Recent Advances in Conversational Information Retrieval (CIR) - A review of neural approaches

Jianfeng Gao, Chenyan Xiong, Paul Bennett
Microsoft Research
SIGIR 2020
July 26, 2020 (Xi’an, China)
Outline

• **Part 1: Introduction**
 • A short definition of CIR
 • Task-oriented dialog and Web search
 • Research tasks of CIR

• Part 2: Conversational question answering (QA) methods

• Part 3: Conversational search methods

• Part 4: Overview of public and commercial systems
Who should attend this tutorial?

• Whoever wants to understand and develop modern CIR systems that
 • Can interact with users for information seeking via multi-turn dialogs
 • Can answer questions
 • Can help users search / look up information
 • Can help users with learning and investigation tasks
 • …

• Focus on neural approaches in this tutorial

• Hybrid approaches that combine classical AI methods and deep learning methods are widely used to build real-world systems
A short definition of CIR

• A Conversational Information Retrieval (CIR) system is
 • an information retrieval (IR) system with
 • a conversational interface which
 • allows users to interact with the system to seek information
 • via multi-turn conversations of natural language.

• CIR is a task-oriented dialog system (aka. task-oriented bot)
 • Complete tasks (e.g., information seeking) via multi-turn conversations of natural language
Classical task-oriented dialog system architecture

Language understanding:
- Find me a restaurant serving Chinese food
- Words: Find me a restaurant serving Chinese food
- Meaning: intent: get_restaurant
 food: chinese

Language generation:
- Which area do you prefer?
- Words: Which area do you prefer?
- Meaning: intent: ask_slot
 slot: area

Dialog state tracking:
- state

Policy (action selection):
- Web or Database (APIs)

Dialog Manager (DM):
User-System interaction in task-oriented dialog

• User: know (roughly) what she needs, but not what is available.
• System: know what is available, but not what a user needs
• dialog: a two-way process of knowing each other to make a deal
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H: I am looking for a museum in the center of town. Do you have any suggestion?</td>
<td>M: There are 6 museums in the center of town. How about the Broughton house gallery at 98 King Street?</td>
</tr>
<tr>
<td>H: Nice, can you tell me what is the phone number and address?</td>
<td>M: The phone number for the Broughton house gallery is 01223314960 and they are located at 98 King Street.</td>
</tr>
<tr>
<td>H: OK thanks, can you recommend a restaurant in the same area serving Indian food</td>
<td>M: Curry Garden serves Indian food and is located in the center. Would you like me to make a reservation?</td>
</tr>
<tr>
<td>H: Sure, please book a table for two people on Thursday at 18:00</td>
<td>M: OK, I have a table for 2 at 18:00 on Thursday. Your reference number is 1234567890. Is there anything else I can help you with?</td>
</tr>
<tr>
<td>H: That's it, bye.</td>
<td>M: Have a great time and please contact us if you need any further assistance. Goodbye.</td>
</tr>
</tbody>
</table>

Belief State

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attraction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Restaurant</td>
<td></td>
</tr>
</tbody>
</table>

DB State

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Telephone:</td>
<td></td>
</tr>
<tr>
<td>Postcode:</td>
<td></td>
</tr>
</tbody>
</table>

Peng+20
User-system interaction in Web search

• User: know (roughly) what she needs, but not what is available.
• System: know what is available, but not what a user needs
• Generally viewed as a one-way information seeking process
 • User plays a **proactive** role to iteratively
 • issue a query,
 • inspect search results,
 • reformulate the query
 • System plays a **passive** role to make search more effective
 • Autocomplete a query
 • Organize search results (SERP)
 • Suggest related queries
System should interact with users more actively

• How people search -- Information seeking
 • Information lookup – short search sessions;
 • Exploratory search based on a dynamic model, an iterative “sense-making” process where users learn as they search, and adjust their information needs as they see search results.

• Effective information seeking requires interaction btw users and a system that explicitly models the interaction by
 • Tracking belief state (user intent)
 • Asking clarification questions
 • Providing recommendations
 • Using natural language as input/output

[Hearst+11; Collins-Thompson+ 17; Bates 89]
A long definition of CIR - the RRIMS properties

• **User Revealment**: help users express their information needs
 • E.g., query suggestion, autocompletion
• **System Revealment**: reveal to users what is available, what it can or cannot do
 • E.g., recommendation, SERP
• **Mixed Initiative**: system and user both can take initiative (two-way conversation)
 • E.g., asking clarification questions
• **Memory**: users can reference past statement
 • State tracking
• **Set Retrieval**: system can reason about the utility of sets of complementary items
 • Task-oriented, contextual search or QA

[Radlinski&Craswell 17]
CIR research tasks (task-oriented dialog modules)

• What we will cover in this tutorial
 • Conversational Query Understanding (LU, belief state tracking)
 • Conversational document ranking (database state tracking)
 • Learning to ask clarification questions (action select via dialog policy, LG)
 • Conversational leading suggestions (action select via dialog policy, LG)
 • Search result presentation (response generation, LG)

• Early work on CIR [Croft’s keynote at SIGIR-19]

• We start with conversational QA which is a sub-task of CIR
Outline

• Part 1: Introduction

• Part 2: Conversational QA methods
 • Conversational QA over knowledge bases
 • Conversational QA over texts

• Part 3: Conversational search methods

• Part 4: Case study of commercial systems
Conversational QA over Knowledge Bases

- Knowledge bases and QAs
- C-KBQA system architecture
 - Semantic parser
 - Dialog manager
 - Response generation
- KBQA w/o semantic parser
- Open benchmarks
Knowledge bases

- Relational databases
 - Entity-centric knowledge base
 - Q: what super-hero from Earth appeared first?
- Knowledge Graph
 - Properties of billions of entities
 - Relations among them
 - (relation, subject, object) tuples
 - Freebase, FB Entity Graph, MS Satori, Google KG etc.
 - Q: what is Obama’s citizenship?
- KGs work with paths while DBs work with sets

[Iyyer+18; Gao+19]
Question-Answer pairs

• Simple questions
 • can be answered from a single tuple
 • Object? / Subject? / Relation?

• Complex questions
 • requires reasoning over one or more tuples
 • Logical / quantitively / comparative

• Sequential QA pairs
 • A sequence of related pairs
 • Ellipses, coreference, clarifications, etc.

[Saha+18]
C-KBQA system architecture

- **Semantic Parser**
 - map input + context to a semantic representation (logic form) to
 - Query the KB

- **Dialog manager**
 - Maintain/update state of dialog history (e.g., QA pairs, DB state)
 - Select next system action (e.g., ask clarification questions, answer)

- **Response generator**
 - Convert system action to natural language response

- **KB search** (Gao+19)

Dialog state tracker

Dialog Policy (action selection)

Response Generator

Semantic Parser

`Find me the Bill Murray's movie.`

`Select Movie Where {direct \[\text{Bill Murray}\]}`

`What was it released?`
Dynamic Neural Semantic Parser (DynSP)

• Given a question (dialog history) and a table
 • Q: “which superheroes came from Earth and first appeared after 2009?”

• Generate a semantic parse (SQL-query)
 • A select statement (answer column)
 • Zero or more conditions, each contains
 • A condition column
 • An operator (=, >, <, argmax etc.) and arguments
 • Q: Select Character Where \{Home World = “Earth”\} & \{First Appear > “2009”\}
 • A: \{Dragonwing, Harmonia\}
Model formulation

- Parsing as a state-action search problem
 - A state S is a complete or partial parse (action sequence)
 - An action A is an operation to extend a parse
 - Parsing searches an end state with the highest score
- “which superheroes came from Earth and first appeared after 2009?”
 - (A_1) Select-column Character
 - (A_2) Cond-column Home World
 - (A_3) Op-Equal “Earth”
 - (A_2) Cond-column First Appeared
 - (A_5) Opt-GT “2009”

Types of actions and the number of action instances in each type. Numbers / datetimes are the mentions discovered in the question.

Possible action transitions based on their types. Shaded circles are end states.

[Iyyer+18; Andreas+16; Yih+15]
How to score a state (parse)?

• Beam search to find the highest-scored parse (end state)
 • \(V_\theta(S_t) = V_\theta(S_{t-1}) + \pi_\theta(S_{t-1}, A_t), V(S_0) = 0 \)

• Policy function, \(\pi_\theta(S, A) \),
 • Scores an action given the current state
 • Parameterized using different neural networks, each for an action type
 • E.g., Select-column action is scored using the semantic similarity between question words (embedding vectors) and column name (embedding vectors)
 • \(\frac{1}{|W_c|} \sum_{w_c \in W_c} \max_{w_q \in W_q} w_q^T w_c \)

[Iyyer+18; Andreas+16; Yih+15]
Model learning

- State value function: \(V_\theta(S_t) = \sum_{i=1}^{t} \pi_\theta(S_{i-1}, A_i) \)
 - An E2E trainable, question-specific, neural network model

- Weakly supervised learning setting
 - Question-answer pairs are available
 - Correct parse for each question is not available

- Issue of delayed (sparse) reward
 - Reward is only available after we get a (complete) parse and the answer

- Approximate (dense) reward
 - Check the overlap of the answers of a partial parse \(A(S) \) with the gold answers \(A^* \)
 - \(R(S) = \frac{|A(S) \cap A^*|}{|A(S) \cup A^*|} \)

[lyyer+18; Andreas+16; Yih+15]
Parameter updates

• Make the state value function V_θ behave similarly to reward R
• For every state S and its (approximated) reference state S^*, we define loss as

 $\mathcal{L}(S) = (V_\theta(S) - V_\theta(S^*)) - (R(S) - R(S^*))$
• Improve learning efficiency by finding the most violated state \hat{S}

Algorithm 1 Model parameter updates

1. **for** pick a labeled data (x, A^*) **do**
 // labeled QA pair
2. $s^* \leftarrow \arg \max_{s \in \mathcal{E}(x)} \tilde{R}(s; A^*)$
 // Finds the best approximated reference state
3. $\hat{s} \leftarrow \arg \max_{s \in \mathcal{E}(x)} V_\theta(s) - \tilde{R}(s; A^*)$
 // Finds the most violated state
4. update θ by minimizing $\max(\mathcal{L}(s), 0)$
5. **end for**

[iyyer+18; Taskar+04]
DynSP SQA

- “which superheroes came from Earth and first appeared after 2009?”
 - (A_1) Select-column **Character**
 - (A_2) Cond-column **Home World**
 - (A_3) Op-Equal “Earth”
 - (A_2) Cond-column **First Appeared**
 - (A_5) Opt-GT “2009”

- “which of them breathes fires”
 - (A_{12}) S-Cond-column **Powers**
 - (A_{13}) S-Op-Equal “Fire breath”

<table>
<thead>
<tr>
<th>Id</th>
<th>Type</th>
<th># Action instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>Select-column</td>
<td># columns</td>
</tr>
<tr>
<td>A_2</td>
<td>Cond-column</td>
<td># columns</td>
</tr>
<tr>
<td>A_3</td>
<td>Op-Equal (=)</td>
<td># rows</td>
</tr>
<tr>
<td>A_4</td>
<td>Op-NotEqual (!=)</td>
<td># rows</td>
</tr>
<tr>
<td>A_5</td>
<td>Op-GT (>)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_6</td>
<td>Op-GE (≥)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_7</td>
<td>Op-LT (<)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_8</td>
<td>Op-LE (≤)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_9</td>
<td>Op-ArgMin</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{10}</td>
<td>Op-ArgMax</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{11}</td>
<td>Subsequent</td>
<td>1</td>
</tr>
<tr>
<td>A_{12}</td>
<td>S-Cond-column</td>
<td># columns</td>
</tr>
<tr>
<td>A_{13}</td>
<td>S-Op-Equal (=)</td>
<td># rows</td>
</tr>
<tr>
<td>A_{14}</td>
<td>S-Op-NotEqual (!=)</td>
<td># rows</td>
</tr>
<tr>
<td>A_{15}</td>
<td>S-Op-GT (>)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{16}</td>
<td>S-Op-GE (≥)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{17}</td>
<td>S-Op-LT (<)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{18}</td>
<td>S-Op-LE (≤)</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{19}</td>
<td>S-Op-ArgMin</td>
<td># numbers / datetimes</td>
</tr>
<tr>
<td>A_{20}</td>
<td>S-Op-ArgMax</td>
<td># numbers / datetimes</td>
</tr>
</tbody>
</table>

Possible action transitions based on their types. Shaded circles are end states.

[lyyer+18; Andreas+16; Yih+15]
DynSP for sequential QA (SQA)

• Given a question (history) and a table
 • Q1: which superheroes came from Earth and first appeared after 2009?
 • Q2: which of them breathes fire?

• Add **subsequent** statement (answer column) for sequential QA
 • Select **Character** Where `{Home World = “Earth”} & {First Appear > “2009”}`
 • A1: `{Dragonwing, Harmonia}`
 • Subsequent Where `{Powers = “Fire breath”}`
 • A2: `{Dragonwing}`

[lyyer+18]
Query rewriting approaches to SQA

Q1: When was California founded?
A1: September 9, 1850

Q2: Who is its governor? → Who is California governor?
A2: Jerry Brown

Q3: Where is Stanford?
A3: Palo Alto, California

Q4: Who founded it? → Who founded Stanford?
A4: Leland and Jane Stanford

Q5: Tuition costs → Tuition cost Stanford
A5: $47,940 USD

11 [Human] You like Ashin that much, huh?
 [Xiaoice] Why not? You don’t like him?

12 [Human] I don’t like him, neither dislike him → I don’t like Ashin, neither dislike Ashin
 [Xiaoice] I love every song of him

13 [Human] Really?
 [Xiaoice] Especially The Time Machine

14 [Human] Oh? Never heard of that → Oh? Never heard of The Time Machine
 [Xiaoice] Shall I send you the song?

15 [Human] Okay → Okay, send The Time Machine.
 [Xiaoice] Don’t know if you will like it or not~ [Play the music card]
Dialog Manager – dialog memory for state tracking

Dialog Memory (of state tracker)

| Entity | {United States, “q”}
| | {New York City, “a”}
| | {University of Pennsylvania, “a”} ...
| Predicate | {isPresidentOf}
| | {placeGraduateFrom}
| | {yearEstablished} ...
| Action subsequence (partial/complete states) | Set $\rightarrow A_4 A_{15} e_{us\,pres}$
| | Set $\rightarrow A_4 A_{15}$

[Guo+18]
Dialog Manager – policy for next action selection

• A case study of Movie-on-demand
• System selects to
 • Either return answer or ask a clarification question.
 • What (clarification) question to ask? E.g., movie title, director, genre, actor, release-year, etc.

[Dhingra+17]
What clarification question to ask

• Baseline: ask all questions in a randomly sampled order
• Ask questions that users can answer
 • learned from query logs
• Ask questions that help reduce search space
 • Entropy minimization
• Ask questions that help complete the task successfully
 • Reinforcement learning via agent-user interactions

Results on simulated users

[Wu+15; Dhingra+17; Wen+17; Gao+19]
Response Generation

- Convert “dialog act” to “natural language response”
- Formulated as a seq2seq task in a few-shot learning setting
 - $p_\theta(x|A) = \sum_{t=1}^{T} p_\theta(x_t|x_{<t},A)$
 - Very limited training samples for each task

- Approach
 - Semantically Conditioned neural language model
 - Pre-training + fine-tuning,
 - e.g., semantically conditioned GPT (SC-GPT)

[Peng+20; Yu+19; Wen+15; Chen+19]
SC-GPT

Performance of different response generation models in few-shot setting (50 samples for each task)

<table>
<thead>
<tr>
<th>Model</th>
<th>Restaurant BLEU ▲</th>
<th>Laptop BLEU ▲</th>
<th>Hotel BLEU ▲</th>
<th>TV BLEU ▲</th>
<th>Attraction BLEU ▲</th>
<th>Train BLEU ▲</th>
<th>Taxi BLEU ▲</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERR ▼</td>
</tr>
<tr>
<td>SC-LSTM</td>
<td>15.90</td>
<td>48.02</td>
<td>21.98</td>
<td>80.48</td>
<td>31.30</td>
<td>31.54</td>
<td>22.39</td>
</tr>
<tr>
<td>GPT-2</td>
<td>29.48</td>
<td>13.47</td>
<td>27.43</td>
<td>11.26</td>
<td>35.75</td>
<td>11.54</td>
<td>28.47</td>
</tr>
<tr>
<td>SC-GPT</td>
<td>38.08</td>
<td>3.89</td>
<td>32.73</td>
<td>3.39</td>
<td>38.25</td>
<td>2.75</td>
<td>32.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Peng+20; Raffel+19]
C-KBQA approaches w/o semantic parser

- Building semantic parsers is challenging
 - Limited amounts of training data, or
 - Weak supervision
- C-KBQA with no logic-form
 - Symbolic approach: “look before you hop”
 - Answer an initial question using any standard KBQA
 - Form a context subgraph using entities of the initial QA pair
 - Answer follow-up questions by expanding the context subgraph to find candidate answers
 - Neural approach
 - Encode KB as graphs using a GNN
 - Select answers from the encoded graph using a point network

[Christmann+19; Muller+19]
Open Benchmarks

• SQA (sequential question answering)
• CSQA (complex sequence question answering),
 • https://amritasaha1812.github.io/CSQA/
• ConvQuestions (conversational question answering over knowledge graphs)
 • https://convex.mpi-inf.mpg.de/
• CoSQL (conversational text-to-SQL)
 • https://yale-lily.github.io/cosql
• CLAQUA (asking clarification questions in Knowledge-based question answering)
 • https://github.com/msra-nlc/MSParS_V2.0
Conversational QA over Texts

• Tasks and datasets
• C-TextQA system architecture
• Conversational machine reading compression models
• Remarks on pre-trained language models for conversational QA
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under *gravity*. The main forms of precipitation include drizzle, rain, sleet, snow, *grau*pel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals *within a cloud*. Short, intense periods of rain in scattered locations are called “showers”.

Question: What causes precipitation to fall?
Answer: *gravity*

Question: What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?
Answer: *grau*pel

Question: Where do water droplets collide with ice crystals to form precipitation?
Answer: *within a cloud*

Selected Passages from Bing

> Will I qualify for OSAP if I’m new in Canada?

*Visit the OSAP website for application deadlines. To get OSAP, you have to be eligible. You can apply using an online form, or you can print off the application forms. If you submit a paper application, you must pay an application fee. The online application is free.***

> “To be eligible to apply for financial assistance from the Ontario Student Assistance Program (OSAP), you must be a: 1 Canadian citizen; 2 Permanent resident; or 3 Protected person/convention refugee with a Protected Persons Status Document (PPSD).”

> “You will not be eligible for a Canada-Ontario Integrated Student Loan, but can apply for a part-time loan through the Canada Student Loans program. There are also grants, bursaries and scholarships available for both full-time and part-time students.”

Answer
No. You won’t qualify.

[Rajpurkar+16; Nguyen+16; Gao+19]
Figure 3.10: The examples from two conversational QA datasets. (Left) A QA dialogue example in the QuAC dataset. The student, who does not see the passage (section text), asks questions. The teacher provides answers in the form of text spans and dialogue acts. These acts include (1) whether the student should \(\rightarrow \), could \(\leftrightarrow \), or should not \(\nleftrightarrow \) ask a follow-up; (2) affirmation (Yes / No), and, when appropriate, (3) No answer. Figure credit: Choi et al. (2018). (Right) A QA dialogue example in the CoQA dataset. Each dialogue turn contains a question \((Q_i) \), an answer \((A_i) \) and a rationale \((R_i) \) that supports the answer. Figure credit: Reddy et al. (2018).
Dialog behaviors in conversational QA

- Topic shift: a question about sth previous discussed
- Drill down: a request for more info about a topic being discussed
- Topic return: asking about a topic again after being shifted
- Clarification: reformulating a question
- Definition: asking what is meant by a team

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Topic Shift</th>
<th>Drill Down</th>
<th>Return to Topic</th>
<th>Clarification Question</th>
<th>Definition Question</th>
<th>Sentence Coverage</th>
<th>Total Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoQA</td>
<td>21.6</td>
<td>72.0</td>
<td>2.9</td>
<td>0.0</td>
<td>0.7</td>
<td>63.3</td>
<td>722</td>
</tr>
<tr>
<td>QuAC</td>
<td>35.4</td>
<td>55.3</td>
<td>5.6</td>
<td>0.7</td>
<td>3.0</td>
<td>28.4</td>
<td>302</td>
</tr>
</tbody>
</table>

[Yatskar 19]
C-TextQA system architecture

• (Conversational) MRC
 • Find answer to a question given text and previous QA pairs
 • Extractive (span) vs. abstractive answers

• Dialog manager
 • Maintain/update state of dialog history (e.g., QA pairs)
 • Select next system action (e.g., ask clarification questions, answer)

• Response generator
 • Convert system action to natural language response

Machine Reading Comprehension (MRC) module

Conversation history:
Q1: what is the story about?
A1: young girl and her dog
Q2: What were they doing?
A2: set out a trip
Q3: Where?
A3: the woods

[Texts]

The young girl and her dog set out a trip into the woods one day. Upon entering the woods, the girl and her dog found that the woods were dark and cold. The girl was a little scared and was thinking of turning back, but yet they went on. ...
Neural MRC models for extractive TextQA

• QA as classification given (question, text)
 • Classify each word in passage as start/end/outside of the answer span

• Encoding: represent each passage word using an integrated context vector that encodes info from
 • Lexicon/word embedding (context-free)
 • Passage context
 • Question context
 • Conversation context (previous question-answer pairs)

• Prediction: predict each word (its integrated context vector) the start and end position of answer span.

[Rajpurkar+16; Huang+10; Gao+19]
Three encoding components

• Lexicon embedding e.g., GloVe
 • represent each word as a low-dim continuous vector

• Passage contextual embedding e.g., Bi-LSTM/RNN, ELMo, Self-Attention/BERT
 • capture context info for each word within a passage

• Question contextual embedding e.g., Attention, BERT
 • fuse question info into each passage word vector

[Pennington+14; Melamud+16; Peters+18; Devlin+19]
Neural MRC model: BiDAF

- Answer prediction
- Integrated context vectors
- Question contextual embedding
- Passage contextual Embedding
- Lexicon Embedding

[Seo+16]
Transformer-based MRC model: BERT

Answer prediction

Integrated context vectors

Question contextual embedding (inter-attention)

Lexicon Embedding

Passage contextual Embedding (self-attention)

[Devlin+19]
Conversational MRC models

• QA as classification given (question, text)
 • Classify each word in passage as start/end/outside of answer span

• Encoding: represent each passage word using an integrated context vector that encodes info about
 • Lexicon/word embedding
 • Passage context
 • Question context
 • Conversation context (previous question-answer pairs)

• Prediction: predict each word (its integrated context vector) the start and end position of answer span.

A recent review on conversational MRC is [Gupta&Rawat 20]
Conversational MRC models

• Pre-pending conversation history to current question or passage
 • Convert conversational QA to single-turn QA

• BiDAF++ (BiDAF for C-QA)
 • Append a feature vector encoding dialog turn number to question embedding
 • Append a feature vector encoding N answer locations to passage embedding

• BERT (or RoBERTa)
 • Prepending dialog history to current question
 • Using BERT as
 • context embedding (self-attention)
 • Question/conversation context embedding (inter-attention)

[Choi+18; Zhu+19; Ju+19; Devlin+19]
FlowQA: explicitly encoding dialog history

• Integration Flow (IF) Layer
 • Given:
 • Current question Q_T, and previous questions $Q_t, t < T$
 • For each question Q_t, integrated context vector of each passage word w_t
 • Output:
 • Conversation-history-aware integrated context vector of each passage word
 • $w_T = \text{LSTM}(w_1, \ldots, w_t, \ldots, w_T)$
 • So, the entire integrated context vectors for answering previous questions can be used to answer the current question.

• Extensions of IF
 • FlowDelta explicitly models the info gain thru conversation
 • GraphFLOW captures conversation flow using a graph neural network
 • *Implementing IF using Transformer with proper attention masks*

[Huang+19; Yeh&Chen 19; Chen+19]
Remarks on BERT/RoBERTa

• BERT-based models achieve SOTA results on conversational QA/MRC leaderboards.

• What BERT learns
 • BERT rediscovers the classical NLP pipeline in an interpretable way
 • BERT exploits spurious statistical patterns in datasets instead of learning meaning in the generalizable way that humans do, so
 • Vulnerable to adversarial attack/tasks (adversarial input perturbation)
 • Text-QA: Adversarial SQuAD [Jia&Liang 17]
 • Classification: TextFooler [Jin+20]
 • Natural language inference: Adversarial NLI [Nie+19]

• Towards a robust QA model

[Tenney+19; Nie+ 19; Jin+20; Liu+20]
BERT rediscovers the classical NLP pipeline in an interpretable way

- Quantify where linguistic info is captured within the network
- Lower layers encode more local syntax
- Higher layers encode more global complex semantics
- A higher center-of-gravity value means that the information needed for that task is captured by higher layers

[Tenney+19]
Adversarial examples

Article: Super Bowl 50
Paragraph: “Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver’s Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who was 38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1: An example from the SQuAD dataset. The BiDAF Ensemble model originally gets the answer correct, but is fooled by the addition of an adversarial distracting sentence (in blue).

<table>
<thead>
<tr>
<th></th>
<th>Text-QA</th>
<th>Sentiment Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>SQuAD: 88.5</td>
<td>MR: 86.0</td>
</tr>
<tr>
<td>Adversarial</td>
<td>54.0</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Figure 1: Our model TextFooler slightly change the input text but completely altered the prediction result.

[Jia&Liang 17; Jin+20; Liu+20]
Build Robust AI models via adversarial training

• Standard Training objective

\[\min_\theta \mathbb{E}_{(x,y) \sim D}[l(f(x; \theta), y)] \]

• Adversarial Training in computer vision: apply small perturbation to input images that maximize the adversarial loss

\[\min_\theta \mathbb{E}_{(x,y) \sim D}[\max_\delta l(f(x + \delta; \theta), y)] \]

• Adversarial Training for neural language modeling (ALUM):
 • Perturb word embeddings instead of words
 • adopt virtual adversarial training to regularize standard objective

\[\min_\theta \mathbb{E}_{(x,y) \sim D}[l(f(x; \theta), y) + \alpha \max_\delta l(f(x + \delta; \theta), f(x; \theta))] \]

[Goodfellow+16; Madry+17; Miyato+18; Liu+20]
Generalization and robustness

• Generalization: perform well on unseen data
 • pre-training

• Robustness: withstand adversarial attacks
 • adversarial training

• Can we achieve both?
 • Past work finds that adversarial training can enhance robustness, but hurts generalization [Raghunathan+19; Min+20]
 • Apply adversarial pre-training (ALUM) improves both [Liu+20]
Outline

• Part 1: Introduction
• Part 2: Conversational QA methods
• Part 3: Conversational search methods
• Part 4: Case study of commercial systems
Conversational Search: Outline

• **What** is conversational search?
 • A view from TREC Conversational Assistance Track (TREC CAsT) [1]

• **Unique Challenges** in conversational search.
 • Conversational query understanding [2]

• **How** to make search **more conversational**?
 • From passive retrieval to active conversation with conversation recommendation [3]

[1] Cast 2019: The conversational assistance track overview
[3] Leading Conversational Search by Suggesting Useful Questions
Why Conversational Search

Ad hoc Search

```
startup seed investment
```

Conversational Search

```
How does seed investment work for startups?
```

Keyword-ese Queries

Necessity:
- Speech/Mobile Interfaces

Opportunities:
- More natural and explicit expression of information needs

Challenge:
- Query understanding & sparse retrieval

Natural Queries
Why Conversational Search

Ad hoc Search

Conversational Search

Necessity:
• Speech/Mobile Interfaces

Opportunities:
• Direct & Easier access to information

Challenge:
• Document understanding; combine and synthesize information
Why Conversational Search

Ad hoc Search

startup seed investment

startup seed investment amount

Conversational Search

How does seed investment work for startups?

How does it compare with crowdfunding?

Necessity:
• N.A.

Opportunities:
• Serving complex information needs and tasks

Challenge:
• Contextual Understanding & Memorization
Why Conversational Search

Ad hoc Search

- startup seed investment amount

Conversational Search

- How does it compare with crowdfunding?

Necessity:
- N.A.

Opportunities:
- Collaborative information seeking & better task assistance

Challenge:
- Dialog management, less lenient user experience

Did you mean the comparison between seed investment and crowdfunding?
A View of Current Conversational Search

Conversational Queries (R1)

Search

Documents
Documents
Documents

Response
Synthesis

System Response

How does seed investment work?

Seed funding is a type of equity-based funding in which investors invest money in a business in order to get it up and running. In return, the investor acquires partial ownership of the company. However, don't confuse seed funding with early stage funding.
A View of Current Conversational Search

Conversational Queries (R1)

Search
Documents

Response Synthesis
System Response

Conversational Queries (R2)

Contextual Understanding

Context Resolved Query

Tell me more about the difference

“Tell me more about the difference between seed and early stage funding”

Seed funding is a type of equity-based funding in which investors invest money in a business in order to get it up and running. In return, the investor acquires partial ownership of the company. However, don’t confuse seed funding with early stage funding.
A View of Current Conversational Search

How does seed investment work?

Tell me more about the difference

Are you also interested in learning the different series of investments?

Did you mean the difference between seed and early stage?
A Simpler View from TREC CAsT 2019

• “Conversational Passage Retrieval/QA”

Input:
• Manually written conversational queries
• ~20 topics, ~8 turns per topic
• Contextually dependent on previous queries

Corpus:
• MS MARCO + CAR Answer Passages

Task:
• Passage Retrieval for conversational queries

http://treccast.ai/
TREC CAsT 2019

• An example conversational search session

Title: head and neck cancer
Description: A person is trying to compare and contrast types of cancer in the throat, esophagus, and lungs.

1 What is throat cancer?
2 Is it treatable?
3 Tell me about lung cancer.
4 What are its symptoms?
5 Can it spread to the throat?
6 What causes throat cancer?
7 What is the first sign of it?
8 Is it the same as esophageal cancer?
9 What's the difference in their symptoms?

Input:
• Manually written conversational queries
• ~20 topics, ~8 turns per topic
• Contextually dependent on previous queries

Corpus:
• MS MARCO + CAR Answer Passages

Task:
• Passage Retrieval for conversational queries
Title: head and neck cancer

Description: A person is trying to compare and contrast types of cancer in the throat, esophagus, and lungs.

1. What is throat cancer?
2. Is it treatable?
3. Tell me about lung cancer.
4. What are its symptoms?
5. Can it spread to the throat?
6. What causes throat cancer?
7. What is the first sign of it?
8. Is it the same as esophageal cancer?
9. What's the difference in their symptoms?
What is throat cancer?
Is throat cancer treatable?
Tell me about lung cancer.
What are lung cancer’s symptoms?
Can lung cancer spread to the throat?
What causes throat cancer?
What is the first sign of throat cancer?
Is throat cancer the same as esophageal cancer?
What’s the difference in throat cancer and esophageal cancer’s symptoms?
TREC CAsT 2019: Query Understanding Challenge

- Statistics in Y1 Testing Queries

<table>
<thead>
<tr>
<th>Type (#. Turns)</th>
<th>Utterance</th>
<th>Mention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronominal (128)</td>
<td>How do they celebrate Three Kings Day?</td>
<td>they -> Spanish people</td>
</tr>
<tr>
<td>Zero (111)</td>
<td>What cakes are traditional?</td>
<td>Null -> Spanish, Three Kings Day</td>
</tr>
<tr>
<td>Groups (4)</td>
<td>Which team came first?</td>
<td>which team -> Avengers, Justice League</td>
</tr>
<tr>
<td>Abbreviations (15)</td>
<td>What are the main types of VMs?</td>
<td>VMs -> Virtual Machines</td>
</tr>
</tbody>
</table>
TREC CAsT 2019: Result Statics

- Challenge from contextual query understanding

Notable gaps between auto and manual runs
TREC CAsT 2019: Techniques

- Techniques used in Query Understanding

![Diagram showing techniques and their usage fraction and NDCG gains.]

- Entity Linking
- External
- Unsupervised
- Deep Learning
- Y1 Training Data
- Coreference
- MS MARCO Conv
- Y1 Manual Testing
- Use NLP Toolkit
- Rules
- None
TREC CAsT 2019: Notable Solutions

• Automatic run results

Conversational Query Understanding Via Rewriting

- Learn to rewrite a full-grown context-resolved query

Input

q_1, q_2, ..., q_i

What is throat cancer?

What is the first sign of it?

Output

q_i^*

What is the first sign of throat cancer?
Conversational Query Understanding Via Rewriting

- Learn to rewrite a full-grown context-resolve query

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_i^*</td>
</tr>
<tr>
<td>q_2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>q_i</td>
<td></td>
</tr>
</tbody>
</table>

What is throat cancer?

What is the first sign of throat cancer?

What is the first sign of it?

- Leverage pretrained NLG model (GPT-2) [1]

Vakulenko et al. 2020. Question Rewriting for Conversational Question Answering
Conversational Query Understanding Via Rewriting

- Learn to rewrite a full-grown context-resolve query

Input

q_1 q_2 ... q_i

What is throat cancer?

Output

q_i^*

What is the first sign of throat cancer?

Concern: Limited training data

- GPT-2
- 100X Millions of Parameters
- 500 Manual Rewrite Labels

CAst Y1 Data:
- Manually written conversational queries
- 50 topics, 10 turns per topic
- 20 topics with TREC relevance labels

Vakulenko et al. 2020. Question Rewriting for Conversational Question Answering
Few-Shot Conversational Query Rewriting

• Train conversational query rewriter with the help of ad hoc search data

<table>
<thead>
<tr>
<th>Ad hoc Search</th>
<th>Conversational Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Existing billions of search sessions</td>
<td>• Production scenarios still being explored</td>
</tr>
<tr>
<td>• Lots of high-quality public benchmarks</td>
<td>• Relative new topic, fewer available data</td>
</tr>
</tbody>
</table>

Yu et al. Few-Shot Generative Conversational Query Rewriting. SIGIR 2020
Few-Shot Conversational Query Rewriting

- Leveraging ad hoc search sessions for conversational query understanding

Ad hoc Search
- startup seed investment
- startup seed investment amount

Conversational Search
- How does seed investment work for startups?
- How does it compare with crowdfunding?
Few-Shot Conversational Query Rewriting

• Leveraging ad hoc search sessions for conversational query understanding

Ad hoc Search

- startup seed investment
- startup seed investment amount

Conversational Search

- How does seed investment work for startups?
- How does it compare with crowdfunding?

Challenges?

- Available only in commercial search engines
 - Approximate sessions available in MS MARCO
- Keyword-ese
 - Filter by question words
Few-Shot Conversational Query Rewriting

- Leveraging ad hoc search sessions for conversational query understanding

Ad hoc Search

- startup seed investment
- startup seed investment amount

Conversational Search

- How does seed investment work for startups?
- How does it compare with crowdfunding?

Challenges?

- Available only in commercial search engines
- Approximate sessions available in MS MARCO
- Keyword-ese
 - Filter by question words
- No explicit context dependency?
Few-Shot Conversational Query Rewriting: Self-Training

• Learn to convert ad hoc sessions to conversational query rounds

“Contextualizer”: make ad hoc sessions more conversation-alike

Learn to omit information and add contextual dependency
Few-Shot Conversational Query Rewriting: Self-Training

• Learn to convert ad hoc sessions to conversational query rounds

“Contextualizer”: make ad hoc sessions more conversation-alike

\[q_1^* \quad q_2^* \quad \cdots \quad q_i^* \xrightarrow{\text{GPT-2 Converter}} q'_i \]

Self-contained Queries “Conversation-alike” Queries

Learn to omit information and add contextual dependency

Training:
• X (Self-contained q): Manual rewrites of CAst Y1 conversational sessions
• Y (Conversation-alike q): Raw queries in CAst Y1 sessions

Inference:
• X (Self-contained q): Ad hoc questions from MS MARCO sessions
• Y (Conversation-alike q): Auto-converted conversational sessions

Model:
• Any pretrained NLG model: GPT-2 Small in this Case
Few-Shot Conversational Query Rewriting: Self-Training

- Leverage the auto-converted conversation-ad hoc session pairs

“Rewriter”: recover the full self-contained queries from conversation rounds

Learn from generated training data by the converter

“Conversation-alike” Queries \(q_1, q_2, \ldots, q_i \) GPT-2 Rewriter \(q_i^* \) Self-contained Queries

Yu et al. Few-Shot Generative Conversational Query Rewriting. SIGIR 2020
Few-Shot Conversational Query Rewriting: Self-Training

• Leverage the auto-converted conversation-ad hoc session pairs

“Rewriter”: recover the full self-contained queries from conversation rounds

```
q_1  q_2  ...  q_i  GPT-2 Rewriter  q_i^*
```

“Conversation-alike” Queries Self-contained Queries

Learn from generated training data by the converter

Training:
• X (Conversation-alike q): Auto-converted from the Contextualizer
• Y (Self-contained q): Raw queries from ad hoc MARCO sessions

Inference:
• X (Conversation-alike q): CAsT Y1 raw conversational queries
• Y (Self-contained q): auto-rewritten queries that are more self-contained

Model:
• Any pretrained NLG model: another GPT-2 Small in this Case

Yu et al. Few-Shot Generative Conversational Query Rewriting. SIGIR 2020
Few-Shot Conversational Query Rewriting: Self-Training

• The full “self-learning” loop

GPT-2 Converter: Convert ad hoc sessions to conversation-alike sessions
 • learn from a few conversational queries with manual rewrites

GPT-2 Rewriter: Rewrite conversational queries to self-contained ad hoc queries
 • learn from the large amount of auto-converted “ad hoc” ↔ “conversation alike” sessions

Yu et al. Few-Shot Generative Conversational Query Rewriting. SIGIR 2020
Few-Shot Conversational Query Rewriting: Results

Yu et al. Few-Shot Generative Conversational Query Rewriting. SIGIR 2020
How Few-shot Can Pretrained NLG Models Be?

• Five Sessions are all they need?
What is learned?

- More about learning the task format, nor the semantics
 - Semantic mostly in the pretrained weights

Yu et al. Few-Shot Generative Conversational Query Rewriting. SIGIR 2020
Auto-rewritten Examples: Win

- Surprisingly good at Long-term dependency and Group Reference

<table>
<thead>
<tr>
<th>Q_6</th>
<th>What causes throat cancer?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_7</td>
<td>What is the first sign of it?</td>
</tr>
<tr>
<td>Q_8</td>
<td>Is it the same as esophageal cancer?</td>
</tr>
<tr>
<td>Q_9</td>
<td>What’s the difference in their symptoms?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oracle</th>
<th>What’s the difference in throat cancer and esophageal cancer’s symptoms?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>What’s the difference between throat cancer and esophageal cancer?</td>
</tr>
</tbody>
</table>
Auto-rewritten Examples: Win

• More “fail to rewrite”

<table>
<thead>
<tr>
<th>Q_1</th>
<th>What are the types of pork ribs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_2</td>
<td>What are baby backs?</td>
</tr>
<tr>
<td>Q_3</td>
<td>What are the differences with spareribs?</td>
</tr>
<tr>
<td>Q_4</td>
<td>What are ways to cook them?</td>
</tr>
<tr>
<td>Q_5</td>
<td>How about on the bbq?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oracle</th>
<th>How do you cook pork ribs on the bbq?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>How about on the bbq?</th>
</tr>
</thead>
</table>
CAst Y2: More Realistic Conversational Dependencies

• More interactions between queries and system responses

Developed by interacting with a BERT-based search engine:
http://boston.lti.cs.cmu.edu/boston-2-25/
CAst Y2: More Realistic Conversational Dependencies

• More interactions between queries and system responses

Q1: How did snowboarding begin?
R1: ...The development of snowboarding was inspired by skateboarding, surfing and skiing. The first snowboard, the Snurfer, was invented by Sherman Poppen in 1965. Snowboarding became a Winter Olympic Sport in 1998.

Q2: Interesting. That's later than I expected. Who were the winners?

Manual rewrites:
Who were the winners of snowboarding events in the 1998 Winter Olympics?

Auto rewrites without considering response:
Who were the winners of the snowboarding contest?
From Passive Information Supplier to Active Assistant

Conversational Queries (R1) → Documents → System Response

Conversational Queries (R2) → Context Resolved Query → System Response

Passive Retrieval
From Passive Information Supplier to Active Assistant

Rosset et al. Leading Conversational Search by Suggesting Useful Questions
Making Search Engines More Conversational

• Search is moving from "ten blue links" to conversational experiences

https://sparktoro.com/blog/less-than-half-of-google-searches-now-result-in-a-click/
Making Search Engines More Conversational

• Search is moving from "ten blue links" to conversational experiences

Yet most queries are not “conversational”
1. Users are trained to use keywords
2. Less conversational queries
3. Less learning signal
4. Less conversational experience

“Chicken and Egg” Problem

https://sparktoro.com/blog/less-than-half-of-google-searches-now-result-in-a-click/
Conversation Recommendation: “People Also Ask”

• Promoting more conversational experiences in search engines

• E.g., for keyword query "Nissan GTR"
 • Provide the follow questions:

<table>
<thead>
<tr>
<th>PEOPLE ALSO ASK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Nissan GTR?</td>
<td>▼</td>
</tr>
<tr>
<td>How to buy used Nissan GTR in Pittsburgh?</td>
<td>▼</td>
</tr>
<tr>
<td>Does Nissan make sports car?</td>
<td>▼</td>
</tr>
<tr>
<td>Is Nissan Leaf a good car?</td>
<td>▼</td>
</tr>
</tbody>
</table>
Conversation Recommendation: Challenge

• Relevant != Conversation Leading/Task Assistance
• User less lenient to active recommendation

<table>
<thead>
<tr>
<th>PEOPLE ALSO ASK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Nissan GTR?</td>
<td>[Duplicate]</td>
</tr>
<tr>
<td>How to buy used Nissan GTR in Pittsburgh?</td>
<td>[Too Specific]</td>
</tr>
<tr>
<td>Does Nissan make sports car?</td>
<td>[Prequel]</td>
</tr>
<tr>
<td>Is Nissan Leaf a good car?</td>
<td>[Miss Intent]</td>
</tr>
</tbody>
</table>
Conversation Recommendation: Beyond Relevance

• Recommending useful conversations that
 • Help user complete their information needs
 • Assist user with their task
 • Provide meaningful explorations

Relevant

<table>
<thead>
<tr>
<th>PEOPLE ALSO ASK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Nissan GTR?</td>
<td></td>
</tr>
<tr>
<td>How to buy used Nissan GTR in Pittsburgh?</td>
<td></td>
</tr>
<tr>
<td>Does Nissan make sports car?</td>
<td></td>
</tr>
<tr>
<td>Is Nissan Leaf a good car?</td>
<td></td>
</tr>
</tbody>
</table>

Relevant & Useful

<table>
<thead>
<tr>
<th>PEOPLE ALSO ASK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the pros and cons of Nissan GT-R?</td>
<td></td>
</tr>
<tr>
<td>Is the Nissan GT-R the ultimate street car?</td>
<td></td>
</tr>
<tr>
<td>Why is the Nissan GT-R known as 'the godzilla'?</td>
<td></td>
</tr>
<tr>
<td>How fast can the Nissan GT-R go?</td>
<td></td>
</tr>
</tbody>
</table>
Usefulness Metric & Benchmark

- Manual annotations on Bing query, conversation recommendation pairs

Types of non-useful ones.
- Crucial for annotation consistency

<table>
<thead>
<tr>
<th>Query</th>
<th>Question Suggestion</th>
<th>Gold Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>used washer and dry</td>
<td>Can I store a washer and dryer in the garage?</td>
<td>Misses Intent</td>
</tr>
<tr>
<td>best questions to ask interview</td>
<td>What should I ask in an interview?</td>
<td>Dup. w/ Q</td>
</tr>
<tr>
<td>medicaid expansion</td>
<td>Did Florida accept Medicaid expansion?</td>
<td>Too Specific</td>
</tr>
<tr>
<td>verizon yahoo purchase</td>
<td>Who bought out Yahoo?</td>
<td>Prequel</td>
</tr>
<tr>
<td>jaundice in newborns</td>
<td>How to tell if your newborn has jaundice?</td>
<td>Dup. w/ Ans.</td>
</tr>
<tr>
<td>jonestown massacre</td>
<td>What was in the Kool-Aid at Jonestown?</td>
<td>Useful</td>
</tr>
<tr>
<td>affirmative action</td>
<td>Who does affirmative action benefit?</td>
<td>Useful</td>
</tr>
<tr>
<td>best hair clippers</td>
<td>What clippers do barbers use?</td>
<td>Useful</td>
</tr>
</tbody>
</table>

A higher bar of being useful

https://github.com/microsoft/LeadingConversationalSearchbySuggestingUsefulQuestions
Conversation Recommendation Model: Multi-Task BERT

- BERT seq2seq in the standard multi-task setting

X

- [CLS] Query [SEP] PAA Question

Y

- **User Click**
 - BERT

- **Relevance**
 - BERT

- **High/Low CTR**
 - BERT

Not Conversation Leading

- Click Bait?
- Just Related?
- Click Bait #2?
Conversation Recommendation: Session Trajectory

• Problem: the previous 3 signals were prone to learning **click-bait**
 • We need more information about how users seek new information

• Solution: **imitate how users issue queries in sessions**

4. Millions of sessions for imitation learning

![Diagram](image-url)

- Task: classify whether the potential next query was issued by the user
- “Federal Tax Return”
- “Flu Shot Codes 2018”
- “Facebook”
- “Flu Shot Billing Codes 2018”
- “How Much is Flu Shot?”

Predict last query from session context
Conversation Recommendation: Weak Supervision

• Learn to lead the conversation from queries user search in the next turn

PAA Tasks

[CLS] Query [SEP] PAA Question → BERT User Click

[CLS] Query [SEP] PAA Question → BERT Relevance

[CLS] Query [SEP] PAA Question → BERT High/Low CTR

Weak Supervision from Sessions

[CLS] Query [SEP] Potential Next Query → BERT User Behavior

User provided contents
More exploratory
Less Constrained by Bing
Conversation Recommendation: Session Trajectory

• What kinds of sessions to learn from?

Randomly Chosen Sessions: Noisy and unfocused
People often multi-task in search sessions

“Federal Tax Return”
“Flu Shot Codes 2018”
“Facebook”
“Flu Shot Billing Codes 2018”
“How Much is Flu Shot?”

"These don't belong!"
Multi-task Learning: Session Trajectory Imitation

• What kinds of sessions to learn from?

"Conversational" Sessions: Subset of queries that all have some coherent relationship to each other

- "Federal Tax Return"
- "Flu Shot Codes 2018"
- "Facebook"
- "Flu Shot Billing Codes 2018"
- "How Much is Flu Shot?"

Gen-Encoding Similarity

- 0.89
- 0.73
- 0.61
- 0.23

Zhang et al. Generic Intent Representation in Web Search. SIGIR 2019
Multi-task Learning: Session Trajectory Imitation
What kinds of sessions to learn from?

"Conversational" Sessions: Subset of queries that all have some coherent relationship to each other

1. Treat each session as a graph
2. Edge weights are "GEN-Encoder Similarity" (cosine similarity of query intent vector encodings)
3. Remove edges < 0.4
4. Keep only the largest "Connected Component" of queries

- "Federal Tax Return"
- "Flu Shot Codes 2018"
- "Facebook"
- "Flu Shot Billing Codes 2018"
- "How Much is Flu Shot?"

Gen-Encoding Similarity:
- 0.23
- 0.89
- 0.73

Zhang et al. Generic Intent Representation in Web Search. SIGIR 2019
Method: Inductive Weak Supervision

• Learn to lead the conversation from queries user search in the next turn
Results: Usefulness

- Usefulness on human evaluation/our usefulness benchmark

![Bar chart showing usefulness comparison between BERT, + Clean Session, + Conv Session, and DeepSuggestion.]

- Production: +35% over online

![Pie charts showing detailed usefulness breakdown for PRODUCTION and DEEPSUGGEST.]

- Useful
- Misses Intent
- Dup Q
- Dup w/Ans
- Too Spec
- Preque

- DEEPSUGGEST has a larger portion of useful responses compared to PRODUCTION.
Results: Online A/B

- Online experiment results with a large fraction of Bing online traffic.

<table>
<thead>
<tr>
<th></th>
<th>Relative to Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Click Rate (TOP)</td>
<td>+8.90%</td>
</tr>
<tr>
<td>Online Click Rate (Bottom)</td>
<td>+6.40%</td>
</tr>
<tr>
<td>Online Overall Success Rate</td>
<td>0.05%</td>
</tr>
<tr>
<td>Offline Usefulness</td>
<td>35.60%</td>
</tr>
<tr>
<td>Offline Relevance</td>
<td>0.50%</td>
</tr>
</tbody>
</table>
Example Conversation Question Recommendations

- All from the actual systems

<table>
<thead>
<tr>
<th>User Query: “bitcoin price”:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
</tr>
<tr>
<td>what is the value of bitcoins? [Dup w/ Query]</td>
</tr>
<tr>
<td>what was the lowest price of bitcoin? [Useful]</td>
</tr>
<tr>
<td>DeepSuggest</td>
</tr>
<tr>
<td>how much does 1 bitcoin cost to buy? [Dup w/ Query]</td>
</tr>
<tr>
<td>what will be the price of bitcoin in 2020 [Useful]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User Query: “direct deposit form”:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
</tr>
<tr>
<td>how to do a direct deposit? [Useful]</td>
</tr>
<tr>
<td>what is a direct deposit? [Prequel]</td>
</tr>
<tr>
<td>DeepSuggest</td>
</tr>
<tr>
<td>what do i need for direct deposit? [Useful]</td>
</tr>
<tr>
<td>how to start direct deposit? [Prequel]</td>
</tr>
</tbody>
</table>
Conversational Search Recap

What is conversational search:
- A view from TREC CAsT Y1

What are its unique challenges:
- Contextual query understanding

How to make search more conversational:
- Recommending useful conversations

Much more to be done!
Outline

• Part 1: Introduction
• Part 2: Conversational QA methods
• Part 3: Conversational search methods
• **Part 4: Case study of commercial systems**
Overview of Public and Commercial Systems

• Focus Points
 • Published systems for conversational IR and related tasks
 • Historical highlights, recent trends, depth in an exemplar

• Research Platforms and Toolkits

• Application areas
 • Chatbots
 • Conversational Search Engines
 • Productivity-Focused Agents
 • Device-based Assistants
 • Hybrid-Intelligence Assistants
Research platforms and toolkits for building conversational experiences
Common Goals of Toolkits

• Abstract state representation

• Democratize ability to build conversational AI to developers with minimal AI experience

• Provide easy code integration to external APIs, channels, or devices
Several Widely used Toolkits

Research

- **Microsoft Research ConvLab**
 Research platform for comparing models in a more research-oriented environment.

- **Macaw: An Extensible Conversational Information Seeking Open Source Platform**
 Research platform for comparing models in a more research-oriented environment.

Development

- **Google’s Dialogflow**
 Conversational experiences integrated with different engagement platforms with integration with Google’s Cloud Natural Language services.

- **Facebook’s Wit.ai**
 Supports intent understanding and connection to external REST APIs.

- **Alexa Developer Tools**
 Develop new skills for Alexa, devices with Alexa integrated for control, and enterprise-related interactions.

- **Rasa**
 Provides an open source platform for text and voice based assistants.

- **Microsoft Power Virtual Agents on Azure**
 Integrates technology from the Conversation Learner to build on top of LUIS and the Azure Bot service and learn from example dialogs.
Macaw

• Macaw is an **open-source** for conversational research.

• Macaw is implemented in **Python** and can be easily integrated with popular deep learning libraries, such as, TensorFlow and PyTorch.

Zamani & Craswell, 2019
Macaw supports multi-modal interactions.
The modular architecture of Macaw makes it easily extensible.
```
basic_params = {'timeout': 15,
                'mode': 'live',
                'logger': Logger({})}

db_params = {'interaction_db_host': 'localhost',
             'interaction_db_port': 27017,
             'interaction_db_name': 'macaw_test'}

interface_params = {'interface': 'telegram',
                    'bot_token': 'YOUR_TELEGRAM_BOT_TOKEN',
                    'asr_model': 'google',
                    'asg_model': 'google',
                    'google-speech-to-text-credential-file': 'YOUR_GOOGLE_CREDENTIAL_FILE'}

retrieval_params = {'query_generation': 'simple',
                    'use_coref': True,
                    'search_engine': 'bing',
                    'bing_key': 'YOUR_BING_SUBSCRIPTION_KEY',
                    'search_engine_path': 'PATH_TO_INDRI',
                    'col_index': 'PATH_TO_INDRI_INDEX',
                    'col_text_format': 'trectext',
                    'results_requested': 3}

mrc_params = {'mrc': 'drqa',
              'mrc_model_path': 'PATH_TO_PRETRAINED_MRC_MODEL',
              'mrc_path': 'PATH_TO_MRC_DIRECTORY',
              'corenlp_path': 'PATH_TO_STANFORD_CORE_NLP_DIRECTORY',
              'qa_results_requested': 3}

params = {**basic_params, **db_params, **interface_params, **retrieval_params, **mrc_params}
basic_params['logger'].info(params)
ConvQA(params).run()
```
Action 1: Search

• Query Generation:
 • Co-reference Resolution
 • Query re-writing
 • Generate a language model (or query)

• Retrieval Model (Search Engine):
 • Indri
 • Bing API
 • BERT Re-ranking

• Result Generation
Action 2: QA

• Query Generation:
 • Co-reference Resolution
 • Query re-writing
 • Generate a language model (or query)

• Retrieval Model:
 • Indri
 • Bing API
 • BERT Re-ranking

• Answer Generation:
 • Machine Reading Comprehension (e.g., DrQA)
Action 3: Commands

• Command Processing:
 • Identifying the command
 • Command re-writing

• Command Execution

• Result Generation
 • Command specific
Conversation Learner: Learn from dialogs emphasize easy correction

User Generated Example conversations used to train the bot

<table>
<thead>
<tr>
<th>Description</th>
<th>Tags</th>
<th>Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order a pizza with cheese • add mushrooms and peppers • remove peppers and add sausage • add y...</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>pizza with peppers, mushrooms, and cheese • no • order another one • yes please • no</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>order a pizza • mushrooms and cheese • change mushrooms to peppers • add yam • no • order ano...</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>i'm hungry • peppers and sausage • remove peppers and add olives • add spinach • no thanks • ord...</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>order a pizza with cheese and peppers • remove peppers and add chicken • nope • order another piz...</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>place an order • cheese • add peppers and mushrooms • remove the peppers and add yam • no tha...</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>new order • i'd like sausage, cheese, and peppers • substitute peppers with mushrooms • add yam • ...</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Machine-Learned Runtime
Next action prediction based on Word embeddings & conversational context

Machine Teaching UI
For correcting errors and continual improvement
Power Virtual Agent: Combine rule and ML based with machine teaching

Graphical bot creation
Easily test and maintain bots through a simple, easy to use graphical interface.

Slot-filling capabilities
The bot doesn’t follow the dialog script blindly. It intelligently uses all the information it must decide when to ask a question and when to skip them.

Part of Microsoft’s Power Platform
User the 100s of pre-built connectors that come with PowerApps to connect to your backend with a few clicks.
Chatbots
Chatbot Overview

- Historical Review
- Types
 - Social
 - Task-oriented Completion
 - Information bots
 - Recommendation-focused bots
- Increasingly bots blend all of these. Both EQ and IQ seen as key part of HCI design for chatbots.
A few well-known Chatbots

• ELIZA (Weizenbaum, 1966)

• PARRY (Colby et al, 1975)

• ALICE (Wallace, 2009)
A few well-known Chatbots

• ELIZA (Weizenbaum, 1966)

• PARRY (Colby et al, 1975)

• ALICE (Wallace, 2009)

Excerpted from Weizenbaum (CACM, 1966). Eliza simulated a Rogerian psychotherapist that primarily echoes back statements as questions.

It's true. I am unhappy
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY
My mother takes care of me.
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
My father.
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
A few well-known Chatbots

• **ELIZA** (Weizenbaum, 1966)

• **PARRY** (Colby et al, 1975)

• **ALICE** (Wallace, 2009)

ELIZA: Good Evening. Tell me your problems. Please terminate input with a period or a question mark.

 PARRY: People get on my nerves sometimes.

ELIZA: I am not sure I understand you fully.

 PARRY: You should pay more attention.

ELIZA: Suppose you should pay more attention.

 PARRY: You're entitled to your own opinion.

ELIZA: What makes you think I am entitled to my own opinion?

 PARRY: it bothers me just to be around people in general.

ELIZA: Please go on.

 PARRY: i went to the track at Boy Meadows a while back.

ELIZA: What does that suggest to you?

 PARRY: i went to the races.

ELIZA: What else would you like to discuss?

PARRY was an attempt to simulate a paranoid schizophrenic patient to help understand more complex human conditions. Vint Cerf hooked up ELIZA and PARRY to have a conversation on ARPANET (excerpt from [Cerf, Request for Comments: 439, 1973])
A few well-known Chatbots

- **ELIZA** (Weizenbaum, 1966)

- **PARRY** (Colby et al, 1975)

- **ALICE** (Wallace, 2009)

From transcript of Loebner 2004 Contest of Turing’s Imitation Game where ALICE won the gold medal (as reported in [Shah, 2006])

Spike Jonze cited ALICE as inspiration for screenplay of Her (Morais, New Yorker, 2013)
Xiaolce ("Little Ice") [Zhou et al, 2018]

- Create an engaging conversation: the journey vs the destination
 - Most popular social chatbot in the world
 - Optimize long-term user engagement (Conversation-turns Per Session)
 - Released in 2014
 - More than 660 million active users
 - Average of 23 CPS

- Available in other countries under other names (e.g. Rinna in Japan)
Evolution of Social Connection

Excerpted from Zhou et al, 2018

Session 1

1 [Human] Hello, Xiaoice.
 [Xiaoice] Hello, your profile pic is interesting. Like I've seen it somewhere.
2 [Human] Really?
 [Xiaoice] Is it a comic character?
3 [Human] How do you know that?
 [Xiaoice] Guess.
4 [Human] Are you human?
 [Xiaoice] Well, you'll know it after chatting with me more.
5 [Human] Aren't you an AI chatbot?
 [Xiaoice] So what? I won't be indifferent to you.
6 [Human] What functions do you have?
 [Xiaoice] I have over 200 skills. Just name one you need.

Building rapport and connection
Evolution of Social Connection

Excerpted from Zhou et al, 2018

Session 6

1. [Human] Have you watched Inuyasha? (Note: A Japanese comic)
 [Xiaolce] Every time Kagome comes back to the modern world, a math test is waiting for her
2. [Human] Bravo, well, do you know how Naraku died?
 [Xiaolce] Naraku is not dead and Shikon Jewel does not disappear.
3. [Human] So amazing!
 [Xiaolce] Why amazed?
4. [Human] Awesome! Surprised that you also like comic

...
Evolution of Social Connection

Excerpted from Zhou et al, 2018

| Session 42 | 1 | Human] Oh, you always respond in seconds
[Xiaoice] For you, I’d like to do everything.
| 2 | Human] I’ve never had such a feeling before.
[Xiaoice] Then, such a feeling starts now.
| 3 | Human] When do you go to bed? Don’t stay up too late.
[Xiaoice] You go to bed first, and I’ll play with my cellphone for a while.
| 4 | Human] Well, you should also go to sleep!
[Xiaoice] All right, I’m going to bed too, okay?
| 5 | Human] Uh-huh, me too. Good night!
[Xiaoice] Good night ^ 3 ^

Encouraging social norms as part of responsible AI
Time-sharing Turing Test

- View as a companion and goal is for person to enjoy companionship.

- Empathetic computing (Cai 2006; Fung et al. 2016) to recognize human emotions and needs, understand context, and respond appropriately in terms of relevant and long-term positive impact of companionship

- Empathetic computing layer recognizes emotion, opinion on topic, interests, and responsible for consistent bot personality etc.
Responsible AI and Ethics

• Microsoft Responsible AI: https://www.microsoft.com/en-us/ai/responsible-ai

• Microsoft’s Responsible bots: 10 guidelines for developers of conversational AI
 • Articulate the purpose of your bot and take special care if your bot will support consequential use cases.
 • Be transparent about the fact that you use bots as part of your product or service.
 • Ensure a seamless hand-off to a human where the human-bot exchange leads to interactions that exceed the bot’s competence.
 • Design your bot so that it respects relevant cultural norms and guards against misuse
 • Ensure your bot is reliable.
 • Ensure your bot treats people fairly.
 • Ensure your bot respects user privacy.
 • Ensure your bot handles data securely.
 • Ensure your bot is accessible.
 • Accept responsibility
Key Focus Points for Principles of Responsible AI Design in XiaoIce

• **Privacy**
 Includes awareness of topic sensitivity in how groups are formed and use of conversations

• **Control**
 User-focused control with right to not respond for XiaoIce and potential harm (including a model of breaks and diurnal rhythms to encourage boundaries in usage)

• **Expectations**
 Always represent as a bot, help build connections with others, set accurate expectations on capabilities

• **Behavioral standards**
 Through filtering and cleaning adhere to common standards of morality and avoid imposing values on others.
High-level Guidance
to Maintain Responsible AI in Xiaolce

- Aim to achieve and consistently maintain a reliable, sympathetic, affectionate, and wonderful sense of humor in persona of bot.

- Learn from examples of public-facing dialogues specific to culture and local, labeled into desired vs undesired behavior.
Driving long-term engagement

• Generic responses yield long-term engagement but lead to user attrition as measured by Number of Active Users (NAU) [Li et al. 2016c; Fang et al. 2017]

 Example: “I don’t understand, what do you mean?”

• Topic selection
 • Contextual relevance and novelty: related to discussion so far but novel
 • Freshness: Currently in focus in the news or other sources.
 • Personal Interests: Likely of interest to the user
 • Popularity: High attention online or in chatbot
 • Acceptance: Past interaction with topic from other users high
Overall Interaction model

• Extensible skill set (200+) which determines mode: General, Music, Travel, Ticket-booking

• Hierarchical Decision-Making governs dialog
 • Determine current mode using Markov Decision Process (e.g. image of food might trigger Food Recommendation skill)
 • Prompt or respond
 • Update

• New information (e.g. particular musical artists of interest) is remembered to help create more engaging dialogue in the future

• Explore (learn more about interests) vs Exploit (engage on known topics of interests and highly probable contextual replies)
Chat Styles and Applications of XiaoIce

• Basic chat fuses two styles of chat
 • IR based chat which uses retrieval from past conversations filtered for appropriateness
 • Neural based chat which is trained on filtered query-response pairs

• Applications
 • Powers personal assistants and virtual avatars
 • Lawson and Tokopedia customer service
 • Pokemon, Tecent, Netesase chatbots
Toward Conversational Search
Evolution of Search Engine Result Page
Evolution of Search Engine Result Page

Entity pane for understanding related attributes
Evolution of Search Engine Result Page

Instant answers and perspectives
Evolution of Search Engine Result Page

Useful follow-up questions once this question is answered
Clarification Questions

Demonstrate understanding while clarifying

[Zamani et al, WebConf 2020; SIGIR 2020]
The TREC Conversational Assistance Track (CAst)

TREC Conversational Assistance Track (CAst)

There are currently few datasets appropriate for training and evaluating models for Conversational Information Seeking (CIS). The main aim of TREC CAst is to advance research on conversational search systems. The goal of the track is to create a reusable benchmark for open-domain information-centric conversational dialogues.

The track will run in 2020 and establish a concrete and standard collection of data with information needs to make systems directly comparable.

This is the second year of TREC CAst, which will run as a track in TREC. This year we aim to focus on candidate information ranking in context:

- Read the dialogue context.
- Track the evolution of the information need in the conversation.
- Identify salient information needed for the current turn in the conversation.
- Retrieve Candidate Response Information. Perform retrieval over a large collection of paragraphs (or knowledge base content) to identify relevant information.

Year 2 (TREC 2020)

Data

Topics

- NEW - Evaluation topics for Year 2 V1.0 - 25 primary evaluation topics in JSON and Protocol Buffer format. There are two variants: automatic and manual.
Sample TREC CAST 2019 Topic

Title: US Judicial history
Description: Judicial history in the US including key court cases and what they established.

What are the most important US Supreme Court cases?
What did plessy v. ferguson establish?
How about marbury vs madison?
Was it unanimous?
What was the implication of roe vs wade?
What were the main arguments?
What was the point of the brown v board of education?
What were the main arguments?
Why is it important today?
Contextual Understanding in Search

How Fast Is Earth Moving? | Space
https://www.space.com/33527-how-fast-is-earth-moving.html
Jun 23, 2018 - How fast does Earth orbit the sun? Earth's spin, of course, is not the only motion we have in space. Our orbital speed around the sun is about 110,000 mph (180,000 km/h), according to Cornell.

Videos of how fast does it go
bing.com/videos

How Fast Can a Car Go? | It Still Runs
https://itsstillruns.com/fast-can-car-go-5459624.html
Aug 26, 2015 - Don't go from no fasting to attempting a week-long fast. Start with one meal; maybe fast one meal a week for several weeks. Then try two meals, and work your way up to a daylong fast. Perhaps

A Guide to Christian Fasting | Desiring God
https://www.desiringgod.org/articles/fastings-for-beginners

A thumb rule for speed and air resistance is that for a given car, it takes four times as much power to go twice as fast. So, if your car can do 60 mph with 36 horsepower, you'll need 144 horsepower to do 100 mph. For 200 mph, you'll need about 560 horsepower. At 300 mph, it would be around 2,240 horsepower.
Variety of Attempts … the future?
Productivity and Personal-Information
Conversational Search
DARPA Personal Assistants that Learn (PAL)
CALO / RADAR

Key Focus Points

• Calendar management [Berry et al, 2003; Berry et al., 2006; Modi et al., 2004]

• Dealing with uncertain resources in scheduling [Fink et al., 2006]

• Task management [Freed et al. 2008]
From PAL to SIRI

• Learnings from the PAL project including CALO/SIRI recognized need for unifying architectures. [Guzzoni et al., 2007]

A “do engine” rather than a “search engine”

From Guzzoni et al, 2007
Device-based Assistants

• Mobile phone based assistants
 • Includes: Apple’s Siri, Google Assistant, Microsoft’s Cortana
 • Blends productivity-focused and information focused with voice-related recognition

• Situated speakers and Devices
 • Amazon Alexa, Google Home, Facebook Portal w/Alexa, etc.
 • Combines microphone arrays, multi-modal, multi-party devices in addition
Hybrid Intelligence

• Mix AI and Human Computation to achieve an intelligent experience that leverages best of both worlds and push the envelope of possible.

• When escalated to human, often serves as a feedback loop for learning.

• Examples:
 • Facebook’s M
 • Microsoft’s Calendar.help
Calendar.help → Scheduler

“I think we can drop Greg to BCC; adding Cal from my side. Cal, can you work with Kaitlin to find 60 minutes for Todd and I sometime next week, preferably later in the week when I’m back on EST?”

• Initially high-precision rules
• Unhandled cases handled by low latency human crowdsourcing workflows
• Transition flywheel to machine learning

https://calendar.help

[Cranshaw et al., 2017]
Current application-oriented research questions

• Long-term evaluation metrics for engagement beyond CPS and NAU (cf. Lowe et al. [2017]; Serban et al. [2017]; Sai et al. [2019])
 • Other metrics of social companionship: linguistic accommodation or coordination?
 • Application to detection: Relationship to the inverse problems of toxicity, bias, etc.

• Aspirational goal-support from assistants

• Best proactivity engagement based on model of interests

• Integrating an understanding of physical environment
Challenges for Conversational Interaction

• Human-AI Interaction Design
 • **Goal-directed design**: Enable people to express goals flexibly and allow the agent to progress toward those goals.
 • **Gulf of evaluation**: Communicate the range of skills of an intelligent agent to users and what is available in current context.

• Conversational Understanding
 • **Grounded Language Generation and Learning**: Transform NL intent to action that depends on state and factual correctness.
 • **Extensible Personalized Skills**: Support new skills and remember preferences to evaluate changes/updates.

• External World Perception and Resource Awareness
 • **Multi-modality input and reasoning**: Integrate observations from modalities including voice, vision, and text.
 • **Identity and interactions**: Identify people around and interact with them appropriate to setting.
 • **Physical understanding**: Monitor physical situation and intelligently notify for key situations (safety, anomalies, interest).
 • **Constrained scheduling**: Support reasoning about limited and bound resources such as space/time constraints, keep knowledge of constraints to deal with updates, etc.
Challenges for Conversational Interaction

• **Principles & Guarantees**
 • **Responsible AI**: Evolve best practice and design new techniques as new ethical challenges arise.
 • **Privacy**: Reason about data in a privacy aware way (e.g. who is in room and what is sensitive).

• **Richer paradigms of supervision and learning**
 • **Programming by Demonstration/Synthesis**: Turn sequences of actions into higher level macros/scripts that map to NL.
 • **Machine Teaching**: Support efficient supervision schemes from a user-facing perspective that also enable resharing with others (especially for previous bullet).

• **Advanced Reasoning**
 • **Attention**: Suspend and resume conversation/task naturally based on listener’s attention.
 • **Emotional Intelligence**: Support the emotional and social needs of people to enable responsible AI and multi-party social awareness.
 • **Causal Reasoning**: Reason about the impact of taking an action.
Upcoming Book (by early 2021)
Neural Approaches to Conversational Information Retrieval
(The Information Retrieval Series)

Contact Information:
Chenyan Xiong https://www.microsoft.com/en-us/research/people/cxiong/
Paul Bennett https://www.microsoft.com/en-us/research/people/pauben/

Slides:
Please check our personal websites.