
FishStore: Fast Ingestion and Indexing of Raw Data

Badrish Chandramouli† Dong Xie‡∗ Yinan Li† Donald Kossmann†
†Microsoft Research ‡University of Utah

badrishc@microsoft.com, dongx@cs.utah.edu, yinali@microsoft.com, donaldk@microsoft.com

ABSTRACT
The last decade has witnessed a huge increase in data be-
ing ingested into the cloud from a variety of data sources.
The ingested data takes various forms such as JSON, CSV,
and binary formats. Traditionally, data is either ingested
into storage in raw form, indexed ad-hoc using range in-
dices, or cooked into analytics-friendly columnar formats.
None of these solutions is able to handle modern require-
ments on storage: making the data available immediately for
ad-hoc and streaming queries while ingesting at extremely
high throughputs. We demonstrate FishStore, our open-
source concurrent latch-free storage layer for data with flex-
ible schema. FishStore builds on recent advances in pars-
ing and indexing techniques, and is based on multi-chain
hash indexing of dynamically registered predicated subsets
of data. We find predicated subset hashing to be a powerful
primitive that supports a broad range of queries on ingested
data and admits a higher performance (by up to an order of
magnitude) implementation than current alternatives.

PVLDB Reference Format:
Badrish Chandramouli, Dong Xie, Yinan Li, and Donald Koss-
mann. FishStore: Fast Ingestion and Indexing of Raw Data.
PVLDB, 12(12): 1922-1925, 2019.
DOI: https://doi.org/10.14778/3352063.3352100

1. INTRODUCTION
Over the last few years, driven by the increasing impor-

tance of the cloud-edge architecture, we have been witness-
ing a huge increase in data being ingested into the cloud
from a variety of data sources. The ingested data takes var-
ious forms ranging from JSON (a popular flexible nested
data format with high expressive power) to relational-style
data in CSV (comma-separated values) format, and binary
formats such as Apache Thrift [2].

Given the huge ingested data volume, the goal for inges-
tion has traditionally been to ingest data as fast as possible,
saturating storage bandwidth and incurring minimal CPU

∗Work started during internship at Microsoft Research.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352100

overhead. These goals usually result in simply dumping raw
data on storage. More recently, however, there is an increas-
ing need [10, 8] to make the ingested data available “imme-
diately” for an ever-increasing range of analytic queries:

• Ad-hoc analysis queries that scan data over time ranges
(e.g., last hour of data). The scan may (1) include com-
plex predicates over possibly nested fields; (2) involve cus-
tom logic to select a varying (but usually small) number
of records; and (3) access a small number of fields.

• Recurring queries that have identical predicates, but are
repeated over different time ranges (e.g., execute a report
over the last hour of data, repeated every hour).

• Point lookup queries that are based on various keys, e.g.,
join keys in case of streaming joins, that lookup the data,
often over a recent window.

• Streaming queries that are fed parts of the ingested data
satisfying custom predicates and based on the query schema.

1.1 Today’s Solutions
The traditional solution is to ingest data in raw form and

then make the data available for offline queries using peri-
odic batch jobs that load data into a warehouse, e.g., in an
optimized format such as Parquet [1]. This process is highly
CPU intensive and slow, incurs high latency before the data
is available for ad-hoc or repeated queries, and does not help
with point lookups or streaming queries, making it unsuit-
able for our target applications. Alternatively, we can fully
parse records and either load them into a database or up-
date a secondary range index over every (nested) attribute
and prefix during ingestion. However, full parsing, database
loading, and full secondary index creation are slow. For ex-
ample, we found that a typical JSON parser can only do full
parsing at a speed of around 100MB/sec per CPU core [11].

1.2 New Trends in Parsing and Indexing
Recently, raw parsers such as Mison [11] and simdjson [7]

have transformed the parsing landscape by achieving speeds
of more than 2GB/sec per core. They run on a single thread
and exploit batching, SIMD parallelism, and the targeted
parsing of a few fields to achieve high throughput. However,
we find that simply plugging in a fast parser into today’s
solutions does not help with ingestion because we have to
parse all fields. A modified approach, where only a few fields
are indexed, can relieve the parsing bottleneck, but does not
improve ingestion because the bottleneck shifts to the heavy
range indices such as RocksDB [6] that are used in practice,
which incur heavy write amplification, random I/Os, and
CPU overheads.

1922

Persistent key-value stores such as FASTER [9] have re-
cently been shown to offer unprecedented performance at
very low CPU cost – more than 150 millions ops/sec on
a modern CPU. FASTER consists of a lightweight cache-
optimized concurrent hash index backed by a record-oriented
hybrid log. The log is ordered by data arrival and incurs no
write amplification. A large portion of the log tail is re-
tained in an in-memory circular buffer. While promising,
such indices are designed to serve point lookups, inserts,
and updates, and as such are insufficient for our target ap-
plications.

1.3 Introducing FishStore
We advocate a different approach. We introduce a new

storage layer for flexible-schema data, called FishStore1, that
combines fast parsing with a hash-based primary subset in-
dex. First, FishStore takes as input a generic data parser
that exposes the ability to efficiently parse a batch of records
and extract a given set of fields from each record in the
batch. Second, FishStore allows applications to dynamically
register (and deregister) predicated subset functions (PSFs)
over the data. Briefly, PSFs allow applications to identify
and efficiently retrieve different subsets of records, and work
as follows. Users provide a function f : R → D that maps
each record r ∈ R to a value d in domain D, based on a given
set of fields of interest for the PSF. FishStore allows users to
retrieve all records satisfying a given PSF and value. PSF-
based indexing (Section 2) is powerful yet admits an efficient
and scalable implementation. For example, it can support
point lookups, equi-joins, selection predicates, prefix queries,
and predefined range queries over the data.

Example (Machine Telemetry) Consider the application
depicted in Figure 1, where machines report telemetry data
for ingestion. An analyst wishes to investigate machines
with low CPU and high memory utilization. They register
a PSF f1 that indexes records with CPU usage lower than
15% and memory usage greater than 75%. Records matching
this condition are now indexed and available for subsequent
analysis. As another example, they may wish to index (or
group) the data by machine name using PSF f2, which al-
lows drilling down into a particular machine’s logs. The
data may be prepared for analysis by ranges of CPU usage
via PSF f3, which creates buckets for different CPU usage
ranges.

1.4 FishStore Components
We overview the FishStore system and its challenges in

Section 3. Briefly, it consists of two major components: (1)
Ingestion and Indexing : FishStore ingests data concurrently
into an immutable log (in ingestion order) and maintains
a hash index. For every active PSF f and non-null value
v ∈ D, we create a hash entry (f, v) that links all matching
log records for that entry in a hash chain. (2) Subset Re-
trieval : FishStore supports scans for records matching PSF
values (f, v) over a part of the ingested log, and returns the
requested fields for matching records. FishStore uses a novel
adaptive scan for high performance.

To recap, FishStore combines fast parsing with lightweight
dynamic hash indexing to provide an extremely fast and
general-purpose storage layer for analytics. PSF registra-
tion is similar in concept to dynamically attaching debug-
gers to the data. Ingestion performance depends on the
1Stands for Faster I ngestion with Subset H ashing Store.

Time Machine CPU MEM

1:00pm m0 9.45% 83.52%

1:00pm m4 14.67% 57.44%

1:02pm m3 10.00% 92.50%

1:03pm m5 5.00% 75.32%

1:03pm m1 13.45% 90.45%

1:04pm m2 93.45% 84.56%

1:05pm m5 81.75% 65.03%

()

() ()

()

()

()

()

()

()

()

()

 &

Figure 1: Machine Telemetry PSF Example

number of active PSFs and fields of interest. This pattern
retains the performance benefits of batched partial pars-
ing, arrival-time-based logging, and hash indexing. Exten-
sive evaluations on real workloads [12] show that FishStore
can achieve an order of magnitude higher ingestion and re-
trieval speeds, and can saturate a modern SSD’s bandwidth
(2GB/sec) using only a few cores (usually less than 8) on one
machine, showing that we can use inexpensive CPUs with
FishStore. Without the SSD bottleneck, FishStore achieves
up to 16.5GB/sec ingestion speed for a real workload, show-
ing its potential on future disks, RAID, and RDMA storage.

FishStore is row-oriented with record headers, and sits
early in the ETL pipeline. Older raw data (or its more re-
fined predicated subsets) may eventually migrate to formats
such as Parquet for offline analytics, e.g., using batch jobs.
FishStore can serve as a storage layer for data ingestion;
streaming engines may use FishStore to push down predi-
cates and build shared indices over ingested data.

FishStore is available as open-source software [3], and may
be used with open-source parsers such as simdjson using
our parser plugin model. Our research paper [12] covers the
technical details of FishStore. In this paper, we overview
the system and detail our demonstration scenarios.

2. PREDICATED SUBSET FUNCTIONS
A central concept in FishStore is the notion of a predi-

cated subset function (PSF), which logically groups records
with similar properties for later retrieval.

Definition 1 (Predicated Subset Function) For a given
data source of records in R, a predicated subset function
(PSF) is a function f : R → D which maps valid records
in R, based on a set of fields of interest in R, to a specific
value in domain D.

For example, the field projection function ΠC(r) is a valid
PSF that maps a record r to the value of its field C. If r
does not contain field C or its value for field C is null, we
have ΠC(r) = null. Given a set of PSFs, a particular record
may satisfy (i.e., have a non-null value for) several of them.
We call these the properties of the record:

Definition 2 (Record Property) A record r ∈ R is said
to have property (f, v), where f is a PSF mapping R to D
and f(r) = v ∈ D.

As a PSF can be an arbitrary user-defined function, this
abstraction covers a large range of applications. With the
field projection function ΠC mentioned above, users can log-
ically group records with the same value of field C, which is

1923

useful for operations such as joins and lookups. Similarly, if
we have a boolean function P that evaluates over a record,
we can use (P, true) and (P, false) to logically group the
matching and non-matching records. PSFs and their fields
of interest are dynamically registered, enabling ingestion of
data with flexible schema.

Expanding on the machine telemetry example from Sec-
tion 1, Figure 1 depicts hash chains for each property (f, v).
The blue boxes to the left represent header entries corre-
sponding to records on the right. Note that different records
may satisfy a different number and set of properties; for in-
stance, the second record satisfies only two active properties.
More examples of PSF use are provided in our research pa-
per [12].

3. SYSTEM OVERVIEW
FishStore is a storage system for data with flexible schema,

that supports fast ingestion with on-demand indexing based
on PSFs. We now describe FishStore’s interface and over-
all architecture, and overview the technical challenges, and
refer readers to our paper [12] for details.

3.1 Operations on FishStore
FishStore supports three kinds of operations: data inges-

tion, on-demand indexing, and record retrieval.

Data Ingestion. FishStore receives batches of raw records
from multiple threads in parallel. Based on the active fields
of interest, it uses the user-provided data parser to parse spe-
cific fields. It then indexes records based on their properties
and inserts them into storage in a latch-free manner. Fish-
Store works with data larger than memory, with the most
recent data in an (immutable) in-memory circular buffer. As
pages are filled and made immutable, FishStore automati-
cally pushes them to storage.

On-demand Indexing. FishStore allows users to register
and deregister PSFs over a data source on-demand. Based
on the set of active PSFs, FishStore builds a subset hash
index over the properties defined by a PSF f and a value
v in its domain. Specifically, for each property of interest
(f, v), FishStore maintains a hash chain that contains all
records r ∈ R such that f(r) = v. Thus, a record may be
part of more than one hash chain. All index entries are built
right next to the record (in a variable-sized record header)
so as to reduce retrieval cost and maximize ingestion speed.

FishStore does not re-index data that has already been in-
gested into the system. This design implies a need to track
the boundaries of an index’s existence. When a PSF is reg-
istered, FishStore computes a safe log boundary after which
all records are guaranteed to be indexed. Symmetrically,
FishStore computes a safe log boundary indicating the end
of a specific index, when the user deregisters a PSF. We can
use these boundaries to identify the available PSF indices
over different intervals of the log.

Record Retrieval. FishStore supports retrieving records
satisfying a predicate within a range of the log. Two scan-
ning modes are supported, full scan and index scan. Full
scan goes through all records and checks if the predicate
is satisfied. Index scan uses hash chains to accelerate data
retrieval. When records within a log range are partially in-
dexed, FishStore breaks up the request into a combination
of full scans and index scans. Note that point lookups nat-
urally fit within this operation, and results can be served

Full Scan

Write Ahead Log

On Disk In Memory

Hash Table
Index Scan

Insertion Unit

Registration
Meta

Indexing Requests

Insertion UnitInsertion Unit

Parser &
Pred Evaluator

Record Insertion

Incoming Data

Parser &
Pred Evaluator

Parser &
Pred Evaluator

Parser &
Pred Evaluator

D
at

a
In

ge
st

io
n

W
o

rk
er

s

Figure 2: Overall FishStore Architecture

from memory if the corresponding portion of the log is in
the in-memory immutable circular buffer. PSFs can support
pre-defined range queries over fields (within a log range) by
building the corresponding hash chains. For arbitrary range
queries on older data, one may use post-filtering over pre-
defined ranges or build secondary indices.

3.2 System Architecture
Figure 2 shows the overall architecture of FishStore. It

consists of a log serving as the record allocator, a hash in-
dex that holds pointers to records on the log, a registration
service, and a set of ingestion workers.

When a record is ingested, FishStore allocates space on
the log using an atomic fetch-and-add operation on the tail.
The tail is present in an in-memory circular buffer of pages,
and filled (immutable) pages are flushed to disk. We main-
tain a unified logical address space across memory and disk,
simplifying record indexing and access. The hash table
serves as the entry point; each entry in the hash table con-
tains a pointer to the log where records sharing the same
(f, v) pair are chained together. The hash table and log
hash chains together serve as our index layer.

All indexing requests are reflected in the registration meta-
data of FishStore. Through an epoch-based threading model,
indexing requests are propagated to ingestion worker threads.
Based on the meta-data, incoming data are parsed and eval-
uated against user-defined predicates. Based on the results,
ingestion workers collaboratively update the hash table and
hash chains on the log in a latch-free manner.

A user can issue a subset retrieval scan of any range of
the log to FishStore. The scan is satisfied by a combination
of full scan and index scan operations. A full scan reads
one page at a time, checking each record for the requested
property. An index scan starts from the hash table and
goes through the hash chain on the log, so as to retrieve all
records satisfying the property. Lightweight post-processing
is used to eliminate incorrect results due to hash collisions.

Challenges. Retaining high ingestion performance required
a careful design that overcomes several challenges, summa-
rized below and detailed in our research paper [12]:

• Designing a fast concurrent index which supports PSFs is
non-trivial. FishStore introduces the subset hash index,
which combines hashing with a carefully designed record
layout, to solve this problem.

• FishStore needs be able to acquire a safety boundary for
on-demand indexing. We utilize the epoch-based thread-

1924

(a) Online Ingestion and Retrieval (b) Developing Custom PSFs (c) Run-time Performance Dashboard

Figure 3: Screenshots of Aspects of the System that will be Demonstrated to Visitors

ing model to help us find safe boundaries within which a
specific index is guaranteed to exist.

• Data ingestion should be latch-free so as to achieve high
throughput on multiple threads. FishStore adopts a novel
lock-free technique to update the index with very low cost
even during heavy contention.

• Scanning through hash chain on disk involves many ran-
dom I/Os, which can hurt the performance of subset re-
trieval. FishStore introduces an adaptive prefetching tech-
nique which actively detects locality on disk and effec-
tively reduces the number of I/Os issued.

4. DEMO WALKTHROUGH
We have built an online continuous raw data ingestion

application using FishStore, that we will use to demonstrate
FishStore. We use two real JSON datasets as input:

• Github: The Github timeline dataset [4] collected in
September 2018 includes 18 million records and is 49GB
in file size. It features complex JSON structure with a
moderate average record size (∼ 3KB).

• Twitter: Active 1% sample of tweets crawled through the
Twitter API in three days, which is 52GB and contains
9.3 million tweets. Records in this dataset are structurally
complex with large average record size (> 5KB) as well.

In the online demo, a configurable number of threads con-
tinuously ingest data from an in-memory cache of the spec-
ified dataset (repeating same data when done). The demo
can work either with a real local SSD or a “null” device.
The latter serves to demonstrate performance without the
storage bottleneck. Our console-based interface, depicted in
Figure 3a, allows users to perform operations such as:

• Print the current ingestion throughput

• Register a data field for indexing all values

• Dynamically load a specified PSF library (C++)

• Register filter PSFs based on functions in the library

• Perform scans of registered field and filter PSFs

• De-register PSFs

Visitors to the demo can interact with the demo by regis-
tering PSFs and viewing the results of scan operations. They
may also author new PSFs and load them dynamically, by
writing the appropriate C++ code. Figure 3b shows how
two queries on the GitHub dataset are authored.

We have also built a rich online performance dashboard
(shown in Figure 3c) using Microsoft PowerBI [5], that shows
the impact on system performance (e.g., ingestion speed) in

real-time, as PSF registration, re-registration, and subset re-
trieval scans are being performed on the system. The dash-
board, along with the demo interface, will serve to demon-
strate the power of dynamic PSF-based indexing as well as
FishStore’s high performance, which will be used as a basis
to explain the technical innovations that lead to the perfor-
mance.

5. CONCLUSION
We demonstrate FishStore, a concurrent storage layer for

data with flexible schema, based on the notion of hash in-
dexing dynamically registered predicated subset functions.
FishStore can handle a wide range of applications and can
ingest, index, and retrieve data at up to an order of mag-
nitude lower cost than current alternatives. FishStore is
available as open-source software [3], and may be paired
with custom or standard data parsers. We welcome contri-
butions from the research community as well.

6. REFERENCES
[1] Apache Parquet. https://parquet.apache.org/.

[2] Apache Thrift. https://thrift.apache.org/.

[3] FishStore.
https://github.com/microsoft/FishStore.

[4] GH Archive. https://www.gharchive.org/.

[5] Microsoft PowerBI.
https://powerbi.microsoft.com/.

[6] RocksDB. http://rocksdb.org/.

[7] simdjson. https://github.com/lemire/simdjson.

[8] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB: efficient query execution on raw
data files. In SIGMOD, 2012.

[9] B. Chandramouli, G. Prasaad, D. Kossmann, J. J.
Levandoski, J. Hunter, and M. Barnett. FASTER: A
concurrent key-value store with in-place updates. In
SIGMOD, pages 275–290, 2018.

[10] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou.
The researcher’s guide to the data deluge: Querying a
scientific database in just a few seconds. PVLDB,
4(12):1474–1477, 2011.

[11] Y. Li, N. R. Katsipoulakis, B. Chandramouli,
J. Goldstein, and D. Kossmann. Mison: A fast JSON
parser for data analytics. PVLDB, 10(10):1118–1129,
2017.

[12] D. Xie, B. Chandramouli, Y. Li, and D. Kossmann.
FishStore: Faster Ingestion with Subset Hashing. In
SIGMOD, 2019.

1925

