{n-k} and R_n will create bitvector filters that can be pushed down to subplans of \mathcal{B}. Because $R_{n-1} \in \mathcal{B}$, no bitvector filter will be pushed down to R_n. Thus, the bitvector filter created from R_n is the same for \mathcal{T} and \mathcal{T}', and the same bitvector filter will be pushed down to R_{n-1} the same way in \mathcal{T} and \mathcal{T}'. Similarly, the bitvector filters created from and pushed down to R_{n-k} and R_{n-k+1} are the same in \mathcal{T} and \mathcal{T}'.

Thus, we have proved $C_{out}(X_i)$ is the same for $0 \leq i \leq n$.

Next, we show that the intermediate join sizes in \mathcal{T}' is equal to or smaller than these in \mathcal{T}.

Since \mathcal{T} and \mathcal{T}' share the same subplan $\mathcal{T}_j = T(X_0, X_1, \ldots, X_j), 0 \leq j \leq k - 2$, and we have shown the bitvector filters pushed down to \mathcal{T}_j is the same in \mathcal{T} and \mathcal{T}', the intermediate join sizes are the same in \mathcal{T} and \mathcal{T}'. Similar to the proof of Lemma 10, we can show that $C_{out}(X_i)$ is the same for X_0, X_1, \ldots, X_n in \mathcal{T} and \mathcal{T}'.

Now consider the cardinalities of joins $S(T_{k-2}, R_{n-k})$ and $S(T_{k-2}, R_{n-k})$, similar to Lemma 10, we can show $|S(T_{k-2}, R_{n-k})| \leq S(T_{k-2}, R_{n-k})$.

Now consider the cardinality of joins $S(T_{k-2}, R_{n-k})$ and $S(T_{k-2}, R_{n-k})$.

Consider the cardinalities of the join $S(T_{k-2}, R_{n-k})$ in \mathcal{T} and $S(T_{k-2}, R_{n-k})$ in \mathcal{T}'. Since $R_{n-k} \in \mathcal{B}$, $S(T_{k-2}, R_{n-k})$ is not a PKFK join. By absorption rule, $|S(T_{k-2}, R_{n-k})| = |T_{k-2}|$. Since $R_{n-k} \in \mathcal{B}$, $S(T_{k-2}, R_{n-k})$ is not a PKFK join. By reduction property, $|T_{k-2} \bowtie R_{n-k}| \geq |T_{k-2}|$. Thus, $|T_{k-2} \bowtie R_{n-k}| = |T_{k-2} \bowtie R_{n-k}| = |T_{k-2} \bowtie R_{n-k}|$.

Finally, we can show that $|S(T_{k-2}, R_{n-k})| \leq S(T_{k-2}, R_{n-k})$.

Now consider the set of relations of a branch as described in Definition 4. Let $\mathcal{T} = T(X_0, X_1, \ldots, X_n)$ be a right deep tree without cross products for R_0, R_1, \ldots, R_n. Let $X_k = R_n, X_{k-1} = R_{n-1}, \ldots, X_{k-m} = R_{n-m}$ for some $m \leq k \leq n$. If $X_{k-m-1} \neq R_{n-m-1}$, then $\mathcal{T}' = T(X_0, X_1, \ldots, X_{k-m-2}, X_{k-m-2}, \ldots, X_{k-m}, X_{k-m+1}, \ldots, X_k, X_{k-1}, X_n)$ is a right deep tree without cross products and $C_{out}(\mathcal{T}') \leq C_{out}(\mathcal{T})$.

Lemma 11. Cost reduction by pushing down $R_n, R_{n-1}, \ldots, R_{n-m}$: Let \mathcal{R} be the set of relations of a branch as described in Definition 4. Let $\mathcal{T} = T(X_0, X_1, \ldots, X_n)$ be a right deep tree without cross products for R_0, R_1, \ldots, R_n. Let $X_k = R_n, X_{k-1} = R_{n-1}, \ldots, X_{k-m} = R_{n-m}$ for some $m \leq k \leq n$. If $X_{k-m-1} \neq R_{n-m-1}$, then $\mathcal{T}' = T(X_0, X_1, \ldots, X_{k-m-2}, X_{k-m-2}, \ldots, X_{k-m}, X_{k-m+1}, \ldots, X_k, X_{k-1}, X_n)$ is a right deep tree without cross products and $C_{out}(\mathcal{T}') \leq C_{out}(\mathcal{T})$.

Proof. Similar to the proof of Lemma 10, we can show that $X_{k-m-1} = R_{n-k}$ if $X_{k-m-1} \neq R_{n-m-1}$, $\mathcal{A} = \{X_0, X_1, \ldots, X_{k-m-1}\} = \{R_{n-k}, R_{n-k+1}, \ldots, R_{n-m-1}\}$, and $X_i = R_{n-i}$ for $k < i \leq n$.

Now consider swapping $R_n, R_{n-1}, \ldots, R_{n-m}$ with R_{n-k}, the resulting plan is \mathcal{T}'. Similar to the proof of Lemma 10, we can show that \mathcal{T}' has no cross product.

Consider C_{out} for X_0, X_1, \ldots, X_n. Similar to the proof of Lemma 10, we can show that $C_{out}(X_i)$ is the same for X_0, X_1, \ldots, X_n in \mathcal{T} and \mathcal{T}'.

Next, consider the intermediate join sizes. Since both \mathcal{T} and \mathcal{T}' share the same subplan $\mathcal{T}_j(X_0, X_1, \ldots, X_j), 0 \leq j \leq k - 2$, similar to the proof of Lemma 10, we can show that $\mathcal{T}_j, 0 \leq j \leq k - m - 2$ is the same for \mathcal{T} and \mathcal{T}'.

Now consider the cardinality of joins $S(T_{k-2}, R_{n-k})$. Similarly to Lemma 10, we can show $|S(T_{k-2}, R_{n-k})| \leq S(T_{k-2}, R_{n-k})$.

Similarly, since R_{n-k} is a PKFK join with $S(T_{k-2}, R_{n-k})$, we have $|S(T_{k-2}, R_{n-k})| = |S(T_{k-2}, R_{n-k})|$. Thus, $|S(T_{k-2}, R_{n-k})| \leq S(T_{k-2}, R_{n-k})$.

By similar reasoning, we can show that $|S(T_{k-2}, R_{n-k})| \leq S(T_{k-2}, R_{n-k})$.

Finally, we can show that $|S(T_{k-2}, R_{n-k})| \leq S(T_{k-2}, R_{n-k})$.

By summing up everything together, we have $C_{out}(\mathcal{T}) \geq C_{out}(\mathcal{T}')$.

Lemma 12. Single branch in right most leaves: Let \mathcal{R} be the set of relations of a snowflake query \mathcal{Q} as described in Definition 2. Let $\mathcal{T} = T(X_0, X_1, \ldots, X_n)$ be a right deep tree without cross products for \mathcal{Q}, where X_0, X_1, \ldots, X_n is a permutation of \mathcal{R}. If $X_k = R_0$, then $X_0, X_1, \ldots, X_{k-1}$ is a permutation of $R_{i_1}, R_{i_2}, \ldots, R_{i_k}$ for some $1 \leq i \leq m$.

Proof. Assume there exists $X_u = R_{i_1}, \ldots, X_{i_k} = R_{i_k}$ such that $0 \leq u, v < k - 1$ and $i_1 \neq i_2$. Because $X_k = R_0$, X_u does not connect to X_v by joining with X_{i_1}, \ldots, X_{i_k}. Thus, there must be a cross product, which is a contradiction.

Since $X_0, X_1, \ldots, X_{k-1}$ has a join condition with $R_0, R_{i_1} \in \{X_0, X_1, \ldots, X_{k-1}\}$. Because $T(X_0, X_1, \ldots, X_{k-1})$ has no cross products, $\{X_0, X_1, \ldots, X_{k-1}\} = \{R_{i_1}, R_{i_2}, \ldots, R_{i_k}\}$. Thus, $X_0, X_1, \ldots, X_{k-1}$ is a permutation of $R_{i_1}, R_{i_2}, \ldots, R_{i_k}$.

Lemma 13. Partially-ordered subtree: Let \mathcal{R} be the set of relations of a snowflake query \mathcal{Q} as described in Definition 2.
Let $T = T(X_0, X_1, \ldots, X_n)$ be a right deep tree without cross products for q, where X_0, X_1, \ldots, X_n is a permutation of R. If $X_k = R_0$, then $X_{k+1}, X_{k+2}, \ldots, X_n$ is a partially ordered right deep tree of the new relation $R'_0 = X_0 \bowtie X_1 \bowtie \cdots \bowtie X_k$.

Proof. By Lemma 12, $X_0, X_1, \ldots, X_{k-1}$ is a permutation of $R_{i_1}, R_{i_2}, \ldots, R_{i_k}$ for some $1 \leq i \leq m$. Let’s create a new relation $R'_0 = \text{Join}(X_0, X_1, \ldots, X_{k-1}, R_0)$. For $X_j, k < j \leq n$, if $X_j = R_{i_k+1}, R_{i_k} \rightarrow X_j$ and thus $R'_0 \rightarrow X_j$; if $X_j = R_{u_1}, R_0 \rightarrow X_j$ and thus $X_j \rightarrow R'_0$; if $X_j = R_{u_2}, v > 1$, then there exists $R_{u_2-1} \in \{X_{k+1}, X_{k+2}, \ldots, X_n\}$ such that $R_{u_2-1} \rightarrow X_j$. Thus, $\{R'_0, X_{k+1}, X_{k+2}, \ldots, X_n\}$ is a snowflake query. By Lemma 6, and $X_{k+1}, X_{k+2}, \ldots, X_n$ is a partially ordered right deep tree of the new snowflake query. □

Lemma 14. Cost reduction by consolidating a single branch: Let R be the set of relations of a snowflake query q as described in Definition 2. Let $T = T(X_0, X_1, \ldots, X_{k-1}, R_0, R_{i_1}, R_{i_2}, \ldots, R_{i_k}, Y_1, Y_2, \ldots, Y_{n-1})$, where $Y_1, Y_2, \ldots, Y_{n-1}$ is a permutation of $\{X_{k+1}, X_{k+2}, \ldots, X_n\} \setminus \{R_{i_k}, R_{i_k+1}, R_{i_k+2}, \ldots, R_{i_k+n-1}\}$ and $Y_1, Y_2, \ldots, Y_{n-1}$ is partially ordered. By Theorem 8, $\text{Cout}(T_p) \leq \text{Cout}(T)$.

Now consider $T' = T(X_0, X_1, \ldots, X_{k-1}, R_{i_k+1}, R_{i_k+2}, \ldots, R_{i_k+n-1}, R_0, Y_1, Y_2, Y_{n-1})$. Let $R'_0 = R_0 / (Y_1, Y_2, Y_{n-1})$. Since $X_0, X_1, \ldots, X_{k-1}$ is a permutation of $\{R_{i_k+1}, R_{i_k+2}, \ldots, R_{i_k+n-1}\}$, joining $\{X_0, X_1, \ldots, X_{k-1}, R_{i_k+1}, R_{i_k+2}, \ldots, R_{i_k+n-1}\}$ is a branch of a snowflake. By Lemma 11, $\text{Cout}(T' / \{X_0, X_1, \ldots, X_{k-1}, R_{i_k+1}, R_{i_k+2}, \ldots, R_{i_k+n-1}\}) \leq \text{Cout}(T'/p) = \text{Cout}(T'_p) = \text{Cout}(T)$.

Consider T' and T_p. Because T_p is a partially-ordered subtree, $\text{Cout}(T_p) = \text{Cout}(T'_p) = \text{Cout}(T'_p) = \text{Cout}(T'_p) + \sum_{j=1}^{n-1} \text{Cout}(Y_j) + (n - n_1 - 1) \cdot |\{R_0, R_{i_1}, R_{i_2}, \ldots, R_{i_k}, Y_1, Y_2, Y_{n-1}\}|$. Thus, $\text{Cout}(T_p) \leq \text{Cout}(T)$. □

REFERENCES

