
Model Compression with Two-stage Multi-teacher Knowledge
Distillation for WebQuestion Answering System

Ze Yang∗, Linjun Shou∗, Ming Gong, Wutao Lin, Daxin Jiang
STCA NLP Group, Microsoft

Beijing, China
{yaze,lisho,migon,wutlin,djiang}@microsoft.com

ABSTRACT
Deep pre-training and fine-tuning models (such as BERT and Ope-
nAI GPT) have demonstrated excellent results in question answer-
ing areas. However, due to the sheer amount of model parameters,
the inference speed of these models is very slow. How to apply these
complex models to real business scenarios becomes a challenging
but practical problem. Previous model compression methods usu-
ally suffer from information loss during the model compression
procedure, leading to inferior models compared with the original
one. To tackle this challenge, we propose a Two-stage Multi-teacher
Knowledge Distillation (TMKD for short) method for web Question
Answering system. We first develop a general Q&A distillation
task for student model pre-training, and further fine-tune this pre-
trained student model with multi-teacher knowledge distillation
on downstream tasks (like Web Q&A task, MNLI, SNLI, RTE tasks
from GLUE), which effectively reduces the overfitting bias in indi-
vidual teacher models, and transfers more general knowledge to the
student model. The experiment results show that our method can
significantly outperform the baseline methods and even achieve
comparable results with the original teacher models, along with
substantial speedup of model inference.

CCS CONCEPTS
• Information systems Retrieval tasks and goals; Ques-
tion answering.

KEYWORDS
model compression; two-stage; multi-teacher; knowledge distilla-
tion; distillation pre-training

ACM Reference Format:
Ze Yang∗, Linjun Shou∗, Ming Gong, Wutao Lin, Daxin Jiang. 2020. Model
Compression with Two-stage Multi-teacher Knowledge Distillation for Web
QuestionAnswering System. In The Thirteenth ACM International Conference
onWeb Search and Data Mining (WSDM ’20), February 3–7, 2020, Houston, TX,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3336191.
3371792

*These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371792

1 INTRODUCTION
Question Answering relevance, which aims to rank the text pas-
sages to natural language questions issued by users, is a critical
task in Question Answering (Q&A) system [1]. In recent years,
almost all commercial web search engines provide Question An-
swering service, in addition to the traditional web documents links.
Table 1 shows an example for Question Answering from a commer-
cial search engine. Compared with the “ten-blue-links”, Q&A is a
more natural interface, and thousands of millions of users enjoy the
efficiency of directly accessing the information for their questions.

Table 1: An example of Q&A relevance task.

Question: What can I do when I have headache?

Passage: Drinking warm water mixed with juice squeezed from
one-half of a lemon will reduce the intensity of a
headache. This particular remedy is beneficial for
headaches caused by gas in the stomach. Another option
is to apply lemon crusts, pounded into a paste, on your
forehead to immediately relieve pain...

Label: Relevant

In recent years, deep pre-training approaches [5, 25] have brought
big break-through in NLP tasks. They also show very promising
results for the particular task of Q&A relevance. However, due to
the huge parameter size of these models 1, both model training and
inference become very time-consuming. Although several works
have studied the optimization of model training [30], there is little
work discussing the model inference challenge of deep pre-training
models like BERT/GPT models. In fact, for a web scale Q&A system,
the efficiency of model inference may be even more critical than
that of model training, due to the concerns of both offline through-
put and online latency. Table 2 shows the inference speed of BERT
models [5] with a 1080Ti GPU. The throughout of Q&A pairs are
624 and 192 per second on average for BERTbase and BERTlarge,
respectively. In other words, the average latency are 1.6 and 5.2
milliseconds respectively.

In a commercial web Q&A system, there are often two comple-
mentary pipelines for the Q&A service. One pipeline is for popular
queries that frequently appear in the search traffic. The answers
are pre-computed offline in a batch mode and then served online
by simple look-up. The magnitude of the number of Q&A pairs
processed is around 10 billions. The other pipeline is for tail queries
that are rarely or never seen before. For such tail queries, the an-
swers are ranked on the fly and the latency budget for online model
1For example, GPT/BERTbase has 110M parameters, and BERTlarge has 340M.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

690

https://doi.org/10.1145/3336191.3371792
https://doi.org/10.1145/3336191.3371792
https://doi.org/10.1145/3336191.3371792

inference is typically within 10 milliseconds. Therefore, for both
offline or online pipelines, it is critical to improve model inference
efficiency.

Table 2: The inference speed of BERT on 1080Ti GPU.

Model Parameter Samples
Per second Latency

BERTbase 110M 624 1.6ms
BERTlarge 340M 192 5.2ms

To improve model inference efficiency, we consider model com-
pression approach. In other words, we aim to train a smaller model
with fewer parameters to simulate the original large model. A pop-
ular method, called knowledge distillation [11] has been widely used
for model compression. The basic idea is a teacher-student frame-
work, in which the knowledge from a complex network (teacher
model) is transferred to a simple network (student model) by learn-
ing the output distribution of the teacher model as a soft target.
To be more specific, when training the student model, we not only
provide the human-labeled golden ground truth, but also feed the
output score from the teacher model as a secondary soft label. Com-
pared with the discrete human labels (for classification task), the
continuous scores from the teacher models give more smooth and
fine-grained supervision to the student model, and thus result in
better model performance. We refer to this basic knowledge distilla-
tion approach as 1-o-1 model, in the sense that one teacher transfers
knowledge to one student.

Although the 1-o-1 model can effectively reduce the number of
parameters as well as the time for model inference, due to the in-
formation loss during the knowledge distillation, the performance
of student model usually cannot reach the parity with its teacher
model. This motivates us to develop the second approach, called
m-o-m ensemble model. To be more specific, we first train multi-
ple teacher models, for example, BERT (base and large) [5] and
GPT [25] with different hyper-parameters. Then train a separate
studentmodel for each individual teachermodel. Finally, the student
models trained from different teachers are ensembled to generate
the ultimate result. Our experimental results showed that the m-
o-m ensemble model performs better than the 1-o-1 model. The
rationale is as follows. Each teacher model is trained towards a
specific learning objective. Therefore, various models have differ-
ent generalization ability, and they also overfit the training data in
different ways. When ensemble these models, the over-fitting bias
across different models can be reduced by the voting effect. That
say, the ensemble models automatically “calibrate” the results.

When we compare the m-o-m ensemble model with the 1-o-1
model, although the former has better performance, it also con-
sumes much larger memory to host multiple student models. This
motivates us to look for a new approach, which has better perfor-
mance than the 1-o-1 model and consumes less memory than the
m-o-mmodel. One observation for the m-o-m ensemble approach is
that it conducts the model ensemble too late. In fact, once the train-
ing process for a student models has finished, the overfitting bias
from the corresponding teacher model has already been transferred
to the student model. The voting effect across student models can

be considered as a “late calibration” process. On the other hand, if
we feed the scores from multiple teachers to a single student model
during the training stage, that model is receiving guidance from
various teachers simultaneously. Therefore, the overfitting bias can
be addressed by “early calibration”. Based on this observation, we
develop the novel m-o-1 approach, where we train a single student
model by feeding the scores from multiple teachers at the same
time as the supervision signals. The experimental results showed
that the m-o-1 model performs better than the m-o-m model, while
the memory consumption is the same with the 1-o-1 model.

The novel m-o-1 approach results in decent compressed models.
However, the performance of the compressed models still has small
gap with the original large model. One obvious reason is that the
original large model has a large-scale pre-training stage, where it
learns the language model through an unsupervised approach. We
therefore explore how to simulate a pre-training stage for the com-
pressed models, such that it can benefit from large-scale training
data and learn the feature representation sufficiently.

Our empirical study shows that the pre-training stage signifi-
cantly improves the model performance. When we adopt a very
large pre-training data, followed by the m-o-1 fine-tuning strategy,
the compressed model can achieve comparable or even better per-
formance than the teacher model. Another interesting finding is
that although the pre-trained model is derived from Q&A pairs, it
can serve as a generic baseline for multiple tasks. As we show in the
experiment part, when we fine-tune the Q&A pre-trained model
with various text matching tasks, such as those in GLUE [26], it
outperforms the compressed model without pre-training on each
task. To the best of our knowledge, this is the first work discussing
the distillation pre-training and multiple teacher distillation for
Web Q&A.

In this paper, we propose a Two-stageMulti-teacherKnowledge
Distillation (TMKD for short) method for model compression, and
make the following major contributions.

• In the first stage (i.e., the pre-training stage) of TMKD, we cre-
ate a general Q&A distillation pre-training task to leverage
large-scale unlabeled question-passage pairs derived from a
commercial search engine. The compressed model benefits
from such large-scale data and learns feature representa-
tion sufficiently. This pre-trained Q&A distillation model
can be also applied to the model compression of various text
matching tasks.

• In the second stage (i.e., the fine-tuning stage) of TMKD, we
design a multi-teacher knowledge distillation paradigm to
jointly learn from multiple teacher models on downstream
tasks. The “early calibration” effect relieves the over-fitting
bias in individual teacher models, and consequently, the
compressed model can achieve comparable or even better
performance with the teacher model.

• We conduct intensive experiments on several datasets (both
open benchmark and commercial large-scale datasets) to
verify the effectiveness of our proposed method. TMKD out-
performs various state-of-the-art baselines and has been
applied to real commercial scenarios.

The rest of the paper is organized as follows. After a summary of
related work in Section 2, we describe our proposed model in details

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

691

…

T1 T2 T3 Tn

Supervised DataSupervised Data

T0

Enhanced Student Model

RTE

…

T1 T2 T3 Tn

Supervised DataSupervised Data

T0

Enhanced Student Model

Q&A

…

T1 T2 T3 TN

Stage 1: Distillation Pre-training

…

T1 T2 T3 TNT0

Student ModelStudent Model

Enhanced Student Model

MNLI

Task Specific Corpus
(golden label and soft labels)

Task Specific Corpus
(golden label and soft labels)

Stage 2: Task Specific Distillation Fine-tuning

Student ModelStudent Model

Q&A

Distillation
Task 1

Distillation
Task 1

Distillation
Task 2

Distillation
Task 2

Distillation
Task 3

Distillation
Task 3

Distillation
Task N

Distillation
Task N

Golden
Task

Golden
Task

Distillation
Task 1

Distillation
Task 1

Distillation
Task 2

Distillation
Task 2

Distillation
Task 3

Distillation
Task 3

Distillation
Task N

Distillation
Task N

Q&A Unsupervised Large Corpus
(with soft labels)

Q&A Unsupervised Large Corpus
(with soft labels)

Figure 1: The Overall Architecture of Our Two-stage Multi-teacher Distillation Model.

in Section 3, followed by comprehensive evaluations in Section 4
and Section 5. Finally, Section 6 concludes this paper and discuss
future directions.

2 RELATEDWORK
In this section we briefly review two research areas related to our
work: model compression and multi-task learning.

2.1 Model Compression
As the parameter size of neural network model is getting larger and
larger [5, 12, 23], how to make it feasible to deploy and apply the
models in industrial environment becomes an important problem.
A natural process is to compress the model [8, 11, 16]. Low-rank
approximation was a factorization method [4, 13, 31], which used
multiple low rank matrices to approximate the original matrix
to reduce model redundancy [9, 10, 16]. Hinton et al. proposed a
knowledge distillation method (KD for short) [11]. In their work,
the output of the complex network was used as a soft target for the
training of simple network. By this way, the knowledge of complex
models can be transferred to simple models. Distilling complex
models into simple models has been shown to improve many NLP
tasks to achieve impressive performance [14, 15, 18, 20]. Polino
et al. [24] proposed a quantized distillation method. In their work,
they incorporated distillation loss, and expressed with respect to
the teacher network, into the training process of a smaller student
network whose weights were quantized to a limited set of levels.
Papernot et al. proposed a training data protected method based on
knowledge distillation [21]. In their work, an ensemble of teachers
was trained on disjoint subsets of the sensitive data, and then a
studentmodel was trained on public data labeled using the ensemble
of teachers.

2.2 Multi-task Learning
Multi-task learning has been widely studied in deep learning, which
leverages the information among different tasks to improve the
generalization performance [3, 6, 28]. Fares et al. [7] empirically

evaluated the utility of transfer and multi-task learning on semantic
interpretation of noun-noun compounds. It showed that transfer
learning via parameter sharing can help a neural classification
model generalize over a highly skewed distribution of relations.
Pentina and Lampert [22] studied a variant of multi-task learning
in which annotated data was available on some of the tasks. Lee
et al. [17] studied the performance of different ensemble methods
under the framework of multi-task learning.

You et al. [29] presented a method to train a thin deep network by
incorporating in the intermediate layers and imposing a constraint
about the dissimilarity among examples. Wu et al. [27] propose a
multi-teacher knowledge distillation framework for compressed
video action recognition to compress this model. These efforts have
tried mutiple teacher distillation methods in the field of computer
vision, but little research has been done on the NLP deep pretraining
based model. Concurrently with our work, several works also com-
bine the multi-task learning with knowledge distillation [2, 18, 19].
However, they applied the knowledge distillation and multi-task
learning to enhance the original model performance, instead of
targeting model compression.

Our approach is also a knowledge distillation based method
for model compression. Different from previous approaches, we
develop a novel Q&A distillation pre-training task leveraging large-
scale unsupervised Q&A data. Moreover, we design a multi-task
paradigm in the fine-tuning stage to jointly distill the knowledge
from different teacher models into a single student model.

3 OUR APPROACH
In this section, we firstly describe the overall design of our model,
and then describe the proposed approach TMKD in details. Finally,
we discuss the procedure of model training and prediction.

3.1 Overview
Figure 1 shows the architecture of TMKD. It consists of two stages:
distillation pre-training and task specific distillation fine-tuning.
In terms of teacher model for distillation, we take labeled data

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

692

by crowd sourcing judges as one specific teacher (T0) which has
the ground-truth knowledge (e.g. 0 or 1). We also have several
other teachers (T1-TN) trained on different pre-trained models (e.g.,
BERT [5] and GPT [25]) or with different hyper-parameters, which
provide the soft knowledge as pseudo supervision (score in [0, 1]).

3.1.1 Stage 1 - Distillation Pre-training. Deep pre-trained models
like BERT/GPT benefit from the pre-training stage on large-scale
unsupervised data for better representation learning. Inspired by
this, we explore how to simulate a pre-training stage for the com-
pressed models. One method is to leverage large-scale unsupervised
data of specific task for knowledge distillation. However it is usually
hard to obtain large-scale task-specific unsupervised data for NLP
tasks, such as NLI tasks from GLUE datasets. To address this chal-
lenge, a Q&A knowledge distillation task is proposed to pre-train
the compressed student model on a large-scale Q&A unlabeled data
which are derived from a commercial search engine. To be more
specific:

• Step 1: For each question, top 10 relevant documents are
returned by the commercial search engine to form <Question,
Url> pairs, and passages are further extracted from these
documents to form <Question, Passage> pairs.

• Step 2: Then we leverage several Q&A teacher models (such
as BERTlarge fine-tuned models) to score the above <Ques-
tion, Passage> pairs.

• Step 3: We use the <Question, Passage> corpus as well as
their corresponding teacher models’ output scores as the
pseudo ground truth to pre-train the student model2.

With Step 1 and Step 2, we could collect a large-scale auto labelled
corpus (i.e. soft labels) for pre-training, which is several magnitudes
larger than that of the human labeled training set. For Step 3, we
propose the novel multi-teacher knowledge distillation (i.e. m-o-
1 approach) for pre-training. The distillation pre-trained student
model 3 with Q&A task not only greatly boosts final Q&A fine-
tuned model but also other NLU tasks (like NLI tasks from GLUE),
which are shown in experiment section later.

3.1.2 Stage 2 - Task Specific Distillation Fine-tuning. Through the
large-scale distillation pre-training stage, our student model is able
to learn decent feature representation capabilities for general NLU
tasks (like Web Q&A task, MNLI, SNLI, RTE tasks from GLUE).
At the fine-tuning stage, the student model is firstly initialized
with the pre-trained parameters in the above Stage 1, and then
all of the parameters are fine-tuned using labeled data from the
downstream specific tasks. At this stage, we propose a novel multi-
teacher knowledge distillation method (i.e. m-o-1 approach).

To be more specific, for each downstream task, we use both
the golden label (i.e. ground-truth knowledge of T0) on the task
specific corpus and the soft labels of T1-TN (i.e. pseudo ground-
truth knowledge) on the same corpus to jointly fine-tune to get an
enhanced student model. This is just like the learning process of
human beings that we simultaneously gain knowledge from our
teachers as well as the textbooks that our teachers have studied.

2The BERT student model is initialized by the bottom three layers of the BERT model.
Therefore, it has captured a rough language model from large corpus.
3github.com/microsoft/NeuronBlocks/tree/master/model_zoo/TMKD.

3.2 TMKD Architecture
TMKD is implemented from BERT [5]. Our model consists of three
layers: Encoder layer utilizes the lexicon to embed both the question
and passage into a low embedding space; Transformer layer maps
the lexicon embedding to contextual embedding; Multi-header layer
jointly learns from multiple teachers simultaneously during train-
ing, as well as generates final prediction output during inference.

3.2.1 Encoder Layer. In a Q&A system, each question and pas-
sage are described by a set of words. We take the word pieces
as the input just like BERT. X = {x (1), x (2), ..., x (|X |)} is to de-
note all the instances, and each instance has a ⟨Q, P⟩ pair. Let
Q = {w1,w2,w3, ...,wm } be a question withm word pieces, P =
{w1,w2,w3, ...,wn } be a passage with n word pieces, andwi is the
bag-of-word representation. C = {c1, c2, . . . , c |C |} represents the
label set to indicate ⟨Q, P⟩’s relation. Each token representation is
constructed by the sum of the corresponding token, segment and
position embeddings. Let V = { ®vt ∈ RDv |t = 1, . . . ,M} denote all
the summed vectors in a Dv dimension continuous space.

We concatenate the ⟨Q, P⟩ pair, and add ⟨CLS⟩ as the first to-
ken, then add ⟨SEP⟩ between Q and P. After that, we obtain the
concatenation input xc = {w1,w2,w3, . . . ,wm+n+2} of a given in-
stance x (i). With the encoder layer, we map xc into continuous
representations He = {v1,v2, . . . ,vm+n+2}.

3.2.2 Transformer Layer. We also use the bidirectional transformer
encoder to map the lexicon embedding He into a sequence of con-
tinuous contextual embedding Hs = {h1,h2,h3, . . . ,hm+n+2}.

3.2.3 Multi-header Layer. In our proposed approach, firstly several
teacher models are built with different hyper-parameters. Then, in
order to let the student model to jointly learn from these teacher
models, a multi-header layer is designed consisting of two parts,
i.e. golden label header and soft label headers:

Golden Label Header. Given instance x (i), this header aims to
learn the ground truth label. Following the BERT, we select x (i)’s
first token’s transformer hidden stateh1 as the global representation
of input. The probability that x (i) is labeled as class c is defined as
follows:

P(c | ⟨Q, P⟩) = so f tmax(WT
д · h1) (1)

whereWT
д is a learnable parameter matrix, c ∈ C indicates the

relation between ⟨Q, P⟩. The objective function of golden label
header task is then defined as the cross-entropy:

lд = −
∑
c ∈C

c · loд(P(c | ⟨Q, P⟩)) (2)

Soft Label Headers. Take the i-th soft label as an example, iin[1, |N |],
N is the number of soft labels. For a given instance x (i), we also
select the first token’s hidden state h1 as the global representation
of input. The probability that x (i) is labeled as class c is defined as
follows:

Psi (c | ⟨Q, P⟩) = so f tmax(WT
si · h1) (3)

whereWT
si is a learnable parametermatrix.We supportRsi (c | ⟨Q, P⟩)

=WT
si · h1 as the logits of i-th soft header before normalization.
For a instance ⟨Q, P⟩, teacher model can predict probability dis-

tributions to indicate that Q and P are relevant or not. Soft label

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

693

Table 3: Statistics of experiment datasets (For DeepQA, we have a test set, which is non-overlapping with the training set. For
GLUE, please note that the results on development sets are reported, since GLUE does not distribute labels for the test sets).

Dataset Size of Samples
(Train/Test)

Average Question Length
(Words)

Average Answer Length
(Words)

DeepQA 1M/10K 5.86 43.74
CommQA-Unlabeled 4M(base) 40M(large) 0.1B(extreme) 6.31 42.70
CommQA-Labeled 12M/2.49K 5.81 45.70

MNLI 392.70K/19.64K 20.52 10.90
SNLI 549.36K/9.84K 13.80 10.90
QNLI 108.43K/5.73K 9.93 28.07
RTE 2.49K/0.27K 45.30 9.77

headers aim to learn the teachers’ knowledge through soft labels.
The objective function of soft label headers is defined as mean
squared error as follows:

lsi =
1
|C |

∑
c ∈C

(Rsi (c | ⟨Q, P⟩) − Rti (c | ⟨Q, P⟩))
2

ls =
1
N

N∑
i=1

lsi

(4)

where Rti (c | ⟨Q, P⟩) represents the i-th soft label teacher’s logits
before normalization and N is the number of soft label headers.

3.3 Training and Prediction
In order to learn parameters of TMKDmodel, our proposed TMKD
model has a two-stage training strategy. At the first stage, we use
the Equation (4) to learn the generalized natural language inference
capability from the unlabeled data with soft labels. At the second
stage, we combine Equation (2) and Equation (4) to learn the task-
specific knowledge from the labeled data with golden labels and soft
labels, then obtain our final learning objective function as follows:

l = (1 − α)lд + αls (5)

where α is a loss weighted ratio, lsi is the loss of i-th soft header. In
the inference stage, we use an aggregation operation to calculate
the final result as follows:

O(c | ⟨Q, P⟩) =
1

N + 1
(P(c | ⟨Q, P⟩)+

N∑
i=1

Psi (c | ⟨Q, P⟩))
(6)

where Psi is the i-th student header’s output and N denotes the
number of soft label headers.

4 EXPERIMENT
In this section, we conduct empirical experiments to verify the
effectiveness of our proposed TMKD on model compression. We
first introduce the experimental settings, then compare our model
to the baseline methods to demonstrate its effectiveness.

4.1 Dataset
We conduct experiments on several datasets as follows.

• DeepQA: An English Q&A task dataset from one commer-
cial Q&A system, with 1 million labeled cases. Each case

consists of three parts, i.e. question, passage, and binary la-
bel (i.e. 0 or 1) by crowd sourcing judges indicating whether
the question can be answered by the passage. The following
briefly describes how the data is collected. Firstly, for each
question, top 10 relevant documents returned by the search
engine are selected to form <Question, Url> pairs; Then pas-
sages are further extracted from these documents to form
<Question, Url, Passage> triples; These <Query, Passage>
pairs are sampled and sent to crowd sourcing judges. Specif-
ically, each <Query, Passage> pair is required to get judged
by three judges. Those cases with more than 2/3 positive
labels will get positive labels, otherwise negative.

• CommQA-Unlabeled A large-scale unlabeled Q&A data
coming from a commercial search engine. The collection
method of <Query, Passage> pairs is same as DeepQA, and
the difference is that the question type and domain of this
dataset is more diverse than DeepQA. We sampled 4 million
(named base dataset) and 40 million (named large dataset) as
the pre-training data. Besides, in our commercial scenario,
we have one extremely large Q&A unlabeled dataset (0.1
billion) cooked by the same data collection approach.

• CommQA-Labeled A large-scale commercial Q&A train-
ing data, which is sampled from CommQA-Unlabeled, and
labeled by crowd sourcing judges.

• GLUE [26]: A collection of datasets for evaluating NLU sys-
tems, including nine language understanding tasks. Among
them, we choose textual entailment tasks (MNLI, SNLI, QNLI,
RTE), which are similar to Q&A task. For MNLI and QNLI,
given two sentences (premise and hypothesis), the task is
to predict whether the premise entails the hypothesis (en-
tailment), contradicts (contradiction), or neither (neutral).
While for SNLI and RTE, the relationship does not contain
neutral type.

4.2 Evaluation Metrics
We use the following metrics to evaluate model performance:

• Accuracy (ACC): Number of correct predictions divided by
the total number of samples.

• Queries Per Second (QPS): Average number of cases pro-
cessed per second. We use this metric to evaluate the model
inference speed.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

694

Table 4: Model comparison between our methods and baseline methods. ACC denotes accuracy (all ACC metrics in the table are percentage
numbers with % omitted). Specially for MNLI, we average the results of matched and mismatched validation set.

Model Performance (ACC) Inference
Speed(QPS)

Parameters
(M)DeepQA MNLI SNLI QNLI RTE

Original Model BERT-3 75.78 70.77 77.75 78.51 57.42 207 45.69

Teacher Model BERTlarge 81.47 79.10 80.90 90.30 68.23 16 333.58
BERTlarge ensemble 81.66 79.57 81.39 90.91 70.75 16/3 333.58*3

Traditional Distillation
Model

Bi-LSTM (1-o-1) 71.69 59.39 69.59 69.12 56.31 207 50.44
Bi-LSTM (1avg-o-1) 71.93 59.60 70.04 69.53 57.35 207 50.44
Bi-LSTM (m-o-m) 72.04 61.71 72.89 69.89 58.12 207/3 50.44*3
BERT-3 (1-o-1) 77.35 71.07 78.62 77.65 55.23 217 45.69

BERT-3 (1avg-o-1) 77.63 70.63 78.64 78.20 58.12 217 45.69
BERT-3 (m-o-m) 77.44 71.28 78.71 77.90 57.40 217/3 45.69*3

Our Distillation Model

Bi-LSTM (TMKDbase) 74.73 61.68 71.71 69.99 62.74 207 50.45
∗TMKDbase 79.93 71.29 78.35 83.53 66.64 217 45.70
∗TMKDlarge 80.43 73.93 79.48 86.44 67.50 217 45.70

∗ These two models are BERT-3 based models.

4.3 Baselines
We compare our model with several strong baselines to verify the
effectiveness of our approach.
• BERT-3: a studentmodel without any knowledge distillation

but instead trained as a small version of BERT/GPT, which
initilized by the bottom 3-layer weight of BERT.

• BERTLarge [5]: We use the BERTlarge fine-tuning model
(24-layer transformer blocks, 1024 hidden size, and 16 heads)
as another strong baseline.

• BERTLarge Ensemble: We use BERTlarge fine-tuningmodel
ensemble as another strong baseline (the output probability
distribution decided by the average probability distributions
of all models).

• Single Student Model (1-o-1 and 1avg-o-1) [11]: Student
model learns from one single teacher model using knowl-
edge distillation. For teacher model selection, we have two
strategies. Firstly, we pick the best model selected fromOrig-
inal BERT teacher models to distill one single model (called
1-o-1). Secondly, we pick the average score of teacher models
as another special teacher to distill one single student (called
1avg-o-1). We implement this method under two architec-
tures: BERT-3 model and Bi-LSTM model. In the following
sections, where we do not clarify the basic model is BERT-3
model.

• StudentModel Ensemble (m-o-m): For each teachermodel,
1-o-1 is used to train a single student model. Based on this
method, 3 separate student models are trained based on 3
different teacher models. Finally an ensemble aggregation is
used by simply averaging the output scores to form the final
results. We also implement it under BERT-3 base model and
Bi-LSTM model.

4.4 Parameter Settings
All teachermodels are trained using BERTlarge with batch size of 128
for 10 epochs, and max sequence length as 150. On each dataset, we
train three different teacher models with different learning rates in
{2, 3, 5} × 10−5. For BERT-3 student model, we optimize the student
model using a learning rate of 1× 10−4, and all BERT-based models
are initialized using pre-trained BERT model weights. For all BERT

based models, we implement on top of the PyTorch implementation
of BERT4.

For all Bi-LSTM based models, we set the LSTM hidden units
as 256, LSTM layer count as 2, and word embedding dimension
as 300. Top 15 thousands of words are selected as vocabulary and
300 dimension Glove is used for embedding weight initialization.
Words not in Glove vocabulary are randomly initializedwith normal
distribution. The parameters are optimized using Adam optimizer
with learning rate as 1 × 10−3.

Those teacher models used for TMKD and m-o-m training are
identical for fair comparison. The only difference between TMKDbase
and TMKDlarge is the training data in the distillation pre-training
stage. To bemore specific, TMKDbase leverages CommQA-Unlabeled
base corpus for pre-training while TMKDlarge is pre-trained using
CommQA-Unlabeled large corpus.

4.5 Comparison Against Baselines
In this section, we conduct experiments to compare TMKD with
baselines in terms of three dimensions, i.e. inference speed, param-
eter size and performance on task specific test set. From the results
shown in Table 4, it is intuitive to have the following observations:

• It is not surprising that original BERT teacher model shows
the best performance due to its sheer amount of parame-
ters (340M), but inference speed is super slow and memory
consumption is huge for production usage.

• 1-o-1 and 1avg-o-1 (BERT-3 and Bi-LSTM) obtain pretty good
results regarding inference speed andmemory capacity. How-
ever there are still some gaps compared to the original BERT
model in terms of ACC metric.

• m-o-m performs better than 1-o-1. However, the inference
speed and memory consumption increase in proportion to
the number of student models used for ensemble.

• Compared with 1-o-1, 1avg-o-1 and m-o-m, TMKD achieves
optimum in all three dimensions. In terms of memory, TMKD
only needs small amount of additional memory consumption
since the majority of parameters are shared across differ-
ent distillation tasks compared with the 1-o-1. In addition,

4github.com/huggingface/pytorch-pretrained-BERT.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

695

TMKD performs significant better than BERT-3, which fur-
ther proves the effective of our model.

To conclude, TMKD performs better in three dimensions than
several strong baseline compressed models with knowledge distil-
lation (i.e. 1-o-1, 1avg-o-1, m-o-m) on all the evaluation datasets,
and also further decreases performance gap with the original BERT
model, which verifies the effectiveness of TMKD.

5 ABLATION STUDIES
TMKD consists of multiple teacher distillation pre-training stage
and distillation fine-tuning stage. In this section, we further conduct
several experiments to analyze the contribution of each factor in
TMKD, in order to obtain a better understanding of the proposed
approach.

5.1 Impact of Different Training Stages
5.1.1 Impact of Distillation Pre-training Stage. One advantage of
TMKD is to introduce a multi-teacher distillation task for student
model pre-training to boost model performance. We analyze the
impact of pre-training stage by evaluating two new models:

TKD: A 3-layer BERTbase model which is firstly trained using
1-o-1 distillation pre-training on CommQA-Unlabeled large-scale
dataset (i.e. 40M <Question, Passage> pairs), then fine-tuned on
task specific corpus with golden label and single soft label (i.e. by
only one teacher) of each task.

KD (1-o-1): Another 3-layer BERTbase model which is fine-tuned
on task specific corpus with golden label and single soft label of
each task but without distillation pre-training stage.

From the results in Table 5, we have the following observations:
(1) On DeepQA dataset, TKD shows significant gains by leveraging
large-scale unsupervised Q&A pairs for distillation pre-training. (2)
Although Q&A task is different with GLUE tasks, the student model
of GLUE tasks still benefit a lot from the distillation pre-training
stage leveraging Q&A task. This proves the effect of the distillation
pre-training stage leveraging Q&A large corpus.

Table 5: Comparison between KD and TKD

Model Performance (ACC)
DeepQA MNLI SNLI QNLI RTE

KD (1-o-1) 77.35 71.07 78.62 77.65 55.23
TKD 80.12 72.34 78.23 85.89 67.35

5.1.2 Impact of Multi-teacher Distillation vs Single-teacher Distilla-
tion. Another advantage of TMKD is designing a unified framework
to jointly learn from multiple teachers. We analyze the impact of
multi-teacher versus single-teacher knowledge distillation by the
following three models:

MKD: A 3-layer BERTbase model trained by Multi-teacher distil-
lation (m-o-1) without pre-training stage.

KD (1avg-o-1): A 3-layer BERTbase model trained by Single-
teacher distillation (1avg-o-1) without pre-training stage, which is
to learn from the average score of teacher models.

From Table 6, MKD outperforms KD (1avg-o-1) on the majority of
tasks, which demonstrates that multi-teacher distillation approach

Table 6: Comparison Between KD (1avg-o-1) and MKD

Model Performance (ACC)
DeepQA MNLI SNLI QNLI RTE

KD (1avg-o-1) 77.63 70.63 78.64 78.20 58.12
MKD 78.21 71.98 78.80 77.80 59.92

(m-o-1) is able to help student model learn more generalized knowl-
edge by fusing knowledge from different teachers.

5.1.3 Dual-Impact of Two Stages. Finally, TKD, MKD and TMKD
are compared altogether. From Figure 2, TMKD significantly out-
performs TKD and MKD in all datasets, which verifies the comple-
mentary impact of the two stages (distillation pre-training & m-o-1
fine-tuning) for the best results.

5.1.4 Extensive Experiments: Multi-teacher Ensemble orMulti-teacher
Distillation? TMKD leverage multi-teacher distillation in both pre-
training and task specific fine-tuning stages. This multi-teacher
mechanism actually introduces multi-source information from dif-
ferent teachers. A common approach to introduce multi-source
information is ensemble (e.g. average score of the prediction outputs
from multiple models). Compared with the common multi-teacher
ensemble approach, are there extra benefits from multi-teacher dis-
tillation? We conduct further experiments to explore this question.

For clear comparisons, we apply some degradation operations to
TMKD. We remove the multi-teacher distillation mechanism from
TMKD, and then use ensemble teacher score (the average score
of soft labels by multiple teachers) and single teacher score (from
the best teacher) to train two new models with a two-stage setting
respectively, which are denoted as TKDbase (1avg-o-1) and TKDbase
(1-o-1). Experiments using both BERT-3 and Bi-LSTM as the student
model architecture are conducted, as shown in Table 7.

Table 7: Comparison between TKD and TMKD

Model Dataset
DeepQA MNLI SNLI QNLI RTE

Bi-LSTM (TKDbase (1-o-1)) 74.26 61.43 71.54 69.2 59.56
Bi-LSTM (TKDbase (1avg-o-1)) 74.38 61.55 71.7 69.08 61.01

Bi-LSTM (TMKDbase) 74.73 61.68 71.71 69.99 62.74
∗TKDbase (1-o-1) 79.5 71.07 77.66 82.79 63.89

∗TKDbase (1avg-o-1) 79.73 71.21 77.70 83.40 67.10
∗TMKDbase 79.93 71.29 78.35 83.53 66.64

∗ These three models are BERT-3 based models.

From the results, we have the following observations: (1) For both
BERT-3 ad Bi-LSTM based models, the TKDbase(1avg-o-1) performs
better than TKDbase(1-o-1). This demonstrates that ensemble of
teacher models is able to provide more robust knowledge than
single teacher model when distill the student model. (2) Compared
with TKDbase(1-o-1) and TKDbase(1avg-o-1), TMKDbase obtains the
best performance no matter using Bi-LSTM or BERT-3. It because
that the multi-source information was diluted by the average score.
TMKD introduces the differences when training, the multi-source
information can be adpative at the training stage.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

696

SKD MKD TMKD
DeepQA

40

50

60

70

80

90
A

C
C

(%
)

80.12
78.21

80.43

SKD MKD TMKD
MNLI

40

50

60

70

80

90

A
C

C
(%

)

72.34 71.98
73.93

SKD MKD TMKD
SNLI

40

50

60

70

80

90

A
C

C
(%

)

78.23 78.8 79.48

SKD MKD TMKD
QNLI

40

50

60

70

80

90

A
C

C
(%

)

85.89

77.8

86.44

SKD MKD TMKD
RTE

40

50

60

70

80

90

A
C

C
(%

)

67.35

59.92

67.5

Figure 2: Performance comparison of TKD, MKD and TMKD on different datasets

5.2 Impact of Training Data Size
To further evaluate the potential of TMKD, we conduct extensive
experiments on CommQA-Unlabeled extremely large-scale corpus
data (0.1 billion unlabeled Q&A pairs) and CommQA-Labeled (12M
labeled Q&A labeled pairs). Four separate teacher models (T1-T4) are
trained with batch size of 128 and learning rate with {2, 3, 4, 5}∗e−5.
Max sequence length is set as 200, and number of epochs as 4. The
settings of KD, MKD, and TMKD keep the same as Section 5.1. The
results are shown in Table 8. Interestingly, on this extremely large
Q&A dataset, TMKD even exceeds the performance of its teacher
model (ACC: 79.22 vs 77.00), which further verifies the effectiveness
of our approach.

Table 8: Extremely large Q&A dataset results.

Performance (ACC)
BERTlarge KD MKD TMKD

77.00 73.22 77.32 79.22

5.3 Impact of Transformer Layer Count
In this section, we discuss the impact of transformer layer count
n for TMKD5 with n ∈ {1, 3, 5}. As observed from Table 9: (1)
With n increasing, ACC increases as well but inference speed de-
creases, which aligns with our intuition. (2) With n increasing, the
performance gain between two consecutive trials decreases. That
say, when n increases from 1 to 3, the ACC gains of the 5 datasets
are (3.87, 9.90, 7.46, 11.44, 11.19) which are very big jump; while
n increases from 3 to 5, gains decrease to (1.08, 1.63, 0.53, 2.89,
0.37), without decent add-on value compared with the significantly
decreased QPS.

Table 9: Compare different number of transformer layer.

Dataset Metrics Layer Number
1 3 5

DeepQA ACC 74.59 78.46 79.54
MNLI ACC 61.23 71.13 72.76
SNLI ACC 70.21 77.67 78.20
QNLI ACC 70.60 82.04 84.94
RTE ACC 54.51 65.70 66.07

QPS 511 217 141

Based on the above results, we set n as 3 since it has the highest
performance/QPS ratio for web Question Answering System. In
real production scenarios, we need to balance between performance
and latency.
5In order to save experimental costs, we choose TMKDbase for experimentation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Ratio α

79.6

79.8

80.0

80.2

80.4

80.6

A
C

C
(%

)

Figure 3: The impact of different loss weighted ratio.

5.4 Impact of Loss Weighted Ratio
We also conducts several experiments to analyze the impact of the
loss weighted ratioα defined in Section 3.3, whereα ∈ {0.1, 0.3, 0.5,
0.7, 0.9, 1.0}. Specially, when set the ratio as 1.0, we only use the
soft label headers to calculate the final output result. The results
of TMKD against different α values are shown in Figure 3. We can
observe: (1) The larger value the ratio is, the better performance
is obtained (except when α is 1.0). (2) Without the golden label
supervision (i.e.α is 1.0), the performance decreases. The intuition is
just like the knowledge learning process of human beings. We learn
knowledge not only from teachers but also through reading books
which can provide us a comprehensive way to master knowledge
with less bias.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel Two-stage Multi-teacher Knowl-
edge Distillation (TMKD) approach for model compression. Firstly
a Q&A multi-teacher distillation task is proposed for student model
pre-training, then a multi-teacher paradigm is designed to jointly
learn from multiple teacher models (m-o-1) for more generalized
knowledge distillation on downstream specific tasks. Experiment
results show that our proposed method outperforms the baseline
state-of-art methods by great margin and even achieves compara-
ble results with the original teacher models, along with significant
speedup of model inference. The compressed Q&A model with
TMKD has already been applied to real commercial scenarios which
brings significant gains.

In the future, we will extend our methods to more NLU tasks,
such as sequence labelling, machine reading comprehension, etc.
On the other hand, we will explore how to select teacher models
more effectively for better student model distillation.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

697

REFERENCES
[1] Philipp Cimiano, Christina Unger, and John McCrae. 2014. Ontology-based inter-

pretation of natural language. Synthesis Lectures on Human Language Technologies
7, 2 (2014), 1–178.

[2] Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning,
and Quoc V. Le. 2019. BAM! Born-Again Multi-Task Networks for Natural
Language Understanding. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers. 5931–5937.

[3] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine learning. ACM, 160–167.
https://doi.org/10.1145/1390156.1390177

[4] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
2014. Exploiting Linear Structure Within Convolutional Networks for Efficient
Evaluation. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada. 1269–1277.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
(2019), 4171–4186.

[6] Yuxiao Dong, Yang Yang, Jie Tang, Yang Yang, and Nitesh V Chawla. 2014. In-
ferring user demographics and social strategies in mobile social networks. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 15–24. https://doi.org/10.1145/2623330.2623703

[7] Murhaf Fares, Stephan Oepen, and Erik Velldal. 2018. Transfer and Multi-Task
Learning for Noun-Noun Compound Interpretation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018. 1488–1498.

[8] Jonathan Frankle andMichael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).

[9] Babak Hassibi and David G. Stork. 1993. Second order derivatives for network
pruning: Optimal Brain Surgeon. In Advances in Neural Information Processing
Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.). Morgan-Kaufmann,
164–171.

[10] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating
Very Deep Neural Networks. In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. 1398–1406. https://doi.org/10.1109/
ICCV.2017.155

[11] Geoffrey EHinton, Oriol Vinyals, and JeffreyDean. 2015. Distilling the Knowledge
in a Neural Network. arXiv: Machine Learning (2015).

[12] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. 328–339. https://doi.org/10.18653/v1/P18-1031

[13] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up convo-
lutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866
(2014).

[14] Yoon Kim and Alexander M. Rush. 2016. Sequence-Level Knowledge Distillation.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016. 1317–1327.

[15] Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and Noah A.
Smith. 2016. Distilling an Ensemble of Greedy Dependency Parsers into One
MST Parser. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016. 1744–
1753.

[16] Yann LeCun, John S. Denker, and Sara A. Solla. 1989. Optimal Brain Damage. In
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver,
Colorado, USA, November 27-30, 1989]. 598–605.

[17] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and
Dhruv Batra. 2015. Why M Heads are Better than One: Training a Diverse
Ensemble of Deep Networks. CoRR abs/1511.06314 (2015). arXiv:1511.06314
http://arxiv.org/abs/1511.06314

[18] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Improv-
ing Multi-Task Deep Neural Networks via Knowledge Distillation for Natural
Language Understanding. CoRR abs/1904.09482 (2019).

[19] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task
Deep Neural Networks for Natural Language Understanding. In Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. 4487–4496.

[20] Lili Mou, Ran Jia, Yan Xu, Ge Li, Lu Zhang, and Zhi Jin. 2016. Distilling Word
Embeddings: An Encoding Approach. In Proceedings of the 25th ACM International
Conference on Information and Knowledge Management, CIKM 2016, Indianapolis,
IN, USA, October 24-28, 2016. 1977–1980. https://doi.org/10.1145/2983323.2983888

[21] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, and Kunal
Talwar. 2017. Semi-supervised Knowledge Transfer for Deep Learning from
Private Training Data. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[22] Anastasia Pentina and Christoph H Lampert. 2017. Multi-Task Learning with
Labeled and Unlabeled Tasks. stat 1050 (2017), 1.

[23] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long
Papers). 2227–2237.

[24] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression
via distillation and quantization. CoRR abs/1802.05668 (2018).

[25] Alec Radford. 2018. Improving Language Understanding by Generative Pre-
Training.

[26] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[27] Meng-Chieh Wu, Ching-Te Chiu, and Kun-Hsuan Wu. 2019. Multi-teacher
Knowledge Distillation for Compressed Video Action Recognition on Deep Neu-
ral Networks. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2019, Brighton, United Kingdom, May 12-17, 2019. 2202–2206.

[28] Junho Yim, Heechul Jung, ByungIn Yoo, Changkyu Choi, Dusik Park, and Junmo
Kim. 2015. Rotating your face using multi-task deep neural network. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 676–684.
https://doi.org/10.1109/CVPR.2015.7298667

[29] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. 2017. Learning from Multiple
Teacher Networks. In Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 -
17, 2017. 1285–1294.

[30] Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui
Hsieh. 2019. Reducing BERT Pre-Training Time from 3 Days to 76 Minutes. CoRR
abs/1904.00962 (2019).

[31] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. 2015.
Efficient and accurate approximations of nonlinear convolutional networks. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015. 1984–1992. https://doi.org/10.1109/CVPR.2015.7298809

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

698

https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/2623330.2623703
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.18653/v1/P18-1031
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1511.06314
https://doi.org/10.1145/2983323.2983888
https://doi.org/10.1109/CVPR.2015.7298667
https://doi.org/10.1109/CVPR.2015.7298809

	Abstract
	1 Introduction
	2 Related Work
	2.1 Model Compression
	2.2 Multi-task Learning

	3 Our Approach
	3.1 Overview
	3.2 TMKD Architecture
	3.3 Training and Prediction

	4 Experiment
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Baselines
	4.4 Parameter Settings
	4.5 Comparison Against Baselines

	5 Ablation Studies
	5.1 Impact of Different Training Stages
	5.2 Impact of Training Data Size
	5.3 Impact of Transformer Layer Count
	5.4 Impact of Loss Weighted Ratio

	6 Conclusion and Future Work
	References

