
snmalloc: A Message Passing Allocator
Paul Liétar

Microsoft Research, UK
paul@lietar.net

Theodore Butler∗

Drexel University, USA
theodore.j.butler@drexel.edu

Sylvan Clebsch
Microsoft Research, UK

Sylvan.Clebsch@microsoft.com

Sophia Drossopoulou
Imperial College London, UK
s.drossopoulou@imperial.ac.uk

Juliana Franco
Microsoft Research, UK

Juliana.Franco@microsoft.com

Matthew J. Parkinson
Microsoft Research, UK
mattpark@microsoft.com

Alex Shamis
Microsoft Research, UK

Imperial College London, UK
alexsha@microsoft.com

Christoph M. Wintersteiger
Microsoft Research, UK
cwinter@microsoft.com

David Chisnall
Microsoft Research, UK

David.Chisnall@microsoft.com

Abstract
snmalloc is an implementation of malloc aimed at work-
loads in which objects are typically deallocated by a different
thread than the one that had allocated them. We use the
term producer/consumer for such workloads. snmalloc uses
a novel message passing scheme which returns deallocated
objects to the originating allocator in batches without taking
any locks. It also uses a novel bump pointer-free list data struc-
ture with which just 64-bits of meta-data are sufficient for
each 64 KiB slab. On such producer/consumer benchmarks
our approach performs better than existing allocators.

snmalloc is available at https://github.com/Microsoft/
snmalloc.

CCS Concepts • Software and its engineering → Allo-
cation / deallocation strategies.

Keywords Memory allocation, message passing
ACM Reference Format:
Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M.
Wintersteiger, and David Chisnall. 2019. snmalloc: A Message
Passing Allocator. In Proceedings of the 2019 ACM SIGPLAN In-
ternational Symposium on Memory Management (ISMM ’19), June
23, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3315573.3329980

∗Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISMM ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6722-6/19/06. . . $15.00
https://doi.org/10.1145/3315573.3329980

1 Introduction
Individual threads typically cache free objects to improve
performance of allocators in multi-threaded scenarios: rather
than returning deallocated objects to the original allocating
heap/slab, threads keep deallocated objects in size-specific
thread-local lists and so can quickly reallocate objects of
that size when needed. In fact, almost all modern allocators
employ some form of thread-caching [8, 10, 13].

When allocations and deallocations are roughly evenly
spread amongst threads, these caches do not grow too large
and no synchronization across threads is necessary. This
leads to a dramatic improvement in performance, at the cost
of not coalescing free memory that is kept in thread caches.

However, simple thread-caching does not work well in all
scenarios. Producer/consumer workloads form the most com-
mon such scenario, where some threads primarily perform
allocation and other threads primarily perform deallocation.
If the overall allocation pattern is roughly symmetric, that is,
if threads allocate and deallocate roughly the same number of
objects of each size, then thread-caching still performs well.
If the allocation pattern is asymmetric, that is, if the number
of allocations and deallocations of a particular size varies
significantly across threads, then thread-caching does not
perform well: allocating threads are constantly exhausting
their local caches, while deallocating threads are constantly
over-filling them. This leads to synchronization, and thus can
be expensive. Such asymmetric scenarios occur in pipelined
programs, which pass heap-allocated structures between
threads. They also occur in some GC implementations: GC
threads perform all the deallocations while mutator threads
perform all the allocations.

This paper presents snmalloc, a new point in the alloca-
tor/deallocator design space. Instead of thread-caching, we
use lightweight lock-free message-passing to send batches
of deallocations to the originating thread.

While using batched message-passing instead of thread-
caching is the main novelty of snmalloc, we also had to
address the following design questions:

122

https://github.com/Microsoft/snmalloc
https://github.com/Microsoft/snmalloc
https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/3315573.3329980

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

Simple Communication Allocators communicate upon
deallocation only, and communication takes place through
message passing. Thus, adopting the asynchronous paradigm
leads to a simple design that fits the producer/consumer
scenario well. Each allocator can be associated to a single
thread and does not need to lock its internal data-structures.

Efficient Message Passing We have adapted a scheme for
efficient message passing queues which supports multiple
producers and a single consumer. At the cost of loss of lin-
earizability [12] (not essential for queues of deallocation
requests), dequeueing requires no synchronization, while
enqueueing requires one fence and one atomic exchange.

Effective Dispatching Allocators may send messages to
any other allocator. In a naïve implementation each allo-
cator would keep a queue of batched messages for each
other allocator. The number of queues would then either
be the dynamically known number of existing threads, or
the statically known maximal number of possible threads.
The former would require allocation of a dynamically sized
structure when handling remote deallocation and slow en-
queueing, while the latter would lead to significant wasted
space and hard-coded limits.

Instead, we adapted ideas from radix trees. Allocators keep
a fixed 2k size array of buckets of pending messages, where
k in our implementation is 6. Batched messages are inserted
into the bucket which corresponds to their destination’s ad-
dress, modulo the number of buckets. Dispatch of messages
takes place by sending all the messages from the same bucket
to one allocator, which then responds to those messages for
which it is the final destination, and forwards the rest, again
according to their destination allocator address, but now
shifted right by k bits. Thus we gain an efficient data struc-
ture that requires no allocation at the cost of intermediate
hops upon message send. The number of intermediate hops
is bound by ⌈N /k⌉ where N is the number of meaningful bits
used by allocator addresses. In our implementation the value
of this bound is 7, as allocator addresses are 2KiB aligned
in a 48 bit address space, yielding 37 meaningful allocator
address bits.

Efficient Discovery of Free Memory Allocators need to
be able to find free memory of a certain size. Bit masks are a
common approach for maintaining meta-data as to whether
or not a part of memory is free. With this representation, and
a minimum object size of 16 bytes, we would need 1 bit per
16 bytes of space; hence representing the allocation status
of 64KiB of memory would require 512 bytes of meta-data.

Instead, in snmalloc, we use a data structure that com-
bines bump pointer style allocation with a free list. Effec-
tively, we have a standard free list, but instead of terminating
this list with null, we terminate it with the high-water mark
of allocation for this slab of memory. This representation
allows us to use just 64 bits of meta-data for each 64KiB slab.

It also is very cheap to initialise: setting the head of the list
to be the bump pointer to the start of the slab is sufficient.

As is customary, we organize objects of the same size into
slabs. We keep the free lists within the free memory of the
slabs themselves.

We evaluated snmalloc using micro-benchmarks as well
as real programs. We compared it with state-of-the-art mem-
ory allocators from both industry and research: Hoard [2],
jemalloc [8, 9], lockfree [18], lockless [13], and also
ptmalloc2 [11], scalloc [1], rpmalloc [14], tbbmalloc [15],
tcmalloc [10], and SuperMalloc [16],

We measured throughput and memory usage using mi-
crobenchmarks from the SuperMalloc repository and some
of our own. We have also compared using SPEC 2017, and
FaRM.

Moreover, because snmalloc introduces several new tech-
niques, we expose a large parameter space. We benchmark
several points in this space to demonstrate the impact of
various design decisions. So far, our evaluation has produced
very encouraging results.

2 Implementation
2.1 Large, Medium, and Small Objects, and

Allocators
snmalloc is concerned with the allocation and de-allocation
of objects. We use the term object to describe a consecutive
piece of memory that has been allocated as the result of a
single allocation, which in turn must be freed as a single unit.
Note that, because of representation and alignment concerns,
the amount of memory allocated may exceed the amount
requested in the malloc call — we will discuss this later on.

We distinguish between large, medium and small objects.
Large objects require at least 16MiB (224 bytes), medium
objects require less than 16MiB and at least 64KiB (216 bytes),
and small objects require less than 64KiB. These numbers
are configurable and in Section 3 on page 8 we will show the
effects of using smaller sizes for each category.

Allocators are responsible for object allocation and deallo-
cation. There is one allocator per thread. Small and medium
objects are owned by the allocator that allocated them, which
is also responsible for their deallocation. Large objects are
deallocated centrally using a per-size lock-free stack.

We employ a page map and some meta-data which, for
any given internal pointer, determines the size of the ob-
ject and the owning allocator. We will discuss these in Sec-
tions 2.3, 2.4, 2.5, 2.7, and 2.8.

In the next section we discuss how an allocator sends
batched requests to other allocators when it wishes to deal-
locate small or medium objects it does not own.

2.2 Message Passing Allocator
When an allocator begins deallocating an object it uses the
page map detailed in Section 2.4 on page 5 to determine

123

snmalloc: A Message Passing Allocator ISMM ’19, June 23, 2019, Phoenix, AZ, USA

whether the object being deallocated is a small, medium, or
large object. If the object is a large object, deallocation is
handled as described in Section 2.5.

If the object is medium or small, the allocator uses the
meta-data of the containing medium slab or superslab, as
detailed in Sections 2.7 and 2.8, to identify that object’s own-
ing allocator. If the allocator is the owning allocator then it
directly modifies the corresponding meta-data of the con-
taining slab to indicate that the object has been deallocated,
as detailed in Sections 2.7 and 2.8. Otherwise, the allocator
issues a remote deallocation request and transmits it to the
owning allocator. These remote deallocation requests are
batched for performance. The rest of this section describes
how we send batches of requests in an efficient manner.

Each allocator exposes a lock-free multi-producer, single-
consumer queue onto which other allocators push these
deallocation requests. This design allows any thread to asyn-
chronously dispatch objects that are pending deallocation to
their owning allocator at any time. On every call to malloc

or free, the allocator will check its own incoming queue and
process any requests it might contain. A batch of messages
can be pushed with a single atomic pointer exchange, i.e.,
not a compare-and-swap and without a loop. Reading from
the queue requires no atomic operation at all. On CPUs with
weak memory ordering, such as ARM, a release fence on
push and an acquire fence on read are required. The imple-
mentation of the queue is detailed later in this section.

Each message queue entry contains a pointer to the next
object and the target allocator’s identifier. We store these
inside the deallocated object, avoiding the need to allocate
new memory. The smallest size of object is therefore twice
the size of a pointer, which is 16 bytes on a 64 bit architecture.

Pushing each request individually onto the target allo-
cator’s queue would be inefficient, as it would require one
atomic operation per freed object. Instead, outgoing requests
are sent in batches. Inside the allocator sending requests,
these are grouped into separate linked-lists, based on the des-
tination allocator. Whenever the total size of objects stored in
the outgoing lists reaches a configurable threshold (currently
1MiB), the allocator posts the linked-lists to the target alloca-
tors’ incoming queue. This requires a single atomic operation
per destination, regardless of the number of objects.

Temporal Radix Tree Using a separate outgoing list for
each destination would either require an upper bound on
the number of allocators used by the application, or dynamic
allocation of outgoing lists. The former is impractical for a
general purpose malloc implementation, and the latter would
need a separate allocation scheme, which would introduce
unwanted synchronization.

Instead, outgoing requests are grouped into buckets. This
grouping is not by target allocator but by the lower few bits
of the target allocator’s address. This reduces the number
of outgoing lists to 2k , where k is the number of bits used.

Allocator 0
0
1 9, 5, 1, 5
2 2
3

Allocator 9
0
1
2
3 7

Figure 1. k=2, thus four buckets per allocator. Allocator 0
has pending requests for allocators 1, 2, 5 and 9, and allocator
9 has a pending request for allocator 7.

Allocator 9
0
1 5, 1, 5
2
3 7

round 0

(a) State of allocator 9 af-
ter allocator 0 flushed all
its pending requests; home
bucket in grey.

Allocator 9
0 1
1 5, 5
2
3

round 1

(b) State of allocator 9 after
its first round of flushing
its pending requests; home
bucket has changed.

Figure 2. Temporal radix tree for remote deallocation
through two rounds

In the default configuration, we use k = 6 bits, requiring 64
buckets per allocator to store outgoing pending requests.

Figure 1 demonstrates the case where allocator 0 has pend-
ing deallocation requests for allocators 1, 2, 5 and 9, and allo-
cator 9 has a pending request for allocator 7. For simplicity,
the examples use k = 2, requiring only 4 buckets, and small
integers as allocator addresses. In allocator 0’s buckets, the
requests for allocators 1, 5 and 9 have been grouped together,
as their addresses share the same low 2 bits, while the request
for allocator 2 has been placed in a separate bucket.

When the total size of outgoing requests reaches the con-
figured threshold, the allocator sends the contents of each
bucket to the target of the request at the head of the list,
except for the allocator’s home bucket, which is the buckets
matching the relevant bits of this allocator’s identifier. The
contents of the home bucket are redistributed across the
other buckets, but instead of using the lowest k bits, which
are all identical, the next k bits of the target allocator’s iden-
tifier are used. The process is repeated, alternately emptying
all buckets except for the home one, and redistributing the
contents of the home bucket using the next k bits. This pro-
cess stops as soon as all buckets are empty, that is, after at
most ⌈N /k⌉ rounds, where N is the number of bits in an
identifier.

Thus, when an allocator processes requests from its in-
coming messages queue, it may encounter requests targeted
at itself as well as requests targeted at other allocators whose

124

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

address shares a prefix with the current allocator’s. The re-
quests targeted at this allocator are satisfied immediately by
freeing the relevant object, whereas the other requests must
be forwarded. This is done by adding these requests to the
allocator’s outgoing buckets, just as a remote deallocation
would have, to be sent to a different allocator at a later time.

For example, when allocator 0 from Figure 1 on the pre-
vious page decides to flush pending outgoing requests, it
pushes the request targeted at allocator 2 onto that alloca-
tor’s queue, and requests targeted at allocators 1, 5 and 9
onto allocator 9’s queue. Allocator 9 will free the object from
the request targeting itself and add the remaining requests
to its own outgoing buckets. The state of these buckets is
shown in Figure 2a on the preceding page.

When allocator 9 in turn decides to flush those requests,
it first only sends the request targeted at allocator 7; it then
redistributes the requests from its home bucket (indicated
by the grey background), using the next 2 bits of the tar-
get allocators’ addresses. The result of the redistribution is
represented in Figure 2b on the previous page. Note that
allocator 9’s home bucket has changed because different bits
of its address are now used. At this stage, and assuming 4-
bit addresses, all requests in a given bucket target the same
allocator and the home bucket must be empty.

The number of hops required for a message to reach its
destination is bounded. On its first hop, a request will be
sent to an allocator which shares the first k bits with that
request’s target. On the next hop, the request will be sent to
an allocator which shares the first 2k bits, and so on. This
guarantees every request eventually makes its way to the
right allocator in ⌈N /k⌉ hops or fewer, where N is the num-
ber of meaningful bits used by allocator addresses. On most
existing 64-bit architectures, only 48 bits of address space
are used. Additionally, by making allocators 2KiB aligned,
we can ignore the lowest 11 address bits, leaving only 37
meaningful bits in an allocator address. Hence, given k = 6,
at most ⌈37/6⌉ = 7 hops are necessary.

In practice however, intermediate hops are rarely neces-
sary. snmalloc is optimized to be used with one allocator
per scheduler thread and at most a handful of scheduler
threads per available hardware thread. Given this limited
number of allocators, the probability of a collision decreases
very quickly as the hops increase. Additionally, allocators are
allocated contiguously from a handful of memory chunks.
This means that the lower bits, which are used first, are
more likely to differ across allocators than the higher bits. If
fewer than 64 scheduler threads are used, i.e. fewer than the
number of buckets, messages are usually sent to their desti-
nation directly. For applications that employ more threads,
snmalloc can be reconfigured to use more buckets.

Remote Deallocation Queue The queue for remote deal-
locations is a lock-free queue based on the Pony language

runtime [3, 4] message queue. It allows multiple producers
and a single consumer.

front points at the first element in the queue, and back at
the last element. The queue is always non-empty, and has a
singly linked list of remote deallocations from front to back,
oldest first. The code for dequeue only operates on front, and
is only accessed by a single thread for a particular queue. It
is given below:
RemoteObject* dequeue () {

if (front.next == nullptr)
return nullptr;

auto first = front;
front = front.next;
// Acquire fence
return first;

}

If front.next contains nullptr, we cannot remove an el-
ement at the moment. Otherwise, we advance the front

pointer and return the previous front element.
The code for enqueing only modifies back and is accessed

by multiple threads, and is given below:
1 void enqueue_list(RemoteObject* first ,
2 RemoteObject* last) {
3 last.next = nullptr;
4 // Release fence
5 prev = back.exchange(last);
6 prev.next = first;
7 }

The enqueue uses an atomic exchange (line 5) to atomi-
cally swing the back pointer from the current value to the
last element of the list that is being enqueued. Line 6 then
links this chain of free objects into the queue.

Due to operations to grab the position in the order (5) and
linking into the queue (6) happening separately, it is possible
for dequeues to not see enqueues that have already returned,
that is, the queue is not linearizable [12]. Once all enqueues
that were executing in parallel with a particular enqueue
have completed then the dequeue will observe them. This in-
creases performance in the queue, but may, under contended
scenarios, mean reclamation is delayed.

Figure 3 on the facing page illustrates two threads pushing
batches of messages to the same queue. After step c, both
threads have atomically acquired the position where they
will insert their messages. During step d, thread B executes
line 6, linking its messages into the queue. However, because
thread A acquired an earlier position in the list, thread B’s
messages are not visible to the receiver until thread A links
its own messages, despite enqueue_list having completed.
This finally happens in step e, making all messages visible.

To deal with weak-memory effects, we require that line 3
is visible before both lines 5 and 6. We have placed comments
for the fences required. All other operations on shared state
can be relaxed atomics.

125

snmalloc: A Message Passing Allocator ISMM ’19, June 23, 2019, Phoenix, AZ, USA

front

back

first last first last

Thread A Thread B

(a) Initial state. Two threads, A and B, are about to push messages
to the same queue.

front

back

prev
Thread A

(b) Thread A atomically exchanges back to point to the last message
it is enqueuing.

front

back

prev
Thread A

prev
Thread B

(c) Thread B atomically exchanges back to point to its own last
message.

front

back

prev
Thread A

(d) Thread B updates prev.next. Its messages won’t actually be
visible until thread A also updates its prev.next.

front

back

(e) Thread A updates prev.next. All messages become visible to
the receiver.

Figure 3. Two threads concurrently pushing to the same
deallocation queue.

2.3 Chunks, Slabs, and Allocators
snmalloc divides the virtual address space into chunks. The
size of chunks is configurable, but in this document we as-
sume that it is (224 bytes), and that chunks are aligned to
16MiB boundaries. In our evaluation, in Section 3, we will
also consider 1MiB chunks. A chunk is either part of a large
object, a medium slab or a superslab.

As we already said in Section 2.1, we distinguish between
large, medium and small objects. Large objects require at
least 16MiB, that is at least as much space as a chunk. Medium

objects require between 16MiB and 64KiB, and small objects
require less than 64KiB. These numbers are configurable.1

As we will see in the next section, given an internal pointer
to an object, the page map can be used to determine whether
the object is small, medium or large. In the case of a large
object, the page map can also determine the size and the
starting address of the object. Otherwise, further meta-data
stored in the same chunk as the object is used to determine
the size and start of the object, as well as the owning allocator.

Large objects are stored in one or more chunks, with their
sizes rounded to the next power of two. They are handled
globally using a lock-free stack per power of two.

Medium and small objects are stored in medium slabs and
in superslabs respectively. Both medium slabs and superslabs
are stored in precisely one chunk. The first cache-line of a
medium slab or a superslab contains a pointer to the owning
allocator and a description of its kind (medium or super).
A medium slab contains objects of the same size only. A
superslab consists of one or more small slabs of size 64KiB.2
Each such small slab contains objects of the same size.

Each allocator has fast access to medium and small slabs
with free space for a given size of object. Namely, all non-full
medium slabs for objects of a given size owned by the same
allocator are organized in a doubly-linked list. Similarly, all
non-full small slabs for objects of a given size owned by the
same allocator are organized in a similar list. The nodes for
these lists are stored in a free object in each slab.

2.4 Page Map
snmalloc uses a global pagemap, shared across all allocators,
to determine the kind of each chunk. As we said earlier, the
size of a chunk is configurable, but in this document we
assume it is 16MiB (224 bytes). The pagemap contains a single
byte per chunk, each of which can be one of the following;
Unknown : Not managed by snmalloc.
Super : This is a superslab.
Medium : This is a medium slab.
Large(n) where n ∈ [0; 24) 3: This is the start of a large

object consisting of 2n chunks.
Jump(m) wherem ∈ [0; 24): This is part of a large allocation

that starts at least 2m chunks earlier in the address
space.

This representation allows the pagemap to describe the
entirety of 48-bit address space as a 16MiB flat map, or alter-
natively as a two level map with 64KiB leafs. On systems that
support lazy commit (see Section 2.9 on page 8), there is no
advantage in using a two-level structure because the system
will provide copy-on-write zero pages for the pagemap and
a zero value indicates the not-managed-by-snmalloc state.

1For the 1MiB chunks used in our evaluation, the boundary between small
and medium objects is 16KiB, and medium and large is 1MiB.
2Again this is configurable.
3Assuming 224 byte chunks and a 48-bit useable address space

126

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

It also allows the start of large objects to be found in
logarithmic time in the size of that object.

For example, the pagemap entries of the 8 chunks com-
posing a 128MiB object consist of 8 bytes; L(3) (since 23=8)
and 7 back-jumps as follows:

L(3) J(0) J(1) J(1) J(2) J(2) J(2) J(2)

The back-jump entries are used to find the start of an
object from its interior pointer. This is not required by the
standard C interface for allocators, but can be useful for
debugging.

2.5 Large Objects
Large objects require at least 16MiB, and are centrally man-
aged. They are always aligned to a 16MiB boundary. We
round the size of any large object to the next power of two,
i.e. 16MiB, 32MiB, 64MiB, etc. When we allocate an object, it
is always in a power of two sized address space, but we only
commit the pages for the used space.4

We keep track of available objects for each large object
size (i.e. each power of 2 greater than or equal to 16MiB) in
a lock-free stack. We decommit all the pages of these blocks
except for the first page, which is used as the stack entry.
The lock-free stack is just a Treiber stack [21]. To handle the
standard ABA issues, we use an incarnation number next to
the head of the stack, and use a 128-bit compare-and-swap
operation.

2.6 Size Class Calculation
snmalloc uses a similar calculation for size classes to Su-
perMalloc [16]. SuperMalloc uses a 2-bit mantissa, m, and a
6-bit exponent, e, for its size classes, where this represents
the size (4 +m) ∗ 2(e+1). This encoding always has a leading
1. We represent our size classes differently, by making e = 0
mean that we don’t have a leading 1, and e > 0 mean that
we do have a leading one. We also add 4 to the exponent,
ensuring that every sizeclass is a multiple of 16, and is there-
fore 16-byte aligned.
size_t sizeclass_to_size(uint8_t sc) {

sc ++;
auto m = sc & 3;
auto e = sc >> 2;
auto b = (e == 0) ? 0 : 1;
return (m + (b * 4)) << (4 + e - b);

}

4We use the Windows terminology, where a committed page is a page of
virtual memory to which some physical memory is associated whereas an
uncommitted page is a page of virtual memory to which no physical memory
is associated. See Section 2.9 on page 8 for a discussion of how this behavior
varies between operating systems.

The reverse mapping cannot be pre-calculated. We use the
following function:
uint8_t size_to_sizeclass(size_t size) {

size --;
auto e = 58 - clz(size | 32);
auto b = (e == 0) ? 0 : 1;
auto m = (size >> (4 + e - b)) & 3;
return (e << 2) + m;

}

Following most bit-twiddling code for calculating binary
logarithms, we subtract one, and find the highest set bit (clz,
count leading zeros). By setting the 5th bit (size | 32), we
guarantee that e is never negative. The code has a conditional
statement to define b, that is compiled to a setne instruction
on x86 processors, avoiding any branching. The correct two
bits for the mantissa are selected using b to adjust the shift,
accounting for a leading one or not. Finally, we can pack the
exponent and mantissa into the byte.

2.7 Medium Slabs
Medium objects (size-classes from 64KiB upto 16MiB) are
allocated on medium slabs. These consist of meta-data fol-
lowed by medium objects. The medium objects are aligned
such that the last object will abut (i.e. precisely finish at) the
end of the medium slab.

Meta
data

Object 0 Object 1 Object 2 . . . Object N

Allocator
pointer Kind Padding DLL

Node
Free
count Head Size

class Free stack

The first entry in the meta-data is a pointer to the owning
allocator, i.e. the allocator that owns the objects in this slab;
this is required so that remote frees know which allocator
to return objects to. The kind is used to distinguish medium
slabs and super slabs without requiring a pagemap lookup.
Because the allocator and kind are read by many threads
(but written only once while the slab is allocated), we pad
these in their own cache line.

The next entry in the meta-data is a doubly linked list
node (128 bits) for medium slabs that have free space, and
that have the same size-class and the same owning allocator.
The Free Count (16 bits) represents how many objects on
the slab are not being used. Head (8 bits) represents the index
into the “free stack” (512 bytes) which is effectively a linked
list of unused objects on this slab. The Size-class (8 bits)
represents the rounded size of every block in this medium
slab.

2.8 Superslabs
Small objects are stored in small slabs, which reside within
superslabs. Superslabs are broken down into small slabs of
64KiB each, and there are 256 of them in a superslab. The first
64KiB of a superslab is special as it contains the meta-data

127

snmalloc: A Message Passing Allocator ISMM ’19, June 23, 2019, Phoenix, AZ, USA

for the entire superslab, and then a short slab of allocations.
The short slab is like any other small slab except that the
starting index for allocation is after the meta-data, and it has
2KiB less space for objects than a small slab.

As with medium slabs, the last object allocated in a small
or short slab will abut the end of the slab. Note that this
enables short slabs and small slabs to share most of their
code paths. For most allocation and deallocation operations,
a short slab is simply a small slab with existing allocations
that cannot be freed.

Meta
data

Short
slab Slab 1 Slab 2 . . . Slab 254 Slab 255

Allocator
pointer Kind Padding

DLL
Node

Free
count

Head Used
Meta
0

Meta
1

Meta
2

. . . Meta
254

Meta
255

Used Head Link Size class
Next

The meta-data starts with a pointer to the allocator owning
the objects of the superslab. As for medium slabs, the owner
and the Kind fields are padded into a separate cache-line.

The DLL Node creates a doubly-linked list of superslabs
which have the same owning allocator, and which have at
least one free small slab. Head is a pointer to a free small
slab; it is stored as an index into the per small slab meta data
indicated through Meta 0, ... Meta 255 in the diagram. Used
indicates how many slabs are in use; it is encoded as twice
the number of small slabs used, plus one if the short slab is
used. For instance, a full superslab would have a used field
of 511 = (255 ∗ 2 + 1).

The meaning of the per small slab meta-data depends on
whether that slab is used or not. For free small slabs, the field
Used contains 0, and Size class/next contains a pointer
to the next free small slab, and 0 if no such free small slab
exists on the current superslab. Thus, effectively, there is a
free list starting at Head using the next indexes. We now
consider used slabs:

Bump Pointer-Free Lists We allocate space in small slabs
through a combination of per slab free lists and bump pointer
allocation. Thus all the allocated objects on a small slab will
be in the space up to the bump space. Everything in the bump
space is unallocated, but the area preceding the bump space
may also contain some free elements (through calls to free).

If the small slab is in use, then the field Size-class in its
meta-data represents the size of the objects stored in that
small slab. The field Used contains the number of allocated
objects, and fields Head and Link are used to keep track of
free space within the slab or across slabs. We discuss these
two fields in some more detail below.

If Head is -1, then the slab is full. Otherwise, Head is either
a slab-relative pointer to a free element in the small slab, or,
if its bottom bit is set, it is a bump pointer, pointing to the
start of the bump space. The free elements are represented

through a linked list kept in the slab itself. This list is either
terminated by a bump pointer, in which case the bottom bit
is set, or, by -1 when no more bump space is left.

Link is used for the representation of a doubly-linked list
of small slabs of the same size class which are all owned by
the same allocator, and which have free space. As small slabs
appear in this doubly linked list only if they have free space,
we store the node for the doubly linked list in the free space
in the small slab and only store a pointer to that node in
the meta-data. This makes the meta-data more compact, but
slightly complicates the invariants. It also means that each
element needs the space for two pointers, and thus requires
at least 16 bytes. When the bump space is not empty, the
doubly-linked-node is the last element in the bump space.
Otherwise it is the last element in the free list.

The diagrams below show a small slab (in green), and
the associated meta-data (in brown). Free elements are dark
green, and allocated objects are light green. In both diagrams
the field Head points to the first free element in the small
slab (dark green).

In the first diagram, bump space is still available, and there
are two free elements in the area before it. Head points to the
first free element; this contains a pointer to the second free
element, which in turn contains the bump pointer. The field
Link points to the last element in the bump space, which
contains the doubly-linked-node.

Used Head Link Size class
Next

Previous small slab

Next small slab

In the second diagram the bump space has been exhausted,
but there are three free elements. The field Link points to
the last element in free list; this object contains the doubly-
linked-node.

Used Head Link Size class
Next

Previous small slab

Next small slab

Because objects can be as small as the size of two pointers,
the doubly-linked list node may occupy the entire object,
overlapping with the free-list terminator. The block is inter-
preted in both ways at once. It is safe to do that because we
only look at the free-list’s next value during allocation, and
we only allocate from the first slab in the doubly-linked list.
The previous pointer in the doubly linked list has the same
terminator, -1, as the exhausted bump list. This means we do
not need additional checks comparing Head to Link during
free-list allocation.

128

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

2.9 Portability
snmalloc is portable across the Windows, Linux, macOS,
and FreeBSD operating systems, running in both the FreeBSD
kernel and userspace. We maintain this portability both to
avoid accidentally depending on features that are specific
to a single operating system and to provide insight into the
OS features that make it difficult or easy to write a modern
high-performance allocator.

The largest difference between our supported operating
systems is support for lazy commit. Most POSIX operating
systems (including macOS, FreeBSD, and Linux) reserve ad-
dress space and then lazily provide physical pages the first
time they are written to by userspace software. In contrast,
on Windows, which does not support lazy commit, virtual
address space is reserved and then explicitly committed to
provide physical pages as backing storage. This has the ad-
vantage that memory exhaustion happens at the allocation
site (where it may be recoverable), not later when memory
is used, but the disadvantage that physical memory is con-
sumed more aggressively. FreeBSD provides a similar abstrac-
tion to code running in kernel space, where address space
is reserved using vmem5 and then committed with kmem_back.
Supporting the Windows model made it easy to port the
allocator to run inside a kernel, where the environment has
very different constraints.

Looking up an address in the page map, as described in
Section 2.4 on page 5, requires finding the start of the chunk,
which in turn requires chunks to be strongly aligned. Both
Windows and FreeBSD provide userspace APIs to allocate
such memory regions, via VirtualAlloc2, and mmap with the
MAP_ALIGNED attribute, respectively. On Linux and macOS,
snmalloc initially requests a larger region and then returns
the parts that are outside of the aligned range.

FreeBSD and Linux both provide an madvise MADV_FREE

hint, that allows the kernel to lazily discard the underly-
ing mapping. This is closely related to lazy commit. Linux’s
madvise MADV_DONTNEED resets a mapping to the lazy commit
state; the same semantics are achieved on any POSIX plat-
forms by calling mmap over the same region. In contrast, the
madvise MADV_FREE hint allows the kernel to revert a map-
ping to the lazy commit state any time between the madvise

call and the next write to the page, but does not require it
to do so. On Windows, we implement something similar
in userspace the low memory notifications. snmalloc does
not return physical memory to the kernel until notified that
memory is scarce. On the first allocation or deallocation after
this event, snmalloc attempts to decommit unused slabs, re-
turning the physical pages for reuse. This avoids any system
calls or page-table updates while memory is plentiful at the
cost of some very high-overhead operations when memory
becomes scarce.

5vmem is a general allocator for contiguous ranges of numbers and can be
used to allocate regions within virtual address spaces.

On systems without lazy commit, snmalloc has a slightly
higher overhead because it returns physical pages to the OS
once a chunk is no longer used and then reacquires them
when reallocating memory. In contrast, on systems with lazy
commit, the allocator returns the memory to the platform,
which lazily allocates physical pages when the memory is
used. This approach means that programs that make large
allocations but touch only a small part of them will consume
more physical memory on operating systems without lazy
commit.

3 Evaluation
The performance of any allocator is critical information
used to justify design decisions. Initially, we evaluate the
performance and memory overhead of snmalloc through
micro-benchmarks, meant to simulate different allocation
patterns. Next, we explore the effect of several design deci-
sions and how performance is impacted. Finally, snmalloc
is integrated into real-world applications and we measure
the performance before and after the integration.

We compare the performance of snmalloc with popular
existing allocators: Hoard (git-e52d3e0)6, jemalloc (5.1.0),
lockfree (git-915f51b)7, lockless8, ptmalloc2 (from glibc
2.27), rpmalloc (git-eee5329)9, scalloc (1.0.0)10 SuperMalloc
(git-709663f)7, tbbmalloc (from TBB 2019 Update 3) and
tcmalloc (from gperftools 2.7).

We have also compared snmalloc configured to use both
16MiB and 1MiB chunks. The 1MiB chunk configuration,
snmalloc-1mib, was developed for virtual address space
constrained scenarios, such as 32-bit architectures. When
benchmarking we found neither 1MiB nor 16MiB chunks to
be superior for all workloads. We include both to show there
is still opportunity to further tune snmalloc.

3.1 Micro-benchmarks
We start our evaluation by comparing the performance and
memory usage of snmalloc against other allocators across
two micro-benchmarks. While not a perfect representation
of real-world usage, these benchmarks provide a good way
to explore the strengths and weaknesses of each allocator.
For each benchmark, we report the average of 5 runs, and
represent the minimum and maximum values as error bars.
The benchmarks were run on an Ubuntu 18.04 Standard
F64s_v2 (64 vcpus11, 128 GB memory) Azure virtual machine.

Symmetric Workload We designed a benchmark to sim-
ulate a symmetric workload, where each thread repeatedly
6We experienced segmentation faults when using the latest Hoard release.
These did not occur when using the latest git revision.
7No stable release available
8No version or revision number available
9Includes minor build system fixes over the last release, 1.3.1
10We experienced occasional segmentation faults when using scalloc, but
were able to produce enough results to include it.
11Dual-socket Intel Xeon Platinum 8168

129

snmalloc: A Message Passing Allocator ISMM ’19, June 23, 2019, Phoenix, AZ, USA

0 10 20 30 40 50 60
Threads

0M

50M

100M

150M

200M

250M

300M

A
llo

ca
tio

ns
pe

rs
ec

on
d

snmalloc
snmalloc-1mib
glibc

hoard
jemalloc
lockfree

lockless
rpmalloc
scalloc

supermalloc
tbbmalloc
tcmalloc

Figure 4. Allocation throughput of different allocators on a
symmetric workload.

allocates an object, swaps it with another thread, and deallo-
cates the received object. Figure 4 shows the throughput of
different allocators over a varying number of threads.

This is the scenario for which thread-caching allocators
are optimized. Individual threads place the objects they have
freed in their local caches and reuse them when allocating an
object of the same size class. There is no need for any form
of synchronization with the thread that originally allocated
this object. This explains the good performance of jemalloc,
tcmalloc and SuperMalloc on this benchmark.

snmalloc, on the other hand, always returns deallocated
objects to their originating allocator, even if the object could
have been reused later. While reasonably lightweight, mes-
sage passing still represents a non-negligible synchroniza-
tion cost. Nevertheless, snmalloc’s performance remains
better than most allocators.

Producer/Consumer The second allocation pattern that
we consider is a producer/consumer scenario, where pro-
ducer threads only allocate objects and consumer threads
only deallocate them.

The malloc-test benchmark, which we obtained from the
SuperMalloc [16] repository, reproduces an asymmetric pro-
ducer/consumer scenario. Half the threads behave as produc-
ers, while the other half behave as consumers. Each producer
thread repeatedly allocates 4096 objects and stores the point-
ers to the objects in a message. The messages are pushed onto
a global lock-protected queue. Consumer threads remove a
single message from the global queue and deallocate all the
objects it contains. The benchmark can be either configured
to use a single object size, or to randomly pick a different
size on every allocation, ranging from 8 to 2048 bytes.

The allocation throughput of each malloc implementation,
when running the benchmark with randomized object sizes,
can be seen in Figure 5, using the total number of worker
threads as the x-axis.

0 10 20 30 40 50 60
Threads

0M

50M

100M

150M

200M

A
llo

ca
tio

ns
pe

rs
ec

on
d

snmalloc
snmalloc-1mib
glibc

hoard
jemalloc
lockfree

lockless
rpmalloc
scalloc

supermalloc
tbbmalloc
tcmalloc

Figure 5. Allocation throughput of different allocators on a
producer/consumer workload.

Unlike the symmetric workload scenario, thread-caching
allocators perform quite badly in this benchmark. The con-
sumer threads’ caches rapidly become full and their contents
must be returned to their original heaps. Conversely, the
caches of the producer threads are depleted, and must be
filled from global heaps. Synchronization must occur be-
tween threads whenever objects are returned to, or fetched,
from the shared heaps. Given the relative complexity of the
heap data structures, this synchronization is usually expen-
sive, using either locks or compare-and-swap loops. Tcmalloc
performs particularly poorly in this scenario, whereas it ex-
celled in the symmetric workload case.

This is one of the use cases for which snmalloc was de-
signed to excel. Via message passing, consumer threads can
cheaply return deallocated objects to their original thread.
The synchronization required is limited to a single atomic
exchange per batch of deallocated objects.

Figure 6 on the following page shows the results of run-
ning this benchmark for different sized allocations. The x
axis is the size of the objects in bytes, they axis is the number
of allocations per second. snmalloc achieves surprisingly
good performance on extremely small objects, but through-
put quickly drops as the size increases, until around 256
bytes, where it becomes reasonably stable.

Space Overheads Figure 7a on the next page shows the
maximum memory allocated during the producer/consumer
benchmark, for each allocator. We modified the benchmark
so that the producers touched all of the memory, guarantee-
ing that physical pages were allocated by the OS. A perfect
allocator would use precisely as much memory as the appli-
cation requested. This is somewhat complicated for a multi-
threaded workload because the throughput of the allocator
can significantly impact the total number of live objects. In
this producer/consumer benchmark, allocators that can free
memory faster than they can allocate memory will have low

130

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

snmalloc
snmalloc-1mib

glibc
hoard

jemalloc
lockfree

lockless
rpmalloc

scalloc
supermalloc

tbbmalloc
tcmalloc

16B 32B 64B 128B 256B 512B 1KiB
Object size

0M

100M

200M

300M

400M

500M

600M

A
llo

ca
tio

ns
pe

rs
ec

on
d

(a) Object sizes ranging from 16B to 1KiB.

1KiB 2KiB 4KiB 8KiB 16KiB 32KiB
Object size

0M

50M

100M

150M

200M

250M

A
llo

ca
tio

ns
pe

rs
ec

on
d

(b) Object sizes ranging from 1KiB to 32KiB.

Figure 6. Allocation throughput of different allocators on a producer/consumer workload, for
various object sizes. For readability, the two plots use different y-axis scales.

16B 32B 64B 128B 256B 512B 1KiB 2KiB 4KiB
Object size

32MiB

64MiB

128MiB

256MiB

512MiB

1GiB

2GiB

M
ax

im
um

RS
S

(a) Absolute maximum resident set size.

16B 32B 64B 128B 256B 512B 1KiB 2KiB 4KiB
Object size

64B

256B

1KiB

4KiB

16KiB
N

or
m

al
iz

ed
m

ax
im

um
RS

S

(b)Maximum resident set size, normalized by maximum
queue length.

Figure 7. Maximum resident set size when running the producer/consumer benchmark with 64
worker threads

peak memory usage, whereas implementations that allocate
faster than they deallocate will see high overhead.

Total overhead depends on two additional factors. First,
the meta-data overhead for the allocator, which is indepen-
dent of concurrency and depends on the amount of extra
information that the allocator stores per object. Second, an al-
locator that performs thread-caching will artificially prolong
object lifetimes by maintaining a small list of allocations that
are “free” but not globally available for reuse. snmalloc’s
message queues keep objects live until they are returned to
their owning thread.

To discover how the allocation rate affects total mem-
ory usage, we instrumented the benchmark to measure the
peak size of the queue that connects producer to consumers

threads. Figure 7b shows the result of normalizing peak mem-
ory usage against peak queue length. snmalloc has similar
overheads to Lockless and SuperMalloc.

Warmup Time While evaluating performance, we noticed
SuperMalloc performed significantly better when running
benchmarks for longer periods of time. It would have been
too time consuming to run every benchmark long enough for
all allocators to warm up; we have instead used a 20 second
run-time for all results of the producer/consumer benchmark
presented here.

Nevertheless, to ensure our results are not unfair because
of too short run-times, we ran the producer/consumer bench-
mark over increasing durations, the results of which are pre-
sented in Figure 8 on the next page. These results use the
same configuration as in Figure 5 on the preceding page,
using 64 workers, which is the machine’s capacity.

131

snmalloc: A Message Passing Allocator ISMM ’19, June 23, 2019, Phoenix, AZ, USA

0 50 100 150 200 250 300 350
Benchmark duration (seconds)

0M

50M

100M

150M

200M

A
llo

ca
tio

ns
pe

rs
ec

on
d

snmalloc
snmalloc-1mib
glibc

hoard
jemalloc
lockfree

lockless
rpmalloc
scalloc

supermalloc
tbbmalloc
tcmalloc

Figure 8. Allocation throughput of different alloca-
tors on a producer/consumer workload, for increasing
benchmark durations

16B 32B 64B 128
B

256
B

512
B

1K
iB

2K
iB

4K
iB

8K
iB

16K
iB

32K
iB

Object size

0M

100M

200M

300M

400M

500M

A
llo

ca
tio

ns
pe

rs
ec

on
d

No outgoing bu�er
1KiB outgoing bu�er
8KiB outgoing bu�er

256KiB outgoing bu�er
1MiB outgoing bu�er

Figure 9. Allocation throughput of snmalloc, using
different outgoing buffer capacities.

While glibc’s allocator and rpmalloc require a bit of time to
warm up, they are at their peak performance by 20 seconds.
SuperMalloc on the other hand requires much longer, over
100 seconds, to reach peak throughput. Even then however,
it performs worse than snmalloc.

We believe the long warm-up time is caused by SuperMal-
loc’s hierarchical structure. It employs multiple levels of
caching, per-thread, per-CPU and a global cache, with in-
creasing amounts of synchronization to access each level.
Objects deallocated by consumer threads travel through each
object cache level before they reach producer threads. Just
after program startup, all caches are empty and producers
cannot reuse the deallocated objects. After warm-up, every
level of the object cache is full, improving performance.

3.2 Batched Message Passing
Batching of remote deallocations, as described in Section 2.2
on page 2, is a key element of snmalloc’s design. It signifi-
cantly reduces the number of atomic exchanges necessary to
send messages, at the cost of an increase in memory usage,

16B 32B 64B 128B 256B 512B 1KiB 2KiB 4KiB
Object size

128B

512B

2KiB

8KiB

N
or

m
al

iz
ed

m
ax

im
um

RS
S

No outgoing bu�er
1KiB outgoing bu�er
8KiB outgoing bu�er

256KiB outgoing bu�er
1MiB outgoing bu�er

Figure 10. Normalized maximum resident set size
when using snmalloc with different outgoing buffer
capacities.

caused by the increase in the duration between the call to
free and the actual deallocation of the object.
snmalloc uses a configurable threshold to determine when

pending outgoing deallocation requests should be sent. Fig-
ure 9 shows the throughput of snmalloc built with different
threshold values. It also shows the throughput with batching
entirely disabled; this causes every call to free with a remote
object to perform an atomic exchange.

Unsurprisingly, disabling batching has a large negative
impact on performance. Even a small outgoing buffer size,
1KiB per allocator, is sufficient to improve performance. It
becomes ineffective again when a single object is larger than
the threshold. We have found 1MiB to give the best results.
Larger sizes provide very little to no improvement; message
passing is not the main bottleneck beyond that point.

Because the reclamation of deallocated objects is delayed,
the improved performance brought by batching comes at
the cost of higher memory consumption. Figure 10 shows
the normalized memory consumption, as described previ-
ously, when using snmalloc with various outgoing buffer
capacities.

3.3 Real Applications
Micro-benchmarks are a useful tool to discover and demon-
strate the strengths and weaknesses of snmalloc, but are
not the most important measure. The most critical test of
snmalloc is its performance in real-world systems and the
effort required to modify them to use snmalloc. We are able
to provide only circumstantial evidence of developers using
snmalloc; however, we modified two real world applications
and compared their performance before and after.

FaRM is a main memory distributed computing platform [6,
7, 20], deployed by Microsoft as part of the Bing search en-
gine [19]. We modified the FaRM source code to be able to
run with 3 different allocation strategies: using snmalloc,
using Rockall, the internal sizeclass based allocator built

132

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

1 2 4 8 16 30 60
Concurrency

0

10

20

Sp
ee

du
p

re
la

tiv
e

to
Ro

ck
al

l snmalloc
Pooling
Rockall

Figure 11. Relative performance increase in FaRM using
snmalloc and the pooling allocator, compared to Rockall

into FaRM, and finally employing memory pooling for all
memory allocations on the critical path. The pooling ver-
sion avoids memory allocation on the critical path by using
memory pools sized based on the application’s needs.

To benchmark the different allocation strategies we used
FaRM’s implementation of the Yahoo! Cloud Serving Bench-
mark [5]. This benchmark was designed to represent com-
mon usage patterns of key-value stores employed by online
services. We used a 50% mix of key-value reads and updates
to the key-value store. The store had 16 byte keys and 1024
byte values, and is implemented as a B-tree stored in 3 way
replicated FaRM memory on a cluster of 5 machines.

Figure 11 shows a comparison of the performance using
snmalloc versus using Rockall or memory pooling. We ob-
serve a performance increase of 3.5–22% when comparing
snmalloc to the base allocator in FaRM and a slowdown of
1–2.5% when compared to pooling. The pooling implementa-
tion is carefully tuned to the workload, whereas snmalloc
is a general-purpose allocator. For an application such as
FaRM, deployed at scale in a cloud environment, creating
hand optimized memory pools to gain a 5–23% performance
improvement over existing general purpose allocators can be
worthwhile, even though the implementation effort is signifi-
cant, that is not the case for many programs. Using snmalloc
versus custom pools has a small performance overhead of
1–2.5% in FaRM, with no implementation effort required. We
therefore believe that snmalloc is an attractive alternative
to writing hand optimized memory pools and allocators.

SPECspeed Integer The SPECspeed Integer suite is a col-
lection of benchmarks from the SPEC CPU 2017 benchmark-
ing tool. It compares system performance by measuring the
time taken to run real-world workloads. These benchmarks
are mostly single-threaded and so do not take advantage of
snmalloc’s message passing design.

Figure 12 shows the results of running the suite using the
different memory allocators. The results are shown relative
to snmalloc’s performance, as the range of results varies
wildly between benchmarks. The suite was run on an Ubuntu

18.04 Standard D3_v2 (4 vcpus12, 14 GB memory) Azure vir-
tual machine. As for the micro-benchmarks, we report the
average of 5 runs, and represent the minimum and maximum
values as error bars.

The results show that snmalloc is well suited as a gen-
eral purpose allocator, performing as well or better than the
widely used jemalloc, tcmalloc and glibc’s allocator on all
benchmarks. Other results are within error margin, with the
exception of SuperMalloc and lockfree which perform better
than snmalloc on some of the benchmarks.

We have also run the SPECspeed suite with its test data set,
which runs the benchmarks with different, smaller inputs.
The results of this suite are shown in Figure 13. While this
data set should not be used to report official SPEC results, it
provides an interesting perspective on the performance of al-
locators on shorter workloads. The results coincide with our
earlier results on warm-up time in Section 3.1 on page 8, and
suggest that snmalloc will have significantly better perfor-
mance than many other allocators for short-lived command-
line applications and remain competitive for long-running
workloads.

The SPECspeed Integer suite includes 5 more benchmarks
not represented here. They focus heavily on computational
tasks, such as video (625.x264_s) or data (657.xz_s) com-
pression. These carefully avoid performing a large number
of allocations in performance-critical sections and, as a re-
sult, we have observed only a small difference between the
various allocators.

Usability of a new memory allocator is notoriously diffi-
cult to measure. To obtain an estimate, we investigated the
difficulty of replacing different codebases’ memory alloca-
tors with snmalloc: First, we replaced the default memory
allocator with snmalloc in FaRM. No changes were required
in snmalloc but 23 new lines of C++ were needed in FaRM.
This replacement involved only a few hours of work by a
person unfamiliar with the FaRM codebase.

Next, we modified the FreeBSD [17] C standard library
(libc) from the 12.0 release to use snmalloc, replacing jemal-
loc as the operating system’s default malloc implementation.
This replacement did not involve any change to C/C++ code,
and required the addition of only 24 lines to a Makefile. Fi-
nally, a build-time option to switch between jemalloc and
snmalloc required the addition of only 6 lines to a makefile.

The above observations indicate that replacing alloca-
tors by snmalloc in existing projects, as well as the use
of snmalloc in new projects, incurs very low overhead in
terms of developer time.

The replacement of jemalloc with snmalloc also gave us
some information as to relative binary sizes in similar condi-
tions. Our baseline FreeBSD libc, using jemalloc, is 2,052,560
bytes, whereas the version using snmalloc is only 1,701,112
bytes. The snmalloc.o file that is linked into libc is 418,576
12Intel Xeon CPU E5-2673

133

snmalloc: A Message Passing Allocator ISMM ’19, June 23, 2019, Phoenix, AZ, USA

600_perlbench_s 602_gcc_s 605_mcf_s 620_omnetpp_s 623_xalancbmk_s

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc
-20

+0

+20

+40

+60

+80

+100

Ti
m

e
re

la
tiv

e
to

sn
m

al
lo

c(
%) snmalloc

snmalloc-1mib

glibc

hoard

jemalloc

lockfree

lockless

rpmalloc

scalloc

supermalloc

tbbmalloc

tcmalloc

Figure 12. Performance of different allocators on the SPECspeed Integer suite, using the ref data set.

600_perlbench_s 602_gcc_s 605_mcf_s 620_omnetpp_s 623_xalancbmk_s

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

snmall
oc

snmall
oc-

1m
ib

gli
bc
hoar

d

jem
all

oc

loc
kfr

ee

loc
kle

ss

rpm
all

oc
sca

llo
c

super
mall

oc

tbb
mall

oc

tcm
all

oc

+0

+20

+40

+60

Ti
m

e
re

la
tiv

e
to

sn
m

al
lo

c(
%) snmalloc

snmalloc-1mib

glibc

hoard

jemalloc

lockfree

lockless

rpmalloc

scalloc

supermalloc

tbbmalloc

tcmalloc

Figure 13. Performance of different allocators on the SPECspeed Integer suite, using the test data set.

bytes, so snmalloc accounts for approximately 24.6% of the
total binary size. In contrast, jemalloc contributes 37.5% to
the total size of a mature POSIX and C11 standard library
implementation.

4 Related Work
snmalloc differentiates itself from existing allocators by its
efficient message dispatching scheme and compact slab meta-
data. However many of its other design points draw inspira-
tion from previous work. In this section we review some of
these works, and compare them with snmalloc.

Slabs of Uniformly Sized Objects Many existing alloca-
tors use slabs composed of a single size of object, albeit
with different terminology (eg. runs, spans, superblocks or
chunks). Whereas snmalloc uses two different slab size, for
small and medium objects, Hoard, SuperMalloc, rpmalloc
and tbbmalloc all use a unique slab size.

scalloc reserves the same amount of address space for each
slab, in the form of virtual spans, but only uses part of this
space, the real span, whose size depends on the size-class of
the contained objects. This allows an empty virtual span to
be reused for a different size-class, while keeping the benefit
of specialized slab size.

Owned Heaps rpmalloc, tbbmalloc, lockless and scalloc
have used a similar design as snmalloc, making each thread

own an individual allocator. In order to support remote deal-
locations, released objects are sent to the original allocating
thread, using either a Treiber stack or an MPSC queue similar
to ours.

However, none of the existing allocator batch dealloca-
tion requests the way snmalloc does. tbbmalloc, lockless
and scalloc use per-slab queues rather than per allocator
to distribute the memory traffic on those queues. This in-
creases the amount of per-slab meta-data required by not
just one pointer, but by an entire cache-line in order to avoid
false-sharing.

Shared Heaps An alternative to owned heaps is to have
threads share access to the heaps. SuperMalloc and tcmalloc
use a single global one, whereas Hoard, jemalloc and glibc’s
allocator use multiple ones, proportionally to the number of
available core. Threads choose a heap to allocate from either
by hashing their thread identifier, or through round-robin
assignment.

Accessing the heaps must be synchronized to protect
against concurrent access, usually through mutexes or spin-
locks. Using multiple heaps helps reduce contention, but re-
mote deallocations will still cause multiple threads to require
access to one heap. Allocators with shared heaps therefore
use per-thread object caches, in the shape of size-specific
free lists. These caches are unsynchronized and very fast to
access. Deallocated are placed in the caches for later reuse
instead of being returned to their original heap.

134

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Liétar et al.

In addition to the per-thread cache, SuperMalloc uses both
per-CPU caches and a global cache. Because only one thread
can access the per-CPU cache at a time, the access is very
likely to be uncontended. Contention at this level of cache
can only happpen if the thread is preempted in the middle of
an allocation, or if the thread was migrated from one CPU
to another, between the time it queried the current CPU’s
identifier and the time it accesses the cache.

Free Space Tracking Many allocators use a combination
of free list and bump allocation to maintain the set of unal-
located objects, similar to snmalloc’s small slabs.

SuperMalloc, rpmalloc, tbbmalloc, scalloc, Hoard use sep-
arate pointers for the head of the list and the start of the
bump allocation area. lockless appears to use a similar data
structure as snmalloc, where the terminator of the free list
acts as the bump pointer. It’s per-slab meta-data is not as
compact as snmalloc’s however, as it uses absolute pointers
rather than smaller slab-relative ones, and the doubly linked
list node, used to link slabs together, is stored in the slab’s
meta-data rather than in a free object.

5 Conclusion
We have presented snmalloc, a new allocator in the alloca-
tor/deallocator design space. It is based on a novel message
passing scheme which returns deallocated objects to the own-
ing allocator in batches. To deal with the dynamic nature of
the number of allocators, we developed a novel dispatching
scheme combining ideas from hashing and temporal radix
trees. As customary in allocation/deallocation work, we use
slabs to store objects of the same size; we use meta-data and
a novel combination of free-lists and bump allocation to keep
track of available space.

Evaluations results so far are very encouraging. Compar-
ing snmalloc with most current allocators tends to show
that snmalloc’s performance is comparable in symmetric
workloads and has significant advantages in producer/con-
sumer ones. The most important criterion though, is per-
formance when incorporated into real software. There, the
results tend to show that snmalloc’s performance is supe-
rior. Incorporating snmalloc into existing applications was
easy, opening the door to wider adoption. However, our ex-
perience is limited, as so far we have only experimented with
FaRM and SPEC CPU2017. We plan further evaluations and
improvements.

snmalloc is available at https://github.com/Microsoft/
snmalloc.

References
[1] Martin Aigner, Christoph M. Kirsch, Michael Lippautz, and Ana

Sokolova. 2015. Fast, Multicore-Scalable, Low-Fragmentation Memory

Allocation through Large Virtual Memory and Global Data Structures.
CoRR abs/1503.09006 (2015). arXiv:1503.09006 http://arxiv.org/abs/
1503.09006

[2] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.
Wilson. 2000. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. SIGOPS Oper. Syst. Rev. 34, 5 (Nov. 2000), 117–128. https:
//doi.org/10.1145/384264.379232

[3] Sylvan Clebsch. 2018. Pony: co-designing a type system and a run-
time. https://spiral.imperial.ac.uk/handle/10044/1/65656 PhD thesis,
Imperial College London.

[4] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny capabilities for safe, fast actors. In Proceedings
of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. ACM, 1–12.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[6] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast remote memory. In 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
14). 401–414.

[7] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP ’15).

[8] Jason Evans. 2006. A Scalable Concurrent malloc(3) Implementation
for FreeBSD. In BSDCan.

[9] Jason Evans. 2019. jemalloc memory allocaror. http://jemalloc.net/
[10] Sanjay Ghemawat and Paul Menage. 2018. TCMalloc: Thread-Caching

Malloc. http://goog-perftools.sourceforge.net/doc/tcmalloc.html
[11] Wolfram Gloger. 2006. Wolfram Gloger’s malloc homepage. http:

//www.malloc.de/en/
[12] Maurice P Herlihy and Jeannette M Wing. 1987. Axioms for concurrent

objects. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 13–26.

[13] Lockless Inc. 2012. Optimization Tricks used by the Lockless Memory
Allocator. https://locklessinc.com/articles/allocator_tricks

[14] Jansson, Mattias. 2019. Rampant Pixels Memory Allocator. https:
//github.com/rampantpixels/rpmalloc

[15] Alexey Kukanov and Michael J Voss. 2007. The Foundations for Scal-
able Multi-core Software in Intel Threading Building Blocks. Intel
Technology Journal 11, 4 (2007).

[16] Bradley C Kuszmaul. 2015. SuperMalloc: A Super Fast Mulithreaded
Malloc for 64-bit Machines. In ISMM.

[17] Marshall Kirk McKusick, George Neville-Neil, and Robert N.M. Watson.
2014. The Design and Implementation of the FreeBSD Operating System
(2nd ed.). Addison-Wesley Professional.

[18] Maged M Michael. 2004. Scalable lock-free dynamic memory allocation.
In ACM Sigplan Notices, Vol. 39. ACM, 35–46.

[19] Alex Shamis and Dushyanth Narayanan. [n. d.]. Tech Showcase: FaRM
- Microsoft Research. https://www.microsoft.com/en-us/research/
video/farm/

[20] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chat-
zopoulos, Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel
Castro. 2019. Fast General Distributed Transactions with Opacity.
ACM Association for Computing Machinery.

[21] R. K. Treiber. 1986. Systems programming: Coping with parallelism.
International Business Machines Incorporated, Thomas J. Watson
Research Center.

135

https://github.com/Microsoft/snmalloc
https://github.com/Microsoft/snmalloc
http://arxiv.org/abs/1503.09006
http://arxiv.org/abs/1503.09006
http://arxiv.org/abs/1503.09006
https://doi.org/10.1145/384264.379232
https://doi.org/10.1145/384264.379232
https://spiral.imperial.ac.uk/handle/10044/1/65656
http://jemalloc.net/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.malloc.de/en/
http://www.malloc.de/en/
https://locklessinc.com/articles/allocator_tricks
https://github.com/rampantpixels/rpmalloc
https://github.com/rampantpixels/rpmalloc
https://www.microsoft.com/en-us/research/video/farm/
https://www.microsoft.com/en-us/research/video/farm/

	Abstract
	1 Introduction
	2 Implementation
	2.1 Large, Medium, and Small Objects, and Allocators
	2.2 Message Passing Allocator
	2.3 Chunks, Slabs, and Allocators
	2.4 Page Map
	2.5 Large Objects
	2.6 Size Class Calculation
	2.7 Medium Slabs
	2.8 Superslabs
	2.9 Portability

	3 Evaluation
	3.1 Micro-benchmarks
	3.2 Batched Message Passing
	3.3 Real Applications

	4 Related Work
	5 Conclusion
	References

