
Leveraging Demonstrations for Reinforcement
Recommendation Reasoning over Knowledge Graphs

Kangzhi Zhao
Tsinghua University

zkz15@mails.tsinghua.edu.cn

Xiting Wang∗
Microsoft Research Asia
xitwan@microsoft.com

Yuren Zhang
University of Science and

Technology of China
yr160698@mail.ustc.edu.cn

Li Zhao
Microsoft Research Asia
lizo@microsoft.com

Zheng Liu
Microsoft Research Asia

Zheng.Liu@microsoft.com

Chunxiao Xing
Tsinghua University

xingcx@tsinghua.edu.cn

Xing Xie
Microsoft Research Asia
xing.xie@microsoft.com

ABSTRACT
Knowledge graphs have been widely adopted to improve recom-
mendation accuracy.Themulti-hop user-item connections on knowl-
edge graphs also endow reasoning about why an item is recom-
mended. However, reasoning on paths is a complex combinato-
rial optimization problem. Traditional recommendation methods
usually adopt brute-force methods to find feasible paths, which re-
sults in issues related to convergence and explainability. In this
paper, we address these issues by better supervising the path find-
ing process. The key idea is to extract imperfect path demonstra-
tions with minimum labeling efforts and effectively leverage these
demonstrations to guide path finding. In particular, we design a
demonstration-based knowledge graph reasoning framework for
explainable recommendation.We also propose anADversarial Actor-
Critic (ADAC) model for the demonstration-guided path finding.
Experiments on three real-world benchmarks show that ourmethod
convergesmore quickly than the state-of-the-art baseline and achieves
better recommendation accuracy and explainability.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Reinforcement learning.

KEYWORDS
Explainable Recommendation; Reinforcement Learning; Knowledge
Graph Reasoning
ACM Reference Format:
Kangzhi Zhao, Xiting Wang, Yuren Zhang, Li Zhao, Zheng Liu, Chunxiao
Xing, and Xing Xie. 2020. Leveraging Demonstrations for Reinforcement
Recommendation Reasoning over Knowledge Graphs. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3397271.3401171
∗Xiting Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07…$15.00
https://doi.org/10.1145/3397271.3401171

1 INTRODUCTION
Knowledge graphs (KGs), which organize auxiliary facts about items
in heterogeneous graphs, have been shown effective in improv-
ing recommendation performance.On the one hand, the connec-
tivity between users and items in a KG helps better model un-
derlying user-item relations and improve recommendation accu-
racy. On the other hand, the multi-hop connections between users
and items endow reasoning about recommendations, which en-
hances explainability. For example, the reason for recommend-
ing Acalme Sneaker to user Bob can be revealed by the connection

Bob
Purchase−−−−−−−→ Revolution 5 Running Shoe

Produced_By
−−−−−−−−−−→ Nike

Produce−−−−−−→
Acalme Sneaker.Compared with natural language explanations [11,
14, 24, 52], knowledge graph reasoning seldom makes false state-
ments about items and is able to faithfully reflect the working
mechanism of the recommendation model, thus increasing user
trust and satisfaction [38].

While knowledge graph reasoning is promising, challenges still
exist. Reasoning on paths is a complex combinatorial optimization
problem, inwhich the set of feasible solutions consists ofmulti-hop
paths that connect users with items. Compared with traditional
recommendation methods that focus on scoring a given candidate
according to user preferences (scoring), KG reasoning addition-
ally requires identifying feasible candidate paths by exploring the
knowledge graph (path finding). Researchers have designed so-
phisticated models for scoring candidate paths [35, 43], but the im-
portance of efficient and effective path finding is often overlooked.
The time-consuming path finding task is poorly supervised and is
usually solved by using brute-force methods, which results in is-
sues with respect to convergence and explainability:

Convergence. It is difficult for existing methods to quickly con-
verge to a satisfying solution because they lack a mechanism to ef-
fectively guide and supervise path finding. For example, exhaustive
search enumerates all possible candidate paths in the KG [35, 43],
which is not applicable to large-scale KGs. REINFORCE with base-
line starts with a random path finding policy and gradually im-
proves it by sampling paths to obtain sparse reward signals [46].
This trial-and-error method suffers from poor convergence prop-
erties due to the sparsity of the reward signals and the large action
space in KGs [47].

Explainability. Since existing methods poorly supervise path
finding, there is no guarantee that the discovered paths are highly
interpretable.While existing KG reasoning methods optimize only

https://doi.org/10.1145/3397271.3401171
https://doi.org/10.1145/3397271.3401171

recommendation accuracy, they do not guarantee good interpretabil-
ity. While all paths that connect a same user-item pair result in
the same recommendation accuracy, some paths (reasons) are less
convincing. To achieve good explainability, it is important that the
user is interested in the entities (e.g., Nike) and the relation types
(e.g,. Produce) involved in the paths. Reasoning with persuasive
types of paths is also important for improving explainability. For

example, a path like User A
View−−−−→ Item A

Viewed_By
−−−−−−−−→ User B

View−−−−→
Item Bmay be less convincing compared with User A

Purchase−−−−−−−→ Item

A
Purchased_By
−−−−−−−−−−−→ User B

Purchase−−−−−−−→ Item B.
The goal of this paper is to study how fast convergence and

better explainability can be achieved by better supervising path
finding. The major challenge is that we do not have ground-truth
paths to enable supervised path finding. While weak supervision
can be achieved by using (imperfect) demonstrations of reason-
ing paths, it is unclear how such demonstrations can be easily ob-
tained. Manually labeling all desirable meta-paths [20] or associa-
tion rules [7, 27] is a heavy and tedious process, and these meta-
paths and rules fail to uncover unseen and personalized connectiv-
ity patterns. Even if some demonstrations may be extracted, they
are likely to be sparse and noisy, i.e., different from the optimal
ground-truth paths. How to leverage these imperfect demonstra-
tions effectively for improving performance remains unsolved.

In this paper, we address the aforementioned issues and show
how imperfect path demonstrations can be extracted and lever-
aged for effective knowledge graph reasoning. To this end, we de-
sign a demonstration-based knowledge graph reasoning framework
for explainable recommendation. In our framework, ameta-heuristic-
based demonstration extractor first derives a set of path demonstra-
tions with minimum labeling efforts. The extraction is guided by
desirable properties for demonstrations, which are defined based
on meta-heuristics. By effectively leveraging the imperfect demon-
strations, anADversarialActor-Critic (ADAC) path findingmodel
then learns to identify interpretable reasoning paths that lead to ac-
curate recommendations with fast convergence. The ADAC model
optimizes the path finding policy by jointly and effectively mod-
eling both demonstrations and reward signals obtained based on
historical user preferences. We show how demonstrations can be
modeled by using adversarial imitation learning, how the rewards
can be accurately estimated by using a critic, and how a tight col-
laboration between these two parts can be achieved by modeling
them in a unified framework.

Our contributions can be summarized as follows:
• We propose to guide knowledge graph reasoning with demon-

strations and show how these demonstrations can be extracted
withminimum labeling efforts by using ourmeta-heuristic-based
extraction method.

• Wepropose anAdversarial Actor-Criticmodel for demonstration-
guided path finding, which can identify interpretable reason-
ing paths that lead to accurate recommendations by effectively
leveraging imperfection demonstrations.

• Experiments on real-world benchmarks show that our method
convergesmore quickly than the state-of-the-art baseline, achieves
an average recommendation accuracy gain of 6.8%, and increases
explainability by 9.3%.

2 PROBLEM FORMULATION
Reasoning is the task of learning explicit inference formulas [47].
In this paper, we consider the formulas as multi-hop paths on the
KG. Accordingly, the KG reasoning problem for explainable recom-
mendation can be formulated as follows:
Input. The model input consists of the user set U , the item set V ,
the observed interactions Vu , and the knowledge graph G:
• Each user is denoted by its user ID u ∈ U .
• Each item is represented by the item ID v ∈ V .
• The observed interaction set Vu for each user u contains all

the items the user interacted with in the training set.
• The knowledge graph is denoted by G = {(e, r , e ′) | e, e ′ ∈

E, r ∈ R}, where E is the entity set and R is the relation set.
Each triplet (e, r , e ′) indicates that the head entity e (e.g., Nike)
and the tail entity e ′ (e.g., Acalme Sneaker) are connected by the
relation r (e.g., Produce). We include observed user-item inter-
actions in the KG to facilitate reasoning by following previous
works [43, 46]. Accordingly, we haveU ,V ⊆ E and (u, r∗,vu) ∈
G, ∀ vu ∈ Vu , where r∗ ∈ R denotes the observed interactions.

Output. Given a user u, our model outputs:
• The recommended item set V̂u ⊆ V .
• A reasoning path τu ,v̂u for each recommended item v̂u ∈ V̂u .
τu ,v̂u is a multi-hop path on the KG G and it connects user u
with v̂u : τu ,v̂u = [u r1−−→ e1

r2−−→ ... rk−1−−−−→ ek−1
rk−−→ v̂u].

3 METHOD
Our demonstration-based knowledge graph reasoning method en-
ables weak supervision by providing imperfect labels for reason-
ing paths.In particular, our method consists of two parts:a meta-
heuristic-based demonstration extraction and a demonstration-guided
path findingwith the proposedAdversarial Actor-Criticmodel.The
following sections of the paper delve deeper into both parts.

3.1 Demonstration Extraction
Demonstration extraction obtains a set of expert demonstrations

ΓE = {τ Eu ,vu |u ∈ U ,vu ∈ Vu }, where τ Eu ,vu = [u
r E1−−→ eE1

r E2−−→

...
r Ek−−→ vu] is a multi-hop path on the knowledge graph that con-

nects user u with item vu . To derive imperfect demonstrations
that are useful for knowledge graph reasoning, we propose a meta-
heuristic-based extraction method.

Meta-heuristics are “concepts that can be used to define heuris-
tic methods” and are frequently used to solve combinatorial opti-
mization problems [4]. Compared with methods that enable weak
supervision by using expert labels or crowd sourcing [15], meta-
heuristics may significantly reduce the number of required manual
labels. In this paper, we define meta-heuristics by specifying desir-
able properties for path demonstrations.These desirable properties
are then used to define heuristics for demonstration extraction. In
particular, the following three properties are considered.
• P1: Accessibility. The demonstrations can be obtained with min-

imum labeling efforts.
• P2: Explainability. The demonstrations are more interpretable

than randomly sampled paths.

Knowledge graph

State 𝑠!

(𝑢, 𝑒!"# , … , 𝑟!"$, 𝑒!"$, 𝑟! , 𝑒!)

Actor

Expert path
demonstrations

Expert path (s!" , 𝑎!")
𝐷!

1

0

𝐷"
0

1

Demonstrations Adversarial Imitation Learning

FC

FC

MDP Environment
State 𝑠!

Action space 𝒜!

Action 𝑎!=(𝑟!#$, 𝑒!#$)

𝑅#,%

TD error

Sample expert path 𝜏&,'%
(

𝑅",%

𝑅!,%

Γ(

𝑢

Expert meta-path 𝑴"

Action meta-path 𝑴

Action path (s! , 𝑎!)

State embedding 𝐬%

Meta-path discriminator

Path discriminator

𝑣&)

𝑟*
𝑒* 𝑒+

𝑟+
𝑟,

Action path 𝜏&,'%&

Action space 𝒜%

Lookup

Reward 𝑅#,%
Critic

FC

FC Lookup

State embedding 𝐬%

Action space 𝒜%

𝜋-(𝑎%, 𝑠%, 𝒜%) 𝑄.(𝑠%, 𝑎%)

Figure 1: Our Adversarial Actor-Critic model for demonstration-guided path finding.

• P3: Accuracy. The demonstrations lead to accurate recommenda-
tions, i.e., they connect users with items they interacted with.
As long as these three properties are satisfied, the extracted

demonstrations are considered useful, even if they are sparse and
noisy (not optimal). Following this logic, we define three heuris-
tics for demonstration extraction and explain why each of them
satisfies these three properties.

Shortest path. Studies suggest that concise explanations help
reduce user cognitive loads and are considered to be more inter-
pretable [18, 23]. Accordingly, we assume that shorter paths be-
tween user-item pairs are more explainable than randomly sam-
pled connections (P2). To ensure accuracy (P3), we only consider
paths that connect a user u with items that s/he interacted with
(Vu) as demonstrations. In particular, given (u, vu), we first elimi-
nate the observed interaction between u and vu from the knowl-
edge graph G. This results in a new KG G′ = G \ {(u, r∗,vu)}
where operator “\” performs a set minus. We then regard G′ as an
unweighted graph and adopt the Dijkstra’s algorithm [12] to auto-
matically generate a shortest path between u and vu (P1), which
can be considered as a demonstration. We then repeat this process
for ∀u ∈ U and ∀vu ∈ Vu to obtain a set of expert demonstrations.

Meta-path. A meta-path is a sequence of relations between en-
tity types [20]. For example, the meta-path for Bob Purchase−−−−−−−→ Revolu-

tion 5 Running Shoe
Produced_By
−−−−−−−−−−→ Nike

Produce−−−−−−→ Acalme Sneaker can

be denoted as User Purchase−−−−−−−→ Item
Produced_By
−−−−−−−−−−→ Brand

Produce−−−−−−→ Item.
In KG reasoning, ameta-path naturally corresponds to ameta-level
explanation strategy. Thus, desirable explanation strategies can be
indicated by providing meta-paths. Our framework improves the
model performance through a very small number (1∼3) ofmanually-
defined meta-paths (P1). These meta-paths are useful as long as
they are considered more interpretable than randomly sampled
meta-paths (P2). Compared with existing meta-path-based meth-
ods [13, 20], our approach requires significantly less labeling effort

because it does not require the pre-defined meta-paths to be com-
plete or optimal. We are able to take such imperfect meta-paths
as inputs because they are used to guide path finding instead of re-
stricting the search space. To generate demonstrations based on the
pre-definedmeta-paths, we simulate constrained randomwalks [26]
on the knowledge graph. In particular, we consider each user u as
a starting point of the random walks and sample only the paths
whose meta-path belongs to the pre-defined set. Among all sam-
pled paths, only those that lead to items the user interacted with
will be kept as expert demonstrations (P3).

Path of interest. In addition to adopting a good meta-level ex-
planation strategy, a highly interpretable reasoning path should
also fit user interests at the entity level, i.e., it contains entities
the users are interested in. In some datasets, obtaining entity-level
user interests is relatively easy. For example, in datasets related to
user reviews, we can automatically judge (P1) if the entities in a
path fit user interests by checking whether these entities are men-
tioned in user reviews. In such a case, we perform random walks
to obtain a sampled set of paths, and keep only the paths in which
a majority of the entities fit user interests (P2). Paths that do not
connect a user with items s/he interacted with will be removed to
ensure accuracy (P3).The remaining paths are considered as expert
demonstrations.

The three heuristics result in three different sets of demonstra-
tions. We compare the heuristics empirically by investigating how
much their demonstrations help improve the final recommenda-
tion accuracy and explainability (Sec. 4.4).

3.2 Adversarial Actor-Critic for Path Finding
Path finding aims to identify a set of recommended items V̂u for
each user u as well as reasoning paths {τu ,v̂u |v̂u ∈ V̂u } for the
recommendations based on demonstrations ΓE . A straightforward
way to learn a path-finding policy from expert demonstrations
is behavior cloning [29], i.e., considering the demonstrations as

ground-truth labels and learning a model that tries to generate
paths identical to the demonstrations.While this supervisedmethod
enables fast convergence, its recommendation accuracy and ex-
plainability are limited since the demonstrations are imperfect.

To solve this issue, we propose to effectively leverage both the
expert demonstrations ΓE and knowledge graph G that contains
the observed user interactions {(u, r∗,vu)}. The major challenge is
how we effectively model the imperfect demonstrations, the ob-
served interactions, and the facts in the KG in a unified frame-
work.To achieve this goal, we design anADversarialActor-Critic
model (ADAC) that integrates actor-critic-based reinforcement
learning with adversarial imitation learning.

Fig. 1 shows an overview of our model. The KG is considered
a part of the Markov Decision Process (MDP) environment [32]. The
actor, which learns a policy-finding policy, interacts with the MDP
environment to obtain its search states on the KG as well as possi-
ble actions.The environment informs the actor whether the current
policy fits user observed interactions through reward Re ,t . To inte-
grate the expert demonstrations, an adversarial imitation learning
component with two discriminators is designed. The discrimina-
tors learn to distinguish the expert paths from the paths generated
by the actor. The actor tries to “fool” the discriminators by imi-
tating the expert demonstrations. The imitation learning compo-
nent rewards the actor if its action paths are similar to the expert
demonstrations at the meta-path level (high reward Rm,t) or the
path level (high reward Rp,t). The three types of rewards, i.e., Re ,t ,
Rm,t , and Rp,t , are jointly modeled by the critic to accurately esti-
mate the value of each action.The learned values allow the actor to
be trained with an unbiased estimate of the reward gradient. Next,
we introduce the major components and describe how they can be
jointly optimized in an end-to-end framework.

3.2.1 MDP Environment. We follow the terminologies commonly
used in reinforcement learning to describe the MDP environment,
which is responsible for informing the actor about its search state
in the KG and possible actions to take. The environment also re-
wards the actor if the current path finding policy fits the observed
user interactions. Formally, the MDP environment can be defined
by a tuple (S,A, δ , ρ), where S denotes the state space, A is the
action space, δ : S×A → S refers to the state transition function,
and ρ : S × A → R is the reward function of the environment.
• State: The initial state s0 ∈ S is represented by the user from
which we start the path finding process: s0 = u. State st ∈ S
denotes the search status of the actor in the KG at each time t .
While embedding the entire KG reasoning history in the state may
lead to better model accuracy, we also need to control the model
size. To balance accuracy and efficiency, we adopt a partially ob-
served state in our environment, which encodes only the start-
ing user entity and a K-step history of entities and relations, i.e.,
st = (u, et−K , ..., rt−1, et−1, rt , et).
• Action: For state st at each time t , the actor outputs an action
at = (rt+1, et+1) ∈ At , where et+1 is the next entity in the path
and rt+1 is the relation that connects et with et+1. The set of possi-
ble actionsAt ∈ A includes all the outgoing neighbors of entity et
on knowledge graph G except for the history entities on the path:
At = {(r , e) | r ∈ R, e ∈ E \ {e0, e1, ..., et−1}, (et , r , e) ∈ G}.

• Transition: We consider the deterministic MDP that the next
state st+1 can be deterministically transitioned to as a result of cur-
rent state st and action at : st+1 = δ (st ,at) = (u, et−K+1, ..., rt , et ,
rt+1, et+1).
• Reward: No intermediate reward is provided during the path
finding process. We consider only the terminal reward, which in-
dicates whether the actor generates a path that ends with the items
that user u interacted with: Re ,T = ρ(sT ,aT) = IVu (eT). Here,
IVu (eT) is an indicator function, i.e., IVu (eT) is 1 when eT ∈ Vu
and is 0 when eT < Vu . This reward measures how much the actor
fits the observed user preferences.

3.2.2 Actor. The actor learns a path finding policy πθ that calcu-
lates the probability distribution of the action at based on the state
st and its possible action space At : p(at |st ,At) = πθ (at , st ,At).
We model the actor network πθ (at , st ,At) with fully connected
layers and the Softmax function:

hθ = ReLU(Wθ ,1st) (1)

p(at |st ,At) = πθ (at , st ,At) =
at · ReLU(Wθ ,2hθ)∑

ai ∈At ai · ReLU(Wθ ,2hθ)
(2)

Here, at ∈ Rda is the embedding of the action at obtained with a
lookup layer, and st ∈ Rds is the embedding of the state st . We cal-
culate the state embedding st by concatenating all the entity and
relation embeddings of st , i.e., st = u ⊕ et−K ⊕ ...et−1 ⊕ rt ⊕ et ,
where ⊕ denotes the concatenation operator and u, rt , et ∈ Rde
are user, relation and entity embeddings learned by using KG em-
bedding techniques [1, 29]. If the length of the path is smaller
than K , we pad st with zeros at the end. Wθ ,1 ∈ Rdh×ds and
Wθ ,2 ∈ Rda×dh are parameters to be learned, and ReLU(·) is the
activation function of the Rectified Linear Unit.

To ensure fast convergence, the actor is initialized by using be-
havior cloning [29], in which the demonstrations are considered as
ground-truth paths to guide the sampling of the actor with Mean
Square Error (MSE) loss. The actor is then trained by using our
ADACmodel, which effectively leverages both the demonstrations
and the observed interactions to better guide path finding.

3.2.3 Adversarial Imitation Learning. To jointly model the expert
demonstrations with the observed interactions, we leverage Gen-
erative Adversarial Imitation Learning [19]. Our adversarial imi-
tation learning component consists of a path discriminator and a
meta-path discriminator. The discriminators collaborate with the
actor in an adversarial manner: they learn to distinguish the expert
paths from the paths generated by the actor, and the actor tries to
“fool” the discriminators and obtains good intrinsic rewards by imi-
tating the demonstrations. In particular, discriminatorsDp andDm
estimate how likely a path is sampled from the demonstrations at
the path level and the meta-path level, respectively.

Path discriminator Dp judges whether the actor can generate
a demonstration-like path segment at each time t . The path seg-
ment can be represented by st and the policy is revealed by at .
Accordingly, the discriminator is modeled based on st and at :

hp = tanh(st ⊕ ap,t) (3)

Dp (st ,at) = σ (βTp tanh(Wphp)) (4)

where ap,t ∈ Rde is the action embedding of at in discriminator
Dp . tanh(·) denotes the hyperbolic tangent function. σ (·) is the
logistic sigmoid function. Wp ∈ Rda×(ds+db), βp ∈ Rda are key
parameters to be learned.

We train the discriminator so that Dp (st ,at) denotes the proba-
bility that (st ,at) comes from a demonstration path.This is achieved
by defining the classification loss Lψ of Dp as

Lψ = −(logDp (sEt ,aEt) + log(1 − Dp (st ,at))) (5)

In this case, ψ represents the parameters of Dp . aEt = (rEt+1, e
E
t+1)

and sEt = (u, eEt−K , ..., r
E
t , e

E
t) are determined by the expert path

τ Eu ,vu = [u
r E1−−→ eE1

r E2−−→ ...
r Ek−−→ vu].The expert path τ Eu ,vu is ran-

domly sampled from the expert demonstrations that start with u.
The path discriminator rewards the actor if the actor generates

(st ,at) pairs that are likely to come from the demonstrations:

Rp,t = log(Dp (st ,at)) − log(1 − Dp (st ,at)) (6)

Meta-path discriminator Dm judges whether the overall ex-
planation strategy adopted by the actor is similar to that of the
demonstrations by comparing their meta-paths.Themeta-path dis-
criminator Dm is similar to the path-discriminator Dp . In many
knowledge graphs, a meta-path can be uniquely defined by using
its relations[20, 46]. Thus, we define the meta-path embedding M
by concatenating the relation embeddings, i.e.,M = r1 ⊕ r2 ⊕ ...rT .
The meta-path discriminator Dm is modeled by

hm = tanh(Wm,1M) (7)

Dm (M) = σ (βTmtanh(Wm,2hm)) (8)
whereWm,1 ∈ Rdh×(Tde),Wm,2 ∈ Rda×dh , βm ∈ Rda are parame-
ters to be learned.

We train the meta-path discriminator so that Dm (M) denotes
the probability that M corresponds to a meta-path of an expert
demonstration. This is achieved by minimizing the following loss:

Lω = −(logDm (ME) + log(1 − Dm (M))) (9)

whereω represents the paramters of Dm andME = rE1 ⊕ rE2 ⊕ ...rET
is the embedding of the expert meta-path.

The reward given by the meta-path discriminator is defined as

Rm,t = log(Dm (M)) − log(1 − Dm (M)) (10)

3.2.4 Critic. The critic aims to effectively model the rewards from
both reinforcement learning (MDP environment) and imitation learn-
ing (discriminators). Since Re ,t and Rm,t are sparse terminal re-
wards that can only be obtained after all actions for finding a path
have been taken, it is important that we accurately estimate the
contribution of each action to the rewards to better guide the actor.
To this end, we adopt a critic network [25] for estimating the value
(contribution) of each action. Compared with alternatives like us-
ing the discounted sum of the rewards to estimate values [45],
critic networks have better convergence properties due to lower
variance [2]. In particular, our critic network Qφ can calculate the
value of each action at given state st :

hφ = ReLU(Wφ,1st) (11)

Qφ (st ,at) = aφ,t · ReLU(Wφ,2hφ) (12)

whereWφ,1 ∈Rdh×ds andWφ,2 ∈Rda×dh are the parameters to be
learned. aφ,t ∈ Rda is the embedding of the action at in the critic.

We adopt the Temporal Difference (TD)method [36] to learn the
critic network. This method first calculates the target qt according
to the Bellman equation [3]

qt = Rt + Ea∼πθQφ (st+1,a) (13)

where Rt is an aggregated reward that motivates the policy to find
paths similar to the demonstrations as well as achieves better rec-
ommendation accuracy:

Rt = αpRp,t + αmRm,t + (1 − αp − αm)Re ,t (14)

where αp ∈ [0, 1] and αm ∈ [0, 1 − αp] are the weights of the
path discriminator and meta-path discriminator rewards respec-
tively. Then the critic is updated by minimizing the TD error

Lφ = (Qφ (st ,at) − qt)2 (15)

Given Qφ (st ,at), the actor can be learned by minimizing the
following loss function:

Lθ = −Ea∼πθQφ (st ,a) (16)

3.2.5 Joint Learning. We can jointly optimize the actor πθ , critic
Qφ , discriminators Dp and Dm by minimizing combined loss:

L = Lθ + Lφ + Lψ + Lω (17)

Since we have ∂L/∂η = ∂Lη/∂η for ∀η ∈ {θ,φ,ψ ,ω}, we can op-
timize the joint loss by minimizing Lθ , Lφ , Lψ , Lω successively
in one iteration. More specifically, during the m-th iteration, the
m-th user is selected as the starting point (initial state s0) for path
finding. We can then sample an action path τu ,v ′

u
from the actor as

well as an expert demonstration τ Eu ,vu from ΓE . Next, Lθ , Lφ , Lψ ,
Lω are minimized successively based on τu ,v ′

u
and τ Eu ,vu . After

|U | iterations, actions about all users are tested and one training
epoch is completed.We then go to the next training epoch until the
model converges or the maximum number of epochs is reached.

4 EXPERIMENT
In this section, we show that our method consistently outperforms
the state-of-the-art baselines in terms of both recommendation ac-
curacy and explainability (Sec. 4.2). Ablation study and parameter
sensitivity analysis are also conducted to demonstrate the effec-
tiveness of our major model components, including the critic and
the discriminators. We also investigate the effects of using differ-
ent demonstrations and present a case study of reasoning paths
generated with our method (Sec. 4.4).

4.1 Experiment Setup
4.1.1 Dataset. Weevaluate ourmodelwith three datasets:Beauty,
Clothing and Cell_Phones. They are from three product cate-
gories of Beauty, Clothing Shoes and Jewelery and Cell Phones and
Accessories from Amazon 5-core1. Each dataset contains reviews,
product metadata and links. The review data consists of user-item
ratings and corresponding review texts. The product metadata in-
cludes the categories and brands. The link data includes the also
viewed/also bought graphs. Following previous studies [1, 46, 51],
1http://jmcauley.ucsd.edu/data/amazon

http://jmcauley.ucsd.edu/data/amazon

we construct the knowledge graph based on the above auxiliary
facts and randomly sample 70% of the interactions of each user as
the training set and the remaining 30% as the test set. The statistics
of the datasets are summarized in Table 1.

Dataset Beauty Clothing Cell_Phones
#Users 22,363 39,387 27,879
#Items 12,101 23,033 10,429

#Interactions 198,502 278,677 194,439
#Relation Types 8 8 8
#Entity Types 6 6 6

#Entities 224,074 425,528 163,249
#Triplets 7,832,720 10,671,090 6,299,494

Table 1: The statistics of our datasets.
4.1.2 EvaluationMetrics. To evaluate the recommendation perfor-
mance of ADAC, we adopt some widely-used metrics, including
Precision (Precision), Recall (Recall), Normalized Discounted Cu-
mulation Gain (NDCG) and Hit Ratio (HR). Higher scores in the
above metrics indicate better recommendation performance. For
each user, we regard all the possible items as candidate items in-
stead of using negative sampling. We evaluate the metrics based
on the top-10 recommended items for each user in the test set.

To evaluate the explainability of the reasoning paths, we design
two criteria by leveraging the ground-truth reviews.The basic idea
is that the ground-truth reviews reveal the reason for the user-
item interaction. Thus, if a reasoning path contains many entities
that are mentioned in the ground-truth review, then it will achieve
good explainability. Specifically, for each positive recommended
item v̂u , we filter a review word if its frequency is more than 5000
or its TF-IDF score is less than 0.1, and the remaining words are
considered as ground-truth words. Then we aggregate the entities
in the path τu ,v̂u and rank them based on their frequencies. We
evaluate the explainability by matching the entities in the reason-
ing paths with the ground truth words. Entities whose types are
Word, Brand, or Category are all mapped to ground-truth words
by using string matching. We evaluate the explainability with the
metrics Precision andRecall based on the top-5 matched entities.

4.1.3 Comparison Methods. We compare our ADAC with the fol-
lowing state-of-the-art recommendation methods.
• BPR [30]: Bayesian Personalized Ranking (BPR) is a pairwise
ranking algorithm to learn the latent representations of users and
items for top-N recommendation.
• RippleNet [39]: RippleNet is a KG-based recommendationmodel
which incorporates deep neural network to propagate users’ poten-
tial preferences on the knowledge graph.
• DKN [40]: Deep Knowledge-aware Network (DKN) is a state-of-
the-art KG-based news recommendation framework to fuse semantic-
level and knowledge-level representation.We apply the knowledge-
level part in our product recommendation problem.
• RuleRec [27]: RuleRec is another state-of-the-art algorithm that
incorporates knowledge graphs in recommendation. It constructs a
rule-guided model to recommend items based on the induced rules.
• PGPR [46]: Policy-Guided Path Reasoning (PGPR) is the state-
of-the-art path reasoning algorithm of the knowledge graph-based
recommendation. It adopts a policy-based method to search and
recommend items on the knowledge graph.

• ActorCritic [25]: Actor-Critic takes advantage of both value-
based and policy-basedmethods.We implement it by following the
approach in [25] and adopt the behavior cloning initialization used
in our model to guide the path reasoning on the knowledge graph.
• ADAC-C: ADAC-C removes the critic from ADAC. The aggre-
gated reward is learned through the policy-gradient method as in
the PGPR approach.
• ADAC-P: ADAC-P removes the path discriminator from ADAC.
• ADAC-M: ADAC-P removes the meta-path discriminator.

In order to do a fair comparison with the baselines, we adopt the
shortest paths as expert demonstrations. However, we also show
that adopting dataset-specific heuristic paths further boosts the
performance of our model. We compare different demonstration
paths in terms of accuracy and explainability in Sec. 4.4.

4.1.4 Implementation and Training. We mainly refer to Xian et
al. [46] to implement our MDP environment. We set the history
length K = 1 for the state st and the maximum length T = 3 for
the reasoning path τ .We prune the action spacewith themaximum
size 250 and train the KG with the embedding size de = 100. Af-
ter we train the policy πθ , we adopt the probabilistic beam search
to reason paths on knowledge graphs. We add a special relation
∅ which represents the “no operation” action and allows the ac-
tor to stay at an entity at any time when searching forward on
the knowledge graphs. We set the dimension of action embeddings
da = 256 and the weight matrices of neural networks dh = 512
and ds = 400. We set the rewards weights αp = 0.006 for Beauty,
αp = 0.004 for Clothing and Cell_Phones, αm = 0.01 for all the
datasets. We also assign Re ,T = 0 for the path which contains
only the user and the items s/he interacted with to avoid overfit-
ting. In the training procedure, the action dropout rate is 0.5. We
initialize all the parameters of our neural networks with Xavier ini-
tialization [17] and leverage the Adam optimization [22] with the
learning rate of 0.0001.

4.2 Overall Performance
Recommendation accuracy. We evaluate the recommendation
performance of our model in Table 2. The experimental results
show that ADACoutperforms the baselines on all the three datasets.
For example, on Beauty, ADAC achieves a precision rate of 1.991%
while BPR reaches 1.066%, which means our path reasoning al-
gorithm ADAC can effectively integrate the auxiliary information
from the knowledge graph. Compared with the 1.79% precision
rate achieved by the most competitive baseline, ADAC has proved
to do path reasoning in a more efficient way. Previous models like
PGPR and ActorCritic suffer from an inefficient search strategy.
The sparse reward signals generate too much noise in their reason-
ing paths, which makes them hard to exploit for the informative
multi-hop relations on the knowledge graph. ADAC uses the short-
est paths as demonstrations to search paths towards positive items,
which makes it easier for the policy to exploit the historical user
preferences. Note that we consider all the items as candidates by
following the previous study [46]. Thus, the accuracy scores are
smaller compared with evaluations that use negative sampling.

Explainability. Table 3 compares the explainability of different
path reasoning methods in terms of precision and recall. We focus

Dataset Beauty Clothing Cell_Phones
Metrics Precision Recall NDCG HR Precision Recall NDCG HR Precision Recall NDCG HR
BPR 1.066 4.927 2.704 9.113 0.196 1.086 0.598 1.801 0.624 3.363 1.892 5.323

Ripple Net 1.133 5.251 2.458 9.224 0.201 1.112 0.627 1.885 0.688 3.858 1.935 5.727
DKN 1.03 2.489 1.851 8.6 0.106 0.727 0.279 1.012 0.465 3.187 1.603 4.484

RuleRec 1.152 5.213 2.872 9.751 0.21 1.15 0.639 1.912 0.674 3.565 1.966 5.669
PGPR 1.736 8.448 5.511 14.642 0.723 4.827 2.871 7.023 1.274 8.416 5.042 11.904

ActorCritic 1.79 8.764 5.734 15.003 0.72 4.776 2.803 6.965 1.24 8.218 4.888 11.544
ADAC-C 1.924 9.294 6.034 15.522 0.759 4.992 2.957 7.296 1.331 8.836 5.194 12.205
ADAC-P 1.901 9.076 5.854 15.406 0.754 4.971 2.956 7.273 1.295 8.672 5.112 12.107
ADAC-M 1.824 8.809 5.708 14.932 0.745 4.916 2.885 7.214 1.308 8.691 5.122 12.078
ADAC 1.991 9.424 6.08 16.036 0.783 5.152 3.048 7.502 1.358 8.943 5.22 12.537
Imp. (%) +11.2 +7.5 +6.0 +6.9 +8.3 +6.7 +6.2 +6.8 +6.6 +6.3 +3.5 +5.3
Table 2: Comparison of recommendation accuracy on three real-word datasets. The results are reported in percentage.

Dataset Beauty Clothing Cell_Phones
Metrics Prec. Rec. Prec. Rec. Prec. Rec.
PGPR 8.507 2.843 9.915 3.108 8.301 2.902

ActorCritic 7.671 2.584 9.722 3.25 8.691 2.82
ADAC-C 8.617 2.639 9.895 3.144 8.82 2.903
ADAC-P 8.774 2.887 10.317 3.356 10.037 2.991
ADAC-M 9.46 2.995 10.659 3.317 9.895 3.02
ADAC 9.447 2.999 10.667 3.359 10.314 3.181
Imp. (%) +11.0 +5.5 +7.6 +3.4 +18.7 +9.6

Table 3: Comparison of explainability on three real-word
datasets. The results are reported in percentage.

only on PGPR and ActorCritic because other baselines cannot gen-
erate reasoning paths. The results show that ADAC outperforms
the baselines in all three datasets. For example, ADAC achieves
a precision rate of 10.314% in the Cell_Phone dataset while Ac-
torCritic stands at 8.691%. This means that leveraging the expert
demonstrations can improve explainability even if shortest paths
are used as demonstrations. Sec. 4.4 shows the performance of dif-
ferent demonstration paths in terms of explainability.

Convergence. In Fig. 2, we also compare ADAC and the state-
of-the-art path reasoning model PGPR for convergence by using
the data from Beauty and Clothing. We show only the result of
Lθ for ADAC because the actor is the policy we use for the path
reasoning and the convergence pattern of other losses is similar.
We normalize all the losses to [0, 1] for better readability. The re-
sult shows that ADAC can efficiently converge with less than 20
epochs with the help of demonstrations. The reason is that our de-
sign can effectively integrate the different aspects of the demon-
strations.

4.3 Importance of Different Components
4.3.1 Effectiveness of the Critic. Table 2 and 3 compare ADAC-C
and ADAC in terms of recommendation performance and explain-
ability. ADAC-C removes the critic from ADAC and learns to up-
date the model by using only the policy gradient algorithm, which
is the same one used in PGPR. ADAC consistently outperforms
ADAC-C because the critic can effectively model the rewards from
both the reinforcement learning and imitation learning.This demon-
strates the effectiveness of the critic network.

(a) Beauty (b) Clothing
Figure 2: Comparison of convergence. Both losses are nor-
malized to [0, 1] for better readability.

4.3.2 Effectiveness of Path Discriminator. To evaluate the effec-
tiveness of the path discriminator Dp , we compare ADAC with
ADAC-P, a variant of our method that does not use the path dis-
criminator. The path discriminator learns the probability that a
sampled path comes from demonstrations. As shown in Table 2
and 3, ADAC-P performs consistently worse than ADAC, which
means the path discriminator can improve both recommendation
accuracy and explainability.

4.3.3 Effectiveness of Meta-path Discriminator. ADAC-M removes
the meta-path discriminator from ADAC. The meta-path discrim-
inator DM introduces Rm,t to Rt in order to judge whether the
overall strategy of the actor is similar to the demonstration. The
comparison between ADAC-M and ADAC shows that meta-path
discriminator is effective in achieving high accuracy and explain-
ability, especially in the recommendation task.

4.3.4 Influence of Discriminator Weight. The weights of the path
discriminator and meta-path discriminator are αp and αm , respec-
tively. Fig. 3 shows the parameter sensitivity of αp and αm with
regard to the datasets Beauty and Clothing. We provide only the
results related to the metric Precision because all the other metrics
change according to its value.

The results lead to two conclusions. First, ADAC performs bet-
ter than PGPR in both datasets when αp ranges from 0.002 to 0.008
and αm ranges from 0.006 to 0.012. Second, the performance of
ADAC is slightly influenced by the discriminator weights. The rea-
son is that different weights mean different strategies to exploit
the demonstrations. As a result, the performance varies with the

(a) αp on Beauty (b) αp on Clothing (c) αm on Beauty (d) αm on Clothing
Figure 3: Sensitivity analysis of αp and αm on Beauty and Clothing

Explanation Recommendation
Precision Recall Precision Recall

PGPR 8.507 2.843 1.736 8.448
ActorCritic 7.671 2.584 1.79 8.764

SP 9.447 2.999 1.991 9.424
PI 11.873 3.478 1.94 9.314

U-I-U-I 12.895 3.657 2.13 9.661
U-W-U-I 11.339 3.295 1.346 5.662
U-I-W-I 8.303 2.779 1.763 8.559

Table 4: Explanation and recommendation performance on
Beauty with different demonstration paths.

Explanation Recommendation
Precision Recall Precision Recall

PGPR 9.915 3.108 0.723 4.827
ActorCritic 9.722 3.25 0.72 4.776

SP 10.667 3.359 0.763 5.027
PI 11.97 3.475 0.766 5.08

U-I-U-I 10.57 4.131 0.876 5.596
U-W-U-I 15.185 5.005 0.447 2.932
U-I-W-I 10.841 4.266 0.691 4.51

Table 5: Explanation and recommendation performance on
Clothing with different demonstration paths.

datasets. The experimental results also show that ADAC achieves
the best recommendation performancewhenαp = 0.006 in Beauty
and αp = 0.004 in Clothing. In both datasets, the performance of
ADAC is optimal when αm = 0.01.

4.4 Effects of Using Different Demonstrations
Table 4 and 5 show the accuracy and explainability of ADAC on
Beauty andClothing using different types of demonstrations. Short-
est Path (SP) is the method used in Sec. 4.2 to compare its results
with those of the baselines.Path of Interest (PI) uses the Word en-
tity from the user’s comments to identify entities that the user likes
and then includes these entities in the demonstrations. We extract
the demonstrations by using three meta-paths. U-I-U-I denotes

User
Purchase−−−−−−−−−→ Item

Purchased_By
−−−−−−−−−−−−−→User

Purchase−−−−−−−−−→ Item.U-W-U-
I is User Mention−−−−−−−−→Word

Mentioned_By
−−−−−−−−−−−−−−→ User

Purchase−−−−−−−−−→ Item.U-I-
W-I is User Purchase−−−−−−−−−→ Item

Descr ibed_By
−−−−−−−−−−−−−→Word

Descr ibe−−−−−−−−→ Item.
Results of PI. The results suggest that ADAC can achieve a

recommendation performance similar to that of SP by using the
paths of interest as demonstrations. At the same time, PI achieves
much higher explainability results compared with SP. This shows

Purchase

Described_By

Belong

Mention

Cream

“sweet”
“perfume”

“italy”
“beauty”

Perfume

User1

User2

Mentioned_By

Purchased_By

Produced_By

Purchase

Purchase

Describe

User3
Perfume

User Item Word

Brand Category

Fragrance

Paths generated by using demonstration U-I-U-I

Paths generated by using demonstration U-W-U-I

A

B

C

D

E
Brand

Contain

Produce

Purchase

Figure 4: Reasoning paths generated by using different
demonstrations.

that ADAC can effectively leverage the entity-level user interest
information in the PI demonstrations to improve explainability.

Results of U-I-U-I. It is interesting that simple meta-paths like
U-I-U-I can perform better than SP in terms of both recommen-
dation accuracy (on average +8.91%) and explainability (on aver-
age +20.13%). The improvement of recommendation accuracy is
expected, considering the success of collaborative filtering meth-
ods [33]. However, it is initially difficult to understand why U-I-
U-I can also improve explainability. By checking the results, we
find that our method can generalize U-I-U-I to other similar but
more interpretable meta-paths, e.g., U-I-W-I. Fig. 4 shows exam-
ples of reasoning paths generated by using demonstration U-I-U-I
(blue). While ADAC is able to find the reasoning path of the type
U-I-U-I (Fig. 4A), it can also generalize from U-I-U-I to U-I-W-I
(Fig. 4B), which well explains why the user likes the two related
items (because of “sweet” and “perfume”). This indicates that by
correctly modeling users’ item-level interest at the beginning of
the training process using U-I-U-I, our model can gradually learn
to model users’ feature-level interest (U-I-W-I) effectively based
on the connections on the knowledge graph. This generalization
capability is achieved by using discriminators to guide path find-
ing. In comparison, existing methods that use meta-paths to re-
strict the search space [20, 53] can hardly achieve this. U-I-U-I can
sometimes achieve even better explainability than PI, which may
be caused by the sparsity of the PI demonstrations.

Results of U-W-U-I and U-I-W-I. Except for U-I-U-I, other
meta-paths such as U-W-U-I can also be generalized by using our

model. Fig. 4 shows reasoning paths generated by using U-W-U-I
(red). Except for the reasoning path of type U-W-U-I (Fig. 4C), other
interpretable paths of type U-I-C-I (Fig. 4D) and U-I-B-I (Fig. 4E)
can also be found. Here, C and B represent entity types Category
and Brand, respectively. While U-W-U-I has relatively good ex-
plainability, it results in bad recommendation accuracy (Tables 4
and 5), and its performance varies across datasets. Similarly, the
performance of U-I-W-I also varies across datasets. These results
demonstrate the difficulty of using word-based meta-paths. We
suspect that this difficulty may be caused by the ambiguity of the
words and the randomness caused by the sample-based extraction
method. While a purchased item provides explicit information on
user interests, a word mentioned in reviews can be understood in
many different ways.Thus, randomly sampling an individual word
in the reviewsmay introduce much noise into the demonstrations.

5 RELATEDWORK
Our work is related to the knowledge-graph-based (KG-based) rec-
ommendation and reinforcement learning (RL) in recommendation.

5.1 KG-Based Recommendation
Existing knowledge-graph-based recommendationmethods can be
divided into two groups: embedding-based and path-based.

Embedding-basedmethods learn entity and relation represen-
tations with KG embedding techniques [5, 44] and integrate the
learned representations into the recommendationmodel to improve
accuracy [10, 28, 49]. For example, Huang et al. [21] captured the
attribute-level user preferences and improved recommendation ac-
curacy by using memory networks to incorporate KG representa-
tions. Wang et al. [40] fused the knowledge-level and semantic-
level representations of news items to improve the prediction of
their click-through rates. Cao et al. [6] devised a system that trans-
ferred knowledge by jointly learning a recommendationmodel and
a KG completion model. These methods demonstrate the useful-
ness of KG in improving recommendation accuracy and illustrate
how KG embeddings allow for the flexible incorporation of knowl-
edge. However, their indirect utilization of the knowledge graph
structure prevents them from effectively modeling the connectiv-
ity patterns and sequential dependencies. As a result, their recom-
mendation accuracy and reasoning capability are limited. For ex-
ample, they cannot explain their recommendation by providing a
path in the KG that connects a user with the recommended item.

Path-based methods learn to recommend by explicitly model-
ing the sequential connectivity patterns (paths) between items or
user-item pairs. Researchersmodel paths by usingmethods such as
probabilistic logic systems [7], recurrent neural networks [35, 43],
and memory networks [39]. For example, Wang et al. [43] learned
user preferences bymodeling all qualified paths between users and
items based on recurrent neural networks. Wang et al. [39] prop-
agated user preferences on knowledge graphs by using memory
networks. Ma et al. [27] computed the probability of finding paths
based on random walks. Most existing path-based methods focus
on modeling given candidate paths and leverage brute-force meth-
ods for finding candidate paths on knowledge graphs, i.e., enu-
merating all the paths on KGs. As a result, these methods can-
not be scaled up to create large knowledge graphs. Recently, a

Policy-Guided Path Reasoning algorithm [46] has been proposed,
which guides the path-finding policy with sparse reward signals.
While this algorithm is more efficient than brute-force searches,
the huge action space and the sparse reward make it difficult to
quickly converge to a satisfying solution [47]. This issue could be
alleviated by pruning the search space using pre-defined desirable
connectivity patterns such as meta-paths [13, 20, 34, 48], meta-
graphs [53], and association rules [7, 27]. However, these meta-
level structures are usually difficult to obtain (e.g., they require
heavy and tedious manual labeling) and fail to uncover unseen
and personalized connectivity patterns. We aim to solve the afore-
mentioned issues by proposing a demonstration-based knowledge
graph reasoning framework. We show how path demonstrations
can be extracted with minimum labeling efforts and how imper-
fect demonstrations can be utilized to ensure fast convergence and
improve explainability.

5.2 RL in Recommendation
Reinforcement learning has been adopted to deal with various rec-
ommendation tasks, such as news recommendation [56], page-wise
recommendation [54] and explainable recommendation [42]. Mod-
eling with MDP allows recommender systems to consider current
and future rewards simultaneously andmodel dynamic user prefer-
ence [8, 41, 55]. Recently, many advanced reinforcement learning
models are adopted by recommender systems.Examples include
multi-agent reinforcement learning [16], the hierarchical reinforce-
ment learning [50], and the Generative Adversarial Networks [9,
31].

Most existing RL-based recommender systems are not knowledge-
aware. The model most similar to ours is the Policy-Guided Path
Reasoning [46], which enables knowledge graph reasoning by in-
corporating REINFORCE with the baseline [37]. Compared with
previous KG-based recommendation models, this model improves
recommendation accuracy and is more efficient. However, its path
finding process relies on a sparse reward signal and is poorly super-
vised, which results in issues related to convergence and explain-
ability. Ourmodel addresses these issues by proposing a demonstration-
based knowledge graph framework and anAdversarial Actor-Critic
model for path finding.

6 CONCLUSION
In this paper, we design a demonstration-based knowledge graph
reasoning framework for explainable recommendation, which ad-
dresses the issues related to convergence and explainability. We
first leverage a meta-heuristic-based demonstration extractor to
derive a set of path demonstrations with minimum labeling ef-
forts.Then we propose an ADversarial Actor-Critic (ADAC) model
for demonstration-guided path finding. Experiments show that our
method outperforms the state-of-the-art baselines on both recom-
mendation accuracy and explainability. In the future, we will in-
vestigate how to leverage the reasoning paths to generate natural
language explanations for the users.

ACKNOWLEDGMENTS
This work was supported by NSFC (91646202), National Key R&D
Program of China (2018YFB1404401, 2018YFB1402701).

REFERENCES
[1] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. 2018. Learning Hetero-

geneous Knowledge Base Embeddings for Explainable Recommendation. Algo-
rithms 11, 9 (2018), 137.

[2] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,
Joelle Pineau, Aaron C. Courville, and Yoshua Bengio. 2017. An Actor-Critic
Algorithm for Sequence Prediction. In ICLR (Poster).

[3] R Bellman. 2013. Dynamic Programming, Courier Corporation. New York, NY
707 (2013).

[4] Christian Blum andAndrea Roli. 2003. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM computing surveys (CSUR) 35,
3 (2003), 268–308.

[5] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[6] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019. Uni-
fying Knowledge Graph Learning and Recommendation: Towards a Better Un-
derstanding of User Preferences. In WWW. ACM, 151–161.

[7] Rose Catherine and William W. Cohen. 2016. Personalized Recommendations
using Knowledge Graphs: A Probabilistic Logic Programming Approach. In Rec-
Sys. ACM, 325–332.

[8] Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong
Tang. 2018. Stabilizing Reinforcement Learning in Dynamic Environment with
Application to Online Recommendation. In KDD. ACM, 1187–1196.

[9] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019.
Generative Adversarial User Model for Reinforcement Learning Based Recom-
mendation System. In ICML. PMLR, 1052–1061.

[10] Zhongxia Chen, XitingWang, Xing Xie, Mehul Parsana, Akshay Soni, Xiang Ao,
and Enhong Chen. 2020. Towards Explainable Conversational Recommendation.
In IJCAI.

[11] Zhongxia Chen, Xiting Wang, Xing Xie, Tong Wu, Guoqing Bu, Yining Wang,
and Enhong Chen. 2019. Co-attentive multi-task learning for explainable rec-
ommendation. In IJCAI. 2137–2143.

[12] EdsgerWDijkstra et al. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[13] Shaohua Fan, Junxiong Zhu, Xiaotian Han, Chuan Shi, Linmei Hu, Biyu Ma, and
Yongliang Li. 2019. Metapath-guided Heterogeneous Graph Neural Network for
Intent Recommendation. In KDD. ACM, 2478–2486.

[14] Jingyue Gao, Xiting Wang, Yasha Wang, and Xing Xie. 2019. Explainable Rec-
ommendation Through Attentive Multi-View Learning. AAAI.

[15] Thomas R Gruber, Adam J Cheyer, and DonaldW Pitschel. 2016. Crowd sourcing
information to fulfill user requests. US Patent 9,280,610.

[16] Tao Gui, Peng Liu, Qi Zhang, Liang Zhu, Minlong Peng, Yunhua Zhou, and Xu-
anjing Huang. 2019. Mention Recommendation in Twitter with Cooperative
Multi-Agent Reinforcement Learning. In SIGIR. ACM, 535–544.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classifica-
tion. In ICCV. IEEE Computer Society, 1026–1034.

[18] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explaining col-
laborative filtering recommendations. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work. ACM, 241–250.

[19] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learn-
ing. In NIPS. 4565–4573.

[20] Binbin Hu, Chuan Shi,Wayne Xin Zhao, and Philip S. Yu. 2018. LeveragingMeta-
path based Context for Top- N Recommendation with A Neural Co-Attention
Model. In KDD. ACM, 1531–1540.

[21] Jin Huang, Wayne Xin Zhao, Hong-Jian Dou, Ji-Rong Wen, and Edward Y.
Chang. 2018. Improving Sequential Recommendation with Knowledge-
Enhanced Memory Networks. In SIGIR. ACM, 505–514.

[22] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR (Poster).

[23] Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing neural pre-
dictions. arXiv preprint arXiv:1606.04155 (2016).

[24] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. 2017. Neural
rating regression with abstractive tips generation for recommendation. In SIGIR.
345–354.

[25] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In ICLR (Poster).

[26] László Lovász et al. 1993. Random walks on graphs: A survey. Combinatorics,
Paul erdos is eighty 2, 1 (1993), 1–46.

[27] Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu,
Shaoping Ma, and Xiang Ren. 2019. Jointly Learning Explainable Rules for Rec-
ommendation with Knowledge Graph. In WWW. ACM, 1210–1221.

[28] Enrico Palumbo, Giuseppe Rizzo, and Raphaël Troncy. 2017. entity2rec: Learn-
ing User-Item Relatedness from Knowledge Graphs for Top-N Item Recommen-
dation. In RecSys. ACM, 32–36.

[29] Dean Pomerleau. 1991. Efficient Training of Artificial Neural Networks for Au-
tonomous Navigation. Neural Computation 3, 1 (1991), 88–97.

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In
UAI. AUAI Press, 452–461.

[31] Wenjie Shang, Yang Yu, Qingyang Li, Zhiwei Qin, Yiping Meng, and Jieping Ye.
2019. Environment ReconstructionwithHiddenConfounders for Reinforcement
Learning based Recommendation. In KDD. ACM, 566–576.

[32] Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based
Recommender System. J. Mach. Learn. Res. 6 (2005), 1265–1295.

[33] Amit Sharma and Dan Cosley. 2013. Do social explanations work?: studying and
modeling the effects of social explanations in recommender systems. In WWW.
ACM, 1133–1144.

[34] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
a structural analysis approach. SIGKDD Explorations 14, 2 (2012), 20–28.

[35] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu.
2018. Recurrent knowledge graph embedding for effective recommendation. In
RecSys. ACM, 297–305.

[36] Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differ-
ences. Machine Learning 3 (1988), 9–44.

[37] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press.

[38] Nava Tintarev and Judith Masthoff. 2007. A survey of explanations in recom-
mender systems. In ICDE workshop. IEEE, 801–810.

[39] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. RippleNet: Propagating User Preferences on the Knowl-
edge Graph for Recommender Systems. In CIKM. ACM, 417–426.

[40] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
Knowledge-Aware Network for News Recommendation. InWWW. ACM, 1835–
1844.

[41] Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. 2018. Supervised Re-
inforcement Learning with Recurrent Neural Network for Dynamic Treatment
Recommendation. In KDD. ACM, 2447–2456.

[42] Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. 2018. A
Reinforcement Learning Framework for Explainable Recommendation. In ICDM.
IEEE, 587–596.

[43] XiangWang, DingxianWang, Canran Xu, XiangnanHe, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable Reasoning over Knowledge Graphs for Recommenda-
tion. In AAAI. AAAI Press, 5329–5336.

[44] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI. AAAI Press, 1112–
1119.

[45] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8 (1992), 229–256.

[46] Yikun Xian, Zuohui Fu, S. Muthukrishnan, Gerard deMelo, and Yongfeng Zhang.
2019. Reinforcement Knowledge Graph Reasoning for Explainable Recommen-
dation. In SIGIR. ACM, 285–294.

[47] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A rein-
forcement learning method for knowledge graph reasoning. In EMNLP.

[48] Xiao Yu, Xiang Ren, Yizhou Sun,Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommenda-
tion: a heterogeneous information network approach. InWSDM. ACM, 283–292.

[49] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, andWei-YingMa. 2016.
Collaborative Knowledge Base Embedding for Recommender Systems. In KDD.
ACM, 353–362.

[50] Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sun. 2019.
Hierarchical Reinforcement Learning for Course Recommendation in MOOCs.
In AAAI. AAAI Press, 435–442.

[51] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W. Bruce Croft. 2017. Joint Rep-
resentation Learning for Top-N Recommendation with Heterogeneous Informa-
tion Sources. In CIKM. ACM, 1449–1458.

[52] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaop-
ing Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In SIGIR. 83–92.

[53] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017.
Meta-Graph Based Recommendation Fusion over Heterogeneous Information
Networks. In KDD. ACM, 635–644.

[54] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
RecSys. ACM, 95–103.

[55] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei
Yin. 2018. Recommendations with Negative Feedback via Pairwise Deep Rein-
forcement Learning. In KDD. ACM, 1040–1048.

[56] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A Deep Reinforcement Learning Frame-
work for News Recommendation. In WWW. ACM, 167–176.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Method
	3.1 Demonstration Extraction
	3.2 Adversarial Actor-Critic for Path Finding

	4 Experiment
	4.1 Experiment Setup
	4.2 Overall Performance
	4.3 Importance of Different Components
	4.4 Effects of Using Different Demonstrations

	5 Related Work
	5.1 KG-Based Recommendation
	5.2 RL in Recommendation

	6 Conclusion
	References

