
Aggify: Lifting the Curse of Cursor Loops using
Custom Aggregates

Surabhi Gupta

Microsoft Research India

t-sugu@microsoft.com

Sanket Purandare
∗

Harvard University

sanketpurandare@g.harvard.edu

Karthik Ramachandra

Microsoft Research India

karam@microsoft.com

ABSTRACT
Loops that iterate over SQL query results are quite common,

both in application programs that run outside the DBMS, as

well as User Defined Functions (UDFs) and stored procedures

that run within the DBMS. It can be argued that set-oriented

operations are more efficient and should be preferred over

iteration; but from real world use cases, it is clear that loops

over query results are inevitable in many situations, and are

preferred by many users. Such loops, known as cursor loops,

come with huge trade-offs and overheads w.r.t. performance,

resource consumption and concurrency.

We present Aggify, a technique for optimizing loops over

query results that overcomes these overheads. It achieves

this by automatically generating custom aggregates that are

equivalent in semantics to the loop. Thereby, Aggify com-

pletely eliminates the loop by rewriting the query to use this

generated aggregate. This technique has several advantages

such as: (i) pipelining of entire cursor loop operations in-

stead of materialization, (ii) pushing down loop computation

from the application layer into the DBMS, closer to the data,

(iii) leveraging existing work on optimization of aggregate

functions, resulting in efficient query plans. We describe the

technique underlying Aggify, and present our experimental

evaluation over benchmarks as well as real workloads that

demonstrate the significant benefits of this technique.

ACM Reference Format:
Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020.

Aggify: Lifting the Curse of Cursor Loops using CustomAggregates.

In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD’20), June 14–19, 2020, Portland,

∗
Work done during an internship at Microsoft Research India.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389736

OR, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.

1145/3318464.3389736

1 INTRODUCTION
Since their inception, relational database management sys-

tems have emphasized the use of set-oriented operations over

iterative, row-by-row operations. SQL strongly encourages

the use of set operations and can evaluate such operations

efficiently, whereas row-by-row operations are generally

known to be inefficient.

However, implementing complex algorithms and business

logic in SQL requires decomposing the problem in terms

of set-oriented operations. From an application developers’

standpoint, this can be fairly hard in many situations. On

the other hand, using simple row-by-row operations is often

much more intuitive and easier for most developers. As a

result, code that iterates over query results and performs

operations for every row is extremely common in database

applications, as we show in Section 10.2.

In fact, the ANSI SQL standard has had the specialized

CURSOR construct specifically to enable iteration over query

results
1
and almost all database vendors support CURSORs.

As a testimonial to the demand for cursors, we note that

cursors have been added to procedural extensions of BigData

query processing systems such as SparkSQL, Hive and other

SQL-on-Hadoop systems [30]. Cursors could either be in

the form of SQL cursors that can be used in UDFs, stored

procedures etc. as well as API such as JDBC that can be used

in application programs [3, 31].

While cursors can be quite useful for developers, they

come with huge performance trade-offs. Primarily, cursors

process rows one-at-a-time, and as a result, affect perfor-

mance severely. Depending upon the cardinality of query

results on which they are defined, cursors might materialize

results on disk, introducing additional IO and space require-

ments. Cursors not only suffer from speed problems, but can

also acquire locks for a lot longer than necessary, thereby

greatly decreasing concurrency and throughput [9].

This trade-off has been referred to by many as “the curse

of cursors” and users are often advised by experts about the

pitfalls of using cursors [2, 5, 9, 10]. A similar trade-off exists

1
CURSORs have been a part of ANSI SQL at least since SQL-92.

https://doi.org/10.1145/3318464.3389736
https://doi.org/10.1145/3318464.3389736
https://doi.org/10.1145/3318464.3389736

in database-backed applications where the application code

submits a SQL query to fetch data from a remote database

and iterates over these query results, performing row-by-

row operations. More generally, imperative programs are

known to have serious performance problems when they are

executed either in a DBMS or in database-backed applica-

tions. This area has been seeing more interest recently and

there have been several works that have tried to address this

problem [19, 23, 24, 26, 36, 38].

In this paper, we present Aggify, a technique for optimiz-

ing loops over query results. This loop could either be part

of application code that runs on the client, or inside the data-

base as part of UDFs or stored procedures. For such loops,

Aggify automatically generates a custom aggregate that is

equivalent in semantics to the loop. Then, Aggify rewrites

the cursor query to use this new custom aggregate, thereby

completely eliminating the loop.

This rewritten form offers the following benefits over

the original program. It avoids materialization of the cur-

sor query results and instead, the entire loop is now a single

pipelined query execution. It can now leverage existing work

on optimization of aggregate functions [21] and result in ef-

ficient query plans. In the context of loops in applications

that run outside the DBMS, this can significantly reduce the

amount of data transferred between the DBMS and the client.

Further, the entire loop computation which ran on the client

now runs inside the DBMS, closer to data. Finally, all these

benefits are achieved without having to perform intrusive

changes to user code. As a result, Aggify is a practically

feasible approach with many benefits.

The idea that operations in a cursor loop can be captured

as a custom aggregate function was initially proposed by

Simhadri et. al. [39]. Aggify is based on this principle which

applies to any cursor loop that does notmodify database state.

We formally prove the above result and also show how the

limitations given in [39] can be overcome. Aggify can seam-

lessly integrate with existing works on both optimization

of database-backed applications [23, 24] and optimization

of UDFs [22, 38]. We believe that Aggify pushes the state of

the art in both these (closely related) areas and significantly

broadens the scope of prior works. More details can be found

in Section 11. Our key contributions are as follows.

(1) We describe Aggify, a language-agnostic technique to

optimize loops that iterate over the results of a SQL

query. These loops could be either present in applica-

tions that run outside the DBMS, or in UDFs/stored

procedures that execute inside the DBMS.

(2) We formally characterize the class of loops that can

be optimized by Aggify. In particular, we show that

Aggify is applicable to all cursor loops present in SQL

User-Defined Functions (UDFs). We also prove that

the output of Aggify is semantically equivalent to the

input cursor loop.

(3) We describe enhancements to the core Aggify tech-

nique that expand the scope of Aggify beyond cursor

loops to handle iterative FOR loops. We also show how

Aggify works in conjunction with existing techniques

in this space.

(4) Aggify has been prototyped onMicrosoft SQL Server [4].

We discuss the design and implementation of Aggify,

and present a detailed experimental evaluation that

demonstrates performance gains, resource savings and

huge reduction in data movement.

The rest of the paper is organized as follows. We start by

motivating the problem in Section 2 and then provide the

necessary background in Section 3. Section 4 provides an

overview of Aggify and presents the formal characterization.

Section 5 and Section 6 describe the core technique, and

Section 7 reasons about the correctness of our technique.

Section 8 describes enhancements and Section 9 describes

the design and implementation. Section 10 presents our ex-

perimental evaluation, Section 11 discusses related work,

and Section 12 concludes the paper.

2 MOTIVATION
We now provide two motivating examples and then briefly

describe how cursor loops are typically evaluated.

2.1 Example: Cursor Loop within a UDF
Consider a query on the TPC-H schema that is based on

query 2 of the TPC-H benchmark, but with a slight modifi-

cation. For each part in the PARTS table, this query lists the

part identifier (p_partkey) and the name of the supplier that

supplies that part with the minimum cost. To this query, we

introduce an additional requirement that the user should be

able to set a lower bound on the supply cost if required. This

lower bound is optional, and if unspecified, should default

to a pre-specified value.

Typically, TPC-H query 2 is implemented using a nested

subquery. However, another way to implement this is by

means of a simple UDF that, given a p_partkey, returns the
name of the supplier that supplies that part with the mini-

mum cost. Such a query and UDF (expressed in the T-SQL di-

alect [11]) is given in Figure 1. As described in [38], there are

several benefits to implement this as a UDF such as reusabil-

ity, modularity and readability, which is why developers who

are not SQL experts often prefer this implementation.

The UDF minCostSupp creates a cursor (in line 6) over a

query that performs a join between PARTSUPP and SUP-

PLIER based on the p_partkey attribute. Then, it iterates over

the query results while computing the current minimum

cost (while ensuring that it is above the lower bound), and

--Query:
SELECT p_partkey, minCostSupp(p_partkey) FROM PART

-- UDF definition:
create function minCostSupp(@pkey int, @lb int =-1)

returns char(25) as
begin

declare @pCost decimal(15,2);
declare @minCost decimal(15,2) = 100000;
declare @sName char(25), @suppName char(25);

if (@lb = -1)
set @lb = getLowerBound(@pkey);

declare c1 cursor for
(SELECT ps_supplycost, s_name

FROM PARTSUPP, SUPPLIER
WHERE ps_partkey = @pkey

AND ps_suppkey = s_suppkey);

fetch next from c1 into @pCost, @sName;
while (@@FETCH_STATUS = 0)
if (@pCost < @minCost and @pCost > @lb)

set @minCost = @pCost;
set @suppName = @sName;

fetch next from c1 into @pCost, @sName;
end
return @suppName;

end

1
2
3

4
5

6

7
8
9

10
11
12

13

Figure 1: Query invoking a UDF that has a cursor loop.

maintaining the name of the supplier who supplies this part

at the current minimum (lines 8-12). At the end of the loop,

the@suppName variable will hold the name of the minimum

cost supplier subject to the lower bound constraint, which is

then returned from the UDF. Note that for brevity, we have

omitted the OPEN, CLOSE and DEALLOCATE statements

for the cursor in Figure 1; the complete definition of the loop

is available in [13].

This loop is essentially computing a function that can be

likened to argmin, which is not a built-in aggregate. This

example illustrates the fact that cursor loops can contain

arbitrary operations which may not always be expressible

using built-in aggregates. For the specific cases of functions

such as argmin, there are advanced SQL techniques that

could be used[23]; however, a cursor loop is the preferred

choice for developers who are not SQL experts.

2.2 Example: Cursor Loop in a
database-backed Application

Consider an application that manages investment portfolios

for users. Figure 2 shows a Java method from a database-

backed application that uses JDBC API [31] to access a re-

mote database. The tablemonthly_investments includes, among

other details, the rate of return on investment (ROI) on a

monthly basis. The program first issues a query to retrieve

double computeCumulativeReturn(int id, Date from) {
double cumulativeROI = 1.0;
Statement stmt = conn.prepareStatement(

"SELECT roi FROM monthly_investments
WHERE investor_id = ? and start_date = ?");

stmt.setInt(1, id);
stmt.setDate(2, from);

ResultSet rs = stmt.executeQuery();
while(rs.next()){

double monthlyROI = rs.getDouble("roi");
cumulativeROI =cumulativeROI*(monthlyROI + 1);

}

cumulativeROI = cumulativeROI - 1;
rs.close(); stmt.close(); conn.close();
return cumulativeROI;

}

Figure 2: Java method computing cumulative ROI for
investments using JDBC for database access.

all the monthly ROI values for a particular investor starting

from a specified date. Then, it iterates over these monthly

ROI values and computes the cumulative rate of return on

investment using the time-weighted method
2
and returns

the cumulative ROI value. Observe that this operation is also

not expressible using built-in aggregates.

2.3 Cursor loop Evaluation
A cursor is a control structure that enables traversal over

the results of a SQL query. They are similar to iterators in

programming languages. DBMSs support different types of

cursors such as implicit, explicit, static, dynamic, scrollable,

forward-only etc. Our work currently focuses on static, ex-

plicit cursors, which are arguably the most widely used.

Cursor loops are usually evaluated as follows. As part

of the evaluation of the cursor declaration (the DECLARE

CURSOR statement), the DBMS executes the query and ma-

terializes the results into a temporary table. The FETCH

NEXT statement moves the cursor and assigns values from

the current tuple into local variables. The global variable

FETCH_STATUS indicates whether there are more tuples

remaining in the cursor. The body of the WHILE loop is

interpreted statement-by-statement, until FETCH_STATUS

indicates that the end of the result set has been reached. Sub-

sequently, the cursor is closed and deallocated in order to

clear any temporary work tables created by the cursor.

2
When the rate of return is calculated over a series of sub-periods of time, the

return in each sub-period is based on the investment value at the beginning

of the sub-period. Assuming returns are reinvested, if the rates over n

successive time sub-periods are 𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑛 , then the cumulative return

rate using the time-weighted method is given by []: (1 + 𝑟1) (1 + 𝑟2) . . . (1 +
𝑟𝑛) − 1.

Cursor loops lead to performance issues due to the materi-

alization of the results of the cursor query onto disk, which

incurs additional IO and the interpreted evaluation of the

loop. This is exacerbated in the presence of large datasets

and more so, when invoked repeatedly as in Figure 1. The

UDF in Figure 1 is invoked once per part, which means that

the cursor query is run multiple times, and temp tables are

created and dropped for every run! This is the reason cursors

have been referred to as a ‘curse’ [2, 5, 9, 10].

3 BACKGROUND
We now cover some background material that we make use

of in the rest of the paper.

3.1 Custom Aggregate Functions
An aggregate is a function that accepts a collection of values

as input and computes a single value by combining the in-

puts. Some common operations like min, max, sum, avg and

count are provided by DBMSs as built-in aggregate functions.

These are often used along with the GROUP BY operator

that supplies a grouped set of values as input. Aggregates

can be deterministic or non-deterministic. Deterministic ag-

gregates return the same output when called with the same

input set, irrespective of the order of the inputs. All the

above-mentioned built-in aggregates are deterministic. Ora-

cle’s LISTAGG() is an example of a non-deterministic built-in

aggregate function [15].

DBMSs allow users to define custom aggregates (also

known as User-Defined Aggregates) to implement custom

logic. Once defined, they can be used exactly like built-in

aggregate functions. These custom aggregates need to ad-

here to an aggregation contract [1], typically comprising

four methods: init, accumulate, terminate and merge. The
names of these methods may vary across DBMSs. We now

briefly describe this contract.

(1) Init: Initializes fields that maintain the internal state of

the aggregate. It is invoked once per group.

(2) Accumulate: Defines the main aggregation logic. It is

called once for each qualifying tuple in the group being

aggregated. It updates the internal state of the aggregate

to reflect the effect of the incoming tuple.

(3) Terminate: Returns the final aggregated value. It might

optionally perform some computation as well.

(4) Merge: This method is optional; it is used in parallel exe-

cution of the aggregate to combine partially computed

results from different invocations of Accumulate.

If the query invoking the aggregate function does not use

parallelism, the Merge method is never invoked. The other 3

methods are mandatory. The aggregation contract does not

enforce any constraint on the order of the input. If order is

required, it has to be enforced outside of this contract [15].

Figure 3: Control Flow Graph for the UDF in Figure 1,
augmented with data dependence edges.

Several optimizations on aggregate functions have been

explored in previous literature [21]. These involve moving

the aggregate around joins and allowing them to be either

evaluated eagerly or be delayed depending on cost based

decisions [40]. Duplicate insensitivity and null invariance

can also be exploited to optimize aggregates [27].

3.2 Data Flow Analysis
We now briefly describe the data structures and static analy-

sis techniques that we make use of in this paper. The material

in this section is mainly derived from [17, 32, 33] and we

refer the readers to these for further details.

Data flow analysis is a program analysis technique that

is used to derive information about the run time behaviour

of a program [17, 32, 33]. The Control Flow Graph (CFG) of
a program is a directed graph where vertices represent ba-

sic blocks (a straight line code sequence with no branches)

and edges represent transfer of control between basic blocks

during execution. The Data Dependence Graph (DDG) of a

program is a directed multi-graph in which program state-

ments are nodes, and the edges represent data dependencies

between statements. Data dependencies could be of different

kinds – Flow dependency (read after write), Anti-dependency

(write after read), and Output dependency (write after write).

The entry and exit point of any node in the CFG is denoted

as a program point.
Figure 3 shows the CFG for the UDF in Figure 1. Here we

consider each statement to be a separate basic block. The CFG

has been augmented with data dependence edges where the

dotted (blue) and dashed (red) arrows respectively indicate

flow and anti dependencies. We use this augmented CFG

(sometimes referred to as the Program Dependence Graph

or PDG [25]) as the input to our technique.

3.2.1 Framework for data flow analysis. A data-flow value

for a program point is an abstraction of the set of all possible

program states that can be observed for that point. For a

given program entity 𝑒 , such as a variable or an expression,

data flow analysis of a program involves (i) discovering the

effect of individual program statements on 𝑒 (called local

data flow analysis), and (ii) relating these effects across state-

ments in the program (called global data flow analysis) by

propagating data flow information from one node to another.

The relationship between local and global data flow infor-

mation is captured by a system of data flow equations. The

nodes of the CFG are traversed and these equations are itera-

tively solved until the system reaches a fixpoint. The results

of the analysis can then be used to infer information about

the program entity 𝑒 .

3.2.2 UD and DU Chains. When a variable 𝑣 is the target of

an assignment in a statement 𝑆 , 𝑆 is known as aDefinition of 𝑣 .
When a variable 𝑣 is on the RHS of an assignment statement

𝑆 , 𝑆 is known as a Use of 𝑣 . A Use-Definition (UD) Chain is

a data structure that consists of a use U of a variable, and

all the definitions D of that variable that can reach that use

without any other intervening definitions. A counterpart of

a UD Chain is a Definition-Use (DU) Chain which consists of

a definition D of a variable and all the uses U, reachable from

that definition without any other intervening definitions.

These data structures are created using data flow analysis.

3.2.3 Reaching definitions analysis. This analysis is used to

determine which definitions reach a particular point in the

code [33]. A definition D of a variable reaches a program

point p if there exists a path leading from D to p such that

D is not overwritten (killed) along the path. The output of

this analysis can be used to construct the UD and DU chains

which are then used in our transformations. For example, in

Figure 1, consider the use of the variable@lb inside the loop
(line 9). There are at least two definitions of@lb that reach
this use. One is the the initial assignment of @lb to -1 as a

default argument, and the other is assignment on line 5.

3.2.4 Live variable analysis. This analysis is used to deter-

mine which variables are live at each program point. A vari-

able is said to be live at a point if it has a subsequent use

before a re-definition [33]. For example, consider the variable

@lb in Figure 1. This variable is live at every program point

in the loop body. But at the end of the loop, it is no longer

live as it is never used beyond that point. In the function

minCostSupp, the only variable that is live at the end of the

loop is @suppName. We will use this information in Aggify

as we shall show in Section 5.

4 AGGIFY OVERVIEW
Aggify is a technique that offers a solution to the limita-

tions of cursor loops described in Section 2.3. It achieves this

goal by replacing the entire cursor loop with an equivalent

SQL query invoking a custom aggregate that is systemati-

cally constructed. Performing such a rewrite that guarantees

equivalence in semantics is nontrivial. The key challenges

involved here are the following. The body of the cursor loop

could be arbitrarily complex, with cyclic data dependencies

and complex control flow. The query on which the cursor is

defined could also be arbitrarily complex, having subqueries,

aggregates and so on. Furthermore, the UDF or stored proce-

dure that contains this loop might define variables that are

used and modified within the loop.

In the subsequent sections, we show how Aggify achieves

this goal such that the rewritten query is semantically equiva-

lent to the cursor loop. Aggify primarily involves two phases.

The first phase is to construct a custom aggregate by analyz-

ing the loop (described in Section 5). Then, the next step is to

rewrite the cursor query to make use of the custom aggregate

and removing the entire loop (described in Section 6).

4.1 Applicability
Before delving into the technique, we formally characterize

the class of cursor loops that can be transformed by Aggify

and specify the supported operations inside such loops.

Definition 4.1. A Cursor Loop (CL) is defined as a tuple

(𝑄,Δ) where𝑄 is any SQL SELECT query and Δ is a program

fragment that can be evaluated over the results of 𝑄 , one

row at a time.

Observe that in the above definition, the body of the loop

(Δ) is neither specific to a programming language nor to

the execution environment. The loop can be either imple-

mented using procedural extensions of SQL, or using pro-

gramming languages such as Java. This definition therefore

encompasses the loops shown in Figures 1 and 2. In general,

statements in the loop can include arbitrary operations that

may even mutate the persistent state of the database. Such

loops cannot be transformed by Aggify, since aggregates by

definition cannot modify database state. We now state the

theorem that defines the applicability of Aggify.

Theorem 4.2. Any cursor loop CL(𝑄,Δ) that does not mod-
ify the persistent state of the database can be equivalently
expressed as a query 𝑄 ′ that invokes a custom aggregate func-
tion 𝐴𝑔𝑔Δ.

Proof. We prove this theorem in three steps.

(1) We describe (in Section 5) a technique to systematically

construct a custom aggregate function 𝐴𝑔𝑔Δ for a given

cursor loop CL(𝑄,Δ).
(2) We present (in Section 6) the rewrite rule that can be used

to rewrite the cursor loop as a query𝑄 ′
that invokes𝐴𝑔𝑔Δ

(3) We show (in Section 7) that the rewritten query 𝑄 ′
is

semantically equivalent to the cursor loop CL(𝑄,Δ).

By steps (1), (2), and (3), the theorem follows. □

Observe that Theorem 4.2 encompasses a fairly large class

of loops encountered in reality. More specifically, this covers

all cursor loops present in user-defined functions (UDFs).

This is because UDFs by definition are not allowed to modify

the persistent state of the database. As a result, all cursor

loops inside such UDFs can be rewritten using Aggify. Note

that this theorem only states that a rewrite is possible; it

does not necessarily imply that such a rewrite will always

be more efficient. There are several factors that influence

the performance improvements due to this rewrite, and we

discuss them in our experimental evaluation (Section 10).

4.2 Supported operations
We support all operations inside a loop body that are admis-

sible inside a custom aggregate. The exact set of operations

supported inside a custom aggregate varies across DBMSs,

but in general, this is a broad set which includes procedural

constructs such as variable declarations, assignments, condi-

tional branching, nested loops (cursor and non-cursor) and

function invocations. All scalar and table/collection data

types are supported. The formal language model that we

support is given below.

𝑒𝑥𝑝𝑟 ::= Constant | var | Func(...) | Query(...)
| ¬ expr | expr1 op expr2

𝑜𝑝 ::= + | - | * | / | < | > | ...

𝑆𝑡𝑚𝑡 ::= skip | Stmt; Stmt | var := expr

| if expr then Stmt else Stmt

| while expr do Stmt

| try Stmt catch Stmt

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ::= Stmt

Nested cursor loops are supported as described in Sec-

tion 6.3.1. SQL SELECT queries inside the loop are fully

supported. DML operations (INSERT, UPDATE, DELETE) on

local table variables or temporary tables or collections are

supported. Exception handling code (TRY...CATCH) can also

be supported. Nested function calls are supported. Opera-

tions that may change the persistent state of the database

(DML statements against persistent tables, transactions, con-

figuration changes etc.) are not supported. Unconditional

jumps such as BREAK and CONTINUE can be supported

using boolean variables to keep track of control flow. We

can support operations having side-effects only if the DBMS

allows these operations inside a custom aggregate. We now

describe the core Aggify technique in detail.

5 AGGREGATE CONSTRUCTION
Given a cursor loop (Q, Δ) our goal is to construct a cus-

tom aggregate that is equivalent to the body of the loop, Δ.
As explained in Section 3.1, we use the aggregate function

contract involving the 3 mandatory methods – Init, Accu-

mulate and Terminate – as the target of our construction.

Constructing such a custom aggregate involves specifying

its signature (return type and parameters), fields and con-

structing the three method definitions. Figure 4 shows the

template that we start with. The patterns <<>> in Figure 4

(shown in green) indicate ‘holes’ that need to be filled with

public class LoopAgg {
<< Field declarations for VF >>

void Init() { isInitialized = false; }
void Accumulate(<< Param specs for Paccum >>) {

if (!isInitialized) {
<< Assignments for Vinit >>
isInitialized = true;

}
<< Loop body ∆ >>

}
<<TYPE(Vterm)>> Terminate(){ return << Vterm >>; }

}

Figure 4: Template for the custom aggregate.

public class MinCostSuppAgg {
double minCost; string suppName;
int lb; bool isInitialized;

void Init() { isInitialized = false; }

void Accumulate(double pCost, string sName,
double pMinCost, int pLb) {

if (!isInitialized) {
minCost = pMinCost;
lb = pLb;
isInitialized = true;

}
if (pCost < minCost && pCost > lb) {

minCost = pCost;
suppName = sName;

}
}
string Terminate() { return suppName; }

}

Figure 5: Custom aggregate for the loop in Figure 1.

public class CumulativeReturnAgg {
double cumulativeROI; bool isInitialized;

void Init() { isInitialized = false; }

void Accumulate(double monthlyROI,
double pCumulativeROI) {

if (!isInitialized) {
cumulativeROI = pCumulativeROI;
isInitialized = true;

}
cumulativeROI=cumulativeROI*(monthlyROI + 1);

}
double Terminate() { return cumulativeROI; }

}

Figure 6: Custom aggregate for the loop in Figure 2.

code fragments inferred from the loop. We now show how

to construct such an aggregate and illustrate it using the

examples from Section 2. Figures 5 and 6 show the definition

of the custom aggregate for the loops in Figures 1 and 2

respectively. We use the syntax of Microsoft SQL Server to

illustrate these examples; however the technique applies to

other SQL dialects as well.

5.1 Fields
Conservatively, all variables live at the beginning of the loop

can be made fields of the aggregate. We identify a minimal

set of fields as follows. Consider the set 𝑉Δ of all variables

referenced in the loop body Δ. Let 𝑉fetch be the set of vari-
ables assigned in the FETCH statement, and let 𝑉𝑙𝑜𝑐𝑎𝑙 be the

set of variables that are local to the loop body (i.e they are

declared within the loop body and are not live at the end
of the loop.) The set of variables 𝑉𝐹 defined as fields of the

custom aggregate is given by the equation:

𝑉𝐹 = (𝑉Δ − (𝑉fetch ∪𝑉local)) ∪ {𝑖𝑠𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑}. (1)

We have additionally added a variable called isInitialized to

the field variables set 𝑉𝐹 . This boolean field is necessary for

keeping track of field initialization, and will be described in

Section 5.2. For all variables in𝑉𝐹 , we place a field declaration

statement in the custom aggregate class.

Illustrations: For the loop in Figure 1,

𝑉Δ = {𝑝𝐶𝑜𝑠𝑡,𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝑙𝑏, 𝑠𝑢𝑝𝑝𝑁𝑎𝑚𝑒, 𝑠𝑁𝑎𝑚𝑒}
𝑉fetch = {𝑝𝐶𝑜𝑠𝑡, 𝑠𝑁𝑎𝑚𝑒}
𝑉local = {}

Therefore, using Equation 1, we get

𝑉𝐹 = {𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝑙𝑏, 𝑠𝑢𝑝𝑝𝑁𝑎𝑚𝑒, 𝑖𝑠𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑}□
For application programs such as the one in Figure 2 that

use a data access API like JDBC, the attribute accessor meth-

ods (e.g. getInt(), getString() etc.) on the ResultSet object are
treated analogous to the FETCH statement. Therefore, local

variables to which ResultSet attributes are assigned form a

part of the 𝑉𝑓 𝑒𝑡𝑐ℎ set. For the loop in Figure 2,

𝑉Δ = {𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑂𝐼,𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑅𝑂𝐼 }
𝑉fetch = {𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑅𝑂𝐼 }
𝑉local = {}

Therefore, using Equation 1, we get

𝑉𝐹 = {𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑂𝐼, 𝑖𝑠𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑}□

5.2 Init()
The implementation of the Init() method is very simple. We

just add a statement that assigns the boolean field isInitialized
to false. Initialization of field variables is deferred to the

Accumulate() method for the following reason. The Init()
does not accept any arguments. Hence if field initialization

statements are placed in Init(), they will have to be restricted
to values that are statically determinable [39]. This is because

these values will have to be supplied at aggregate function

creation time. In practice it is quite likely that these values

are not statically determinable. This could be because (a)

they are not compile-time constants but are variables that

hold a value at runtime, or (b) there are multiple definitions

of these variables that might reach the loop, due to presence

of conditional assignments.

Consider the loop of Figure 1. Based on Equation 1, we

have determined that the variable@lb has to be a field of the
custom aggregate. Now, we cannot place the initialization

of @lb in Init() because there is no way to determine the

initial value of@lb at compile-time using static analysis of

the code. This was a restriction in [39] which we overcome

by deferring field initializations to Accumulate().
Illustrations: The Init() method is identical in both Figures

5 and 6, having an assignment of isInitialized to false.

5.3 Accumulate()
In a custom aggregate, theAccumulate()method encapsulates

the important computations that need to happen. We now

construct the parameters and the definition of Accumulate().

5.3.1 Parameters. Let 𝑃accum denote the set of parameters

which is identified as the set of variables that are used inside
the loop body and have at least one reaching definition outside
the loop. The set of candidate variables is computed using the

results of reaching definitions analysis (Section 3.2.3). More

formally, let 𝑉𝑢𝑠𝑒 be the set of all variables used inside the

loop body. For each variable 𝑣 ∈ 𝑉𝑢𝑠𝑒 , let𝑈𝐶𝐿 (𝑣) be the set of
all uses of 𝑣 inside the cursor loop CL. Now, for each use 𝑢 ∈
𝑈𝐶𝐿 (𝑣), let RD(𝑢) be the set of all definitions of 𝑣 that reach
the use 𝑢. We define a function 𝑅(𝑣) as follows.

𝑅(𝑣) =
{
1, if ∃𝑑 ∈ 𝑅𝐷 (𝑢) | 𝑑 is not in the loop.

0, otherwise.
(2)

Checking if a definition 𝑑 is in the loop or not is a simple

set containment check. Using Equation 2, we define 𝑃accum,

the set of parameters for Accumulate() as follows.

𝑃accum = {𝑣 | 𝑣 ∈ 𝑉𝑢𝑠𝑒 ∧ 𝑅(𝑣) == 1} (3)

5.3.2 Method Definition. There are two blocks of code that

form the definition of Accumulate() – field initializations and

the loop body block. The set of fields 𝑉𝑖𝑛𝑖𝑡 that need to be

initialized is given by the below equation.

𝑉init = 𝑃accum −𝑉fetch (4)

As mentioned earlier, the boolean field isInitialized de-

notes whether the fields of this class are initialized or not.

The first time accumulate is invoked for a group, isInitialized
is false and hence the fields in 𝑉init are initialized. During

subsequent invocations, this block is skipped as isInitialized
would be true. Following the initialization block, the entire

loop body Δ is appended to the definition of Accumulate().

create function minCostSupp(@pkey int, @lb int =-1)
returns char(25) as
begin

declare @minCost decimal(15,2) = 100000;
declare @suppName char(25);

if (@lb = -1)
set @lb = getLowerBound(@pkey);

set @suppName = (
SELECT MinCostSuppAgg(Q.ps_supplycost,

Q.s_name, @minCost, @lb)
FROM (SELECT ps_supplycost, s_name

FROM PARTSUPP, SUPPLIER
WHERE ps_partkey = @pkey

AND ps_suppkey = s_suppkey) Q);
return @suppName;

end

Figure 7: The UDF in Figure 1 rewritten using Aggify.

Illustrations: For the loop in Figure 1:

𝑃accum = {𝑝𝐶𝑜𝑠𝑡, 𝑠𝑁𝑎𝑚𝑒, 𝑝𝑀𝑖𝑛𝐶𝑜𝑠𝑡, 𝑝𝐿𝑏}
𝑉init = {𝑚𝑖𝑛𝐶𝑜𝑠𝑡, 𝑙𝑏}

For the loop in Figure 2, 𝑃accum and 𝑉𝑖𝑛𝑖𝑡 are as follows:

𝑃accum = {𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑅𝑂𝐼, 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑂𝐼 }
𝑉init = {𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑂𝐼 }

The Accumulate() method in Figures 5 and 6 are constructed

based on the above equations as per the template in Figure 4.

5.4 Terminate()
This method returns a tuple of all the field variables (𝑉𝐹) that

are live at the end of the loop. The set of candidate variables

𝑉𝑡𝑒𝑟𝑚 are identified by performing a liveness analysis for the

module enclosing the cursor loop (e.g. the UDF that contains

the loop). The return type of the aggregate is a tuple where

each attribute corresponds to a variable that is live at the end

of the loop. The tuple datatype can be implemented using

User-Defined Types in most DBMSs.

Illustrations: For the loop in Figure 1,𝑉term = {𝑠𝑢𝑝𝑝𝑁𝑎𝑚𝑒},
and for the loop in Figure 2, 𝑉term = {𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑂𝐼 }. For
simplicity, since these are single-attribute tuples, we avoid

using a tuple and use the type of the attribute as the return

type of Terminate().

6 QUERY REWRITING
For a given cursor loop (Q, Δ), once the custom aggregate

𝐴𝑔𝑔Δ has been created, the next task is to remove the loop

altogether and rewrite the query 𝑄 into 𝑄 ′
such that it in-

vokes this custom aggregate instead. Note that 𝑄 might be

arbitrarily complex, and may contain other aggregates (built-

in or custom), GROUP BY, sub-queries and so on. Therefore,

double computeCumulativeReturn(int id, Date from) {
double cumulativeROI = 1.0;

Statement stmt = conn.prepareStatement(
"SELECT CumulativeReturnAgg(Q.roi, ?) AS croi

FROM (SELECT roi FROM monthly_investments
WHERE investor_id = ?

AND start_date = ?) Q");

stmt.setDouble(1, cumulativeROI);
stmt.setInt(2, id); stmt.setDate(3, from);

ResultSet rs = stmt.executeQuery();
rs.next();
cumulativeROI = rs.getDouble("croi");

cumulativeROI = cumulativeROI - 1;
rs.close(); stmt.close(); conn.close();
return cumulativeROI;

}

Figure 8: The Java method in Figure 2 rewritten using
Aggify.

Aggify constructs 𝑄 ′
without modifying 𝑄 directly, but by

composing 𝑄 as a nested sub-query. In other words, Aggify

introduces an aggregation on top of 𝑄 that contains an in-

vocation to 𝐴𝑔𝑔Δ. Note that 𝐴𝑔𝑔Δ is the only attribute that

needs to be projected, as it contains all the loop variables

that are live. In relational algebra, this rewrite rule can be

represented as follows:

Loop(𝑄,Δ) =⇒ GAggΔ (𝑃accum) as aggVal (𝑄) (5)

Note that the parameters to 𝐴𝑔𝑔Δ are the same as the pa-

rameters to the Accumulate() method (𝑃𝑎𝑐𝑐𝑢𝑚). These are ei-

ther attributes that are projected from𝑄 or variables that are

defined earlier. The return value of 𝐴𝑔𝑔Δ (aliased as aggVal)
is a tuple from which individual attributes can be extracted.

The details are specific to SQL dialects.

Illustration: Figure 7 shows the output of rewriting the

UDF in Figure 1 using Aggify. Observe the statement that

assigns to the variable @suppName where the R.H.S is a

SQL query. This is the resulting query corresponding to the

loop in Figure 1; the aggregate MinCostSuppAgg is defined

in Figure 5.

Figure 8 shows the Java method from Figure 2 rewritten

using Aggify. Out of the 2 parameters to the aggregate func-

tion, one is an attribute from the underlying query, and the

other is a local variable. The loop is replaced with a method

that advances the ResultSet to the first (and only) row in the

result, and an attribute accessor method invocation (getDou-
ble() in this case) is placed with an assignment to each of the

live variables (cumulativeROI in this case).

6.1 Order enforcement
The query𝑄 over which a cursor is definedmay be arbitrarily

complex. If𝑄 does not have an ORDER BY clause, the DBMS

gives no guarantee about the order in which the rows are

iterated over. Equation 5 is in accordance with this, because

the DBMS gives no guarantee about the order in which the

custom aggregate is invoked as well. Hence the above query

rewrite suffices in this case.

However, the presence of ORDER BY in the cursor query

𝑄 implies that the loop body Δ is invoked in a specific order

determined by the sort attributes of𝑄 . In this case, the above

rewriting is not sufficient as it does not preserve the ordering

and may lead to wrong results. Therefore, Simhadri et. al [39]

mention that either there should be no ORDER BY clause in

the cursor query, or the database system should allow order

enforcement while invoking custom aggregates. To address

this, we now propose a minor variation of the above rewrite

rule that can be used to enforce the necessary order.

Let𝑄𝑠 represent a query with an ORDER BY clause where

the subscript 𝑠 denotes the sort attributes. Let 𝑄 represent

the query 𝑄𝑠 without the ORDER BY clause. For a cursor

loop (𝑄𝑠 ,Δ), the rewrite rule can be stated as follows:

Loop(𝑄𝑠 ,Δ) =⇒ GStreamAggΔ (𝑃accum) as aggVal (𝑆𝑜𝑟𝑡𝑠 (𝑄)) (6)

This rule enforces two conditions. (i) It enforces the sort

operation to be performed before the aggregate is invoked,

and (ii) it enforces the Streaming Aggregate physical operator
to implement the custom aggregate. These two conditions

ensure that the order specified in the cursor loop is respected.

6.2 Discussion
Once the query is rewritten as described above, Aggify re-

places the loop with an invocation to the rewritten query as

shown in Figures 7 and 8. The return value of the aggregate

is assigned to corresponding local variables, which enables

subsequent lines of code to remain unmodified. From Figures

7 and 8, we can make the following observations.

• The cursor query Q remains unchanged, and is now the

subquery that appears in the FROM clause.

• The transformation is fairly non-intrusive. Apart from the

removal of the loop, the rest of the lines of code remain

identical, except for a few minor modifications.

• This transformation may render some variables as dead.
Declarations of such variables can be then removed, thereby

further simplifying the code [33]. For instance, the vari-

ables @pCost and @sName in Figure 1 are no longer re-

quired, and are removed in Figure 7.

The transformed program Aggify offers the following ben-

efits. It avoids materialization of the cursor query results

and instead, the entire loop is now a single pipelined query

execution. In the context of loops in applications that run

outside the DBMS (Figure 8), this rewrite reduces the amount

of data transferred between the DBMS and the client. Fur-

ther, the entire loop computation now runs inside the DBMS,

closer to data. Finally, all these benefits are achieved without

intrusive changes to source code.

6.3 Aggify Algorithm

Algorithm 1 Aggify(𝐺 , 𝑄 , Δ)

Require: 𝐺 : CFG of the program augmented with data de-

pendence edges;

𝑄 : Cursor query;

Δ: Subgraph of 𝐺 for the loop body;

𝐴(𝐿, 𝑅,𝑈𝐷, 𝐷𝑈) ← Perform DataFlow Analysis on 𝐺 ;

𝐿 ← Liveness information;

𝑅𝐷 ← Reachable Definitions;

𝑈𝐷, 𝐷𝑈 ← Use-Def Chain, Def-Use Chain;

𝑉Δ ← {Variables referenced in Δ};
𝑉𝑓 𝑒𝑡𝑐ℎ ← {Vars. assigned in the FETCH statement};

𝑉𝑓 𝑖𝑒𝑙𝑑 ← {Compute using Equation 1};

𝑃𝑎𝑐𝑐𝑢𝑚 ← {Compute using Equation 3};

𝑉𝑖𝑛𝑖𝑡 ← {Compute using Equation 4};

𝑉𝑡𝑒𝑟𝑚 ← {Fields that are live at loop end};

𝐴𝑔𝑔Δ ← Construct aggregate class using template in

Figure 4 and above information;

Register 𝐴𝑔𝑔Δ with the database;

if (Q contains ORDER BY clause) then
𝑠 ← {ORDER BY attributes}

Rewrite loop using Equation 6;

else
Rewrite loop using Equation 5;

The entire algorithm illustrated in Sections 5 and 6 is for-

mally presented in Algorithm 1. The algorithm accepts𝐺 , the

CFG of the program augmented with data dependence edges;

𝑄 , the cursor query; and Δ, the subgraph of𝐺 corresponding

to the loop body. Algorithm 1 is invoked for every loop after

necessary preconditions in Section 4.2 are satisfied.

Initially, we perform DataFlow Analyses on𝐺 as described

in Section 3. The results of these analyses are captured as

𝐴(𝐿, 𝑅𝐷,𝑈𝐷, 𝐷𝑈)which consists of Liveness, Reachable defi-
nitions, Use-Def and Def-Use chains respectively. Then, these

results are used to compute the necessary components for the

aggregate definition, namely 𝑉Δ, 𝑉𝑖𝑛𝑖𝑡 , 𝑉𝑓 𝑒𝑡𝑐ℎ , 𝑉𝑓 𝑖𝑒𝑙𝑑 , 𝑉𝑡𝑒𝑟𝑚 ,

𝑃𝑎𝑐𝑐𝑢𝑚 . Once all the necessary information is computed, the

aggregate definition is constructed using the template in

Figure 4, and this aggregate (called 𝐴𝑔𝑔Δ) is registered with

the database engine. Finally, we rewrite the entire loop with

a query that invokes 𝐴𝑔𝑔Δ. The rewrite rule is chosen based

on whether the cursor query 𝑄 has an ORDER BY clause, as

described in Section 6.

6.3.1 Nested cursor loops: Cursors can be nested, and our

algorithm can handle such cases as well. This can be achieved

by first running Algorithm 1 on the inner cursor loop and

transforming it into a SQL query. Subsequently, we can run

Algorithm 1 on the outer loop. An example is provided (L8-

W2) in customer workload experiments in [13].

7 PRESERVING SEMANTICS
We now reason about the correctness of the transformation

performed by Aggify, and describe how the semantics of the

cursor loop are preserved.

Let CL(𝑄,Δ) be a cursor loop, and let 𝑄 ′
be the rewritten

query that invokes the custom aggregate. The program state

comprises of values for all live variables at a particular pro-
gram point. Let 𝑃0 denote the program state at the beginning

of the loop and 𝑃𝑛 denote the program state at the end of the

loop, where 𝑛 = |𝑄 |. To ensure correctness, we must show

that if the execution of the cursor loop on 𝑃0 results in 𝑃𝑛 ,

then the execution of 𝑄 ′
on 𝑃0 also results in 𝑃𝑛 . We only

consider program state and not the database state in this

discussion, as our transformation only applies to loops that

do not modify the database state.

Every iteration of the loop can be modeled as a function

that transforms the intermediate program state. Formally,

𝑃𝑖 = 𝑓 (𝑃𝑖−1,𝑇𝑖)
where 𝑖 ranges from 1 to 𝑛. In fact the function 𝑓 would be

comprised of the operations in the loop body Δ.
It is now straightforward to see that the Accumulate()

method of the custom aggregate constructed by Aggify ex-

actly mimics this behavior. This is because (a) the statements

in the loop body Δ are directly placed in the Accumulate()
method, (b) the Accumulate() is called for every tuple in

𝑄 , and (c) the rule in Equation 6 ensures that the order of

invocation of Accumulate() is identical to that of the loop

when necessary. The fields of the aggregate class
3
and their

initialization ensure the inter-iteration program states are

maintained. From our definition of 𝑉𝑡𝑒𝑟𝑚 in Section 5.4, it

follows that 𝑃𝑛 = 𝑉𝑡𝑒𝑟𝑚 . Therefore the output of the custom

aggregate is identical to the program state at the end of the

cursor loop. □

8 ENHANCEMENTS
Wenowpresent enhancements to Aggify that further broaden

its applicability.

3
Note that here𝑉𝐹 = 𝑃0. In other words, we consider all variables that are

live at the beginning of the loop (i.e. 𝑃0) as fields of the aggregate. This is a

conservative but correct definition as given in Section 5.1.

8.1 Optimizing Iterative FOR Loops
Although the focus of Aggify has been to optimize loops

over query results, the technique can be extended to more

general FOR loops with a fixed iteration space. A FOR loop

is a control structure used to write a loop that needs to

execute a specific number of times. Such loops are extremely

common, and typically have the following structure:

FOR (init; condition; increment) { statement(s);}

Such loops can be written as cursor loops by expressing

the iteration space as a relation. Consider this loop

FOR (i = 0; i <= 100; i++) { statement(s);}

The iteration space of this loop can be written as a SQL

query using either recursive CTEs, or vendor specific con-

structs (such as DUAL in Oracle). The above loop written

using a recursive CTE is given below.

with CTE as (select 0 as i
union all select i + 1 from CTE where i <= 100

) select * from CTE

Now, we can define a cursor on the above query with

the same loop body. This is now a standard cursor loop and

hence Aggify can be used to optimize it. Rewriting FOR

loops as recursive CTEs can be achieved by extracting the

init, condition and increment expressions from the FOR loop,

and placing them in the CTE template given above. We omit

details of this transformation.

8.2 Extending existing techniques
We now show how Aggify can seamlessly integrate with

existing optimization techniques, both in the case of applica-

tions that run outside the DBMS and UDFs that run within.

There have been recent efforts to optimize database appli-

cations using techniques from programming languages [19,

23, 24, 37]. In fact, [23] mentions that loops over query re-

sults could be converted to user-defined aggregates, but do

not describe a technique for the same. Aggify can be used as

a preprocessing step which can replace loops with equivalent

queries which invoke a custom aggregate. Then, the tech-

niques of [23] can be used to further optimize the program.

The Froid framework [38], which was also based on the

work of Simhadri et. al [39] showed how to transform UDFs

into sub-queries that could then be optimized. However,

Froid cannot optimize UDFs with loops. Building upon this

idea, Duta et. al [22] described a technique to transform arbi-

trary loops into recursive CTEs. While this avoids function

call overheads and context switching, it is limited by the

optimization techniques that currently exist for recursive

CTEs. For the specific case of cursor loops, Aggify avoids

creating recursive CTEs.

These ideas can be used together in the following manner:

(i) If the function has a cursor loop, use Aggify to eliminate it.

(ii) If the function has a FOR loop and the necessary expres-

sions can be extracted from it, use the technique described

in Section 8.1 along with Aggify to eliminate the loop. (iii) If

the function has an arbitrary loop with a dynamic iteration

space, use the technique of Duta et. al [22]. After applying

(i), (ii), or (iii), Froid can be used to optimize the resulting

loop-free UDF.

9 IMPLEMENTATION
The techniques described in this paper can be implemented

either inside a DBMS or as an external tool. We have cur-

rently implemented a prototype of Aggify in Microsoft SQL

Server. Aggify currently supports cursor loops that are writ-

ten in Transact-SQL [11], and constructs a user-defined ag-

gregate in C# [20]. Note that translating from T-SQL into

C# might lead to loss of precision and sometimes different

results due to difference in data type semantics. We are cur-

rently working on a better approach which is to natively

implement this inside the database engine [28].

Implementing Aggify inside a DBMS allows the construc-

tion of more efficient implementations of custom-aggregates

that can be baked into the DBMS itself. Also, observe that the

rule in Equation 6 that enforces streaming aggregate operator

for the custom aggregate has to be part of the query opti-

mizer. In fact, apart from this rule, there is no other change

required to be made to the query optimizer. Every other part

of Aggify can be implemented outside the query optimizer.

However, we note that since Microsoft SQL Server only sup-

ports the Streaming Aggregate operator for user-defined

aggregates, we did not have to implement Equation 6.

Froid [38] is available as a feature called Scalar UDF In-
lining [8] in Microsoft SQL Server 2019. As mentioned in

Section 8.2, Aggify integrates seamlessly with Froid, thereby

extending the scope of Froid to also handle UDFs with cur-

sor loops. Aggify is first used to replace cursor loops with

equivalent SQL queries with a custom aggregate; this is then

followed by Froid which can now inline the UDF.

10 EVALUATION
We now present some results of our evaluation of Aggify.

Our experimental setup is as follows. Microsoft SQL Server

2019 [4] with Aggify was run on Windows 10. The machine

was equipped with an Intel Quad Core i7, 3.6 GHz, 64 GB

RAM, and SSD-backed storage. The SQL cursor loops were

run directly on this machine, and did not involve any net-

work. The client applications were run on a remote machine

connected to the DBMS over LAN.

10.1 Workloads
We have evaluated Aggify on many workloads on several

data sizes and configurations. We show results based on 3

real workloads, an open benchmark based on TPC-H queries,

and several Java programs including an open benchmark. All

these queries, UDFs and cursor loops are made available [13].

TPC-H Cursor Loop workload: To evaluate Aggify on

an open benchmark that mimics real workloads, we imple-

mented the specifications of a few TPC-H queries using cur-

sor loops. Not all TPC-H queries are amenable to be written

using cursor loops, so we have chosen a logically meaningful

subset. While this is a synthetic benchmark, it illustrates

common scenarios found in real workloads. We report re-

sults on the 10GB scale factor. The database had indexes

on L_ORDERKEY and L_SUPPKEY columns of LINEITEM,

O_CUSTKEY column of ORDERS, and PS_PARTKEY column

of PARTSUPP. For this workload we show a breakdown of

results for Aggify, and Aggify+ (Froid applied after Aggify).

Real workloads: We have considered 3 real workloads (pro-

prietary) for our experiments. While we have access to the

queries and UDFs/stored procedures of these workloads, we

did not have access to the data. As a result, we have syn-

thetically generated datasets that suit these workloads. We

have also manually extracted required program fragments

from these workloads so that we can use them as inputs to

Aggify. Workload W1 is a CRM application, W2 is a configu-

ration management tool, and W3 is a backend application

for a transportation services company. Note that we have

not combined Aggify with Froid in these workloads, as we

did not have access to the queries that invoke these UDFs.

Java workload: The implementation of Aggify for Java is

ongoing. For performance evaluation, we have considered

the RUBiS benchmark [7] and two other examples and man-

ually transformed them using Algorithm 1. One of them is a

Java implementation of the minimum cost supplier function-

ality similar to the example in Figure 1. The other is a variant

of the example in Figure 2 with 50 columns. These programs

are also available in [13]. Note that Froid is applicable only

to T-SQL, so the Java experiments do not use Froid.

10.2 Applicability of Aggify
We have analyzed several real world workloads and open-

source benchmark applications to measure (a) the usage of

cursor loops, and (b) the applicability of Aggify on such loops.

We considered about 5720 databases in Azure SQL Data-

base [14] that make use of UDFs in their workload. Across

these databases, we came across more than 77,294 cursors

being declared inside UDFs
4
. As explained in Section 4.1,

Aggify can be used to rewrite all these cursor loops. This

demonstrates both the wide usage of cursor loops in real

workloads, and the broad applicability of Aggify.

4
This analysis was done using scripts that analyze the database metadata

and extract the necessary information. We do not have access to manually

examine the source code of these propreitary UDFs.

Table 1: Applicability of Aggify
Workload RUBiS RUBBoS Adempiere

Total # of while loops 16 41 127

of cursor loops 14 (87.5%) 14 (34.14%) 109 (85.8%)

Aggify-able 14 14 >80

Next, we manually analyzed 3 opensource Java applica-

tions – the RUBiS Benchmark [7], RUBBos Benchmark [6],

and the popular Adempiere [12] CRM application. Table 1

shows the results of this analysis. 87.5% of the loops in the

RUBiS benchmark were cursor loops. In RUBBoS, 34% of

the loops were cursor loops. We looked at a subset of files

in Adempiere (2̃5 files) where more than 85% of the loops

encountered were cursor loops. Interestingly all the cursor

loops in RUBiS and RuBBoS, andmore than 80 loops in Adem-

piere satisfied the preconditions for Aggify. This shows the

use of cursors as well as the applicability of Aggify. More

details of this analysis can be found in [28].

10.3 Performance improvements
We now show the results of our experiments to determine

the overall performance gains achieved due to Aggify.

10.3.1 TPC-H workload. First, we consider the TPC-H cur-

sor loop workload and show the results on a 10 GB database

with warm buffer pool. Similar trends have been observed

with 100GB as well, with both warm and cold buffer pool con-

figurations. Figure 9(a) shows the results for 6 queries from

the workload [13]. The solid column (in blue) represents the

original program. The striped column (orange) represents

results of applying Aggify. The green column (indicated as

‘Aggify+’ shows the results of applying Froid’s technique

after Aggify enables it, as described in Section 8.2.

On the x-axis, we indicate the query number, and on the y-

axis, we show execution time in seconds, in log scale. Observe

that for queries Q2, Q13 and Q21, we have a ⊘ symbol above

the column corresponding to the original query with the

loop, and for Q13, we have that symbol even for the Aggify

column. This means that we had to forcibly terminate these

queries as they were running for a very long time (>10 days

for Q2, >22 days hours for Q13 and >9 hours for Q21). We

observe that Q2, Q14, Q18 and Q21 offer at least an order of

magnitude improvement purely due to Aggify alone. When

Aggify is combined with Froid, we see further improvements

in Q2, Q13, Q18 and Q19. Q13 results in a huge improvement

of 3 orders of magnitude due to the combination. Note that

without Aggify, Froid will not be able to rewrite these queries

at all. Q21 does not lead to any additional gains from Froid,

while Q14 slows down slightly due to Froid.

10.3.2 Java workload. Figure 9(b) shows the results of run-
ning Aggify on 5 loops from the RUBis [7] benchmark. The

Table 2: Comparison of logical reads for the TPC-H
cursor loop benchmark.

Qry Original Aggify Aggify+ Savings w.r.t Original
Aggify Aggify+

Q2 ⊘ 38.1M 54.4M NA NA

Q13 ⊘ ⊘ 0.26M NA NA

Q14 553M 11.7M 231M 541M 322M

Q18 405M 120M 293M 285M 113M

Q19 1.11M 1.11M 1.11M 4528 4611

Q21 ⊘ 464M 616M NA NA

x-axis indicates the 5 scenarios along with the number of

iterations of the loop (given in parenthesis), and y-axis shows

the execution time. As before, the blue column indicates the

original program, and the dashed orange column indicates

the results with Aggify. We observe that Aggify improves

performance for all these scenarios. Here the beneifts due to

Aggify stem mainly from the huge reduction in data transfer

between the database server and the client Java application.

10.3.3 Real workloads. Now, we consider loops that we en-
countered in customer workloads W1, W2 and W3 and run

them with and without Aggify. Figure 9(c) shows the results

of using Aggify on 8 of these loops. The y-axis shows exe-

cution time in seconds for loops L1-L8. The iteration counts

are given on the x-axis labels. We observe improvements

in most cases, ranging from 2x to 22x. Note that loop L8 in

Figure 9(c) is a nested cursor loop that gives more than 2x

gains. Loops L2 and L6 iterate over a relatively small num-

ber of tuples compared to the others. This is one cause for

the small or no performance gains. Also, these two loops in-

cluded many statements that inserted values into temporary

tables or table variables. For such statements, in our imple-

mentation of Aggify, we have to make a connection to the

database explicitly in order to insert these tuples. That adds

additional overhead, which could be avoided if the aggregate

is implemented natively inside the DBMS (Section 9).

10.4 Resource Savings
In addition to performance gains, Aggify also reduces re-

source consumption, primarily disk IO. This is because cur-

sors end up materializing query results to disk, and then

reading from the disk during iteration, whereas the entire

loop runs in a pipelined manner with Aggify. To illustrate

this, we measured the logical reads incurred on our work-

loads. Table 2 shows these numbers (in millions) for 6 queries

from the TPC-H cursor loop benchmark. For the original

programs, we have the numbers for 3 queries as we had to

forcibly terminate the others as mentioned in Section 10.3.

We see that Aggify significantly brings down the required

number of reads. Q14 and Q18 show huge reductions (58%

and 27% respectively). Table 2 shows the breakup of logical

1

10

100

1000

10000

100000

1000000

Q2 Q13 Q14 Q18 Q19 Q21

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
s)

,
lo

g
sc

al
e

Original Aggify Aggify+ Forcibly terminated

(a) TPC-H cursor loop workload.

0

20

40

60

80

100

Browse
Categories

(10M)

Browse
Regions

(5M)

Search
Categories

(8M)

Search
Regions
(13.7M)

Servlet
Printer
(6.5M)

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
s)

Original Aggify

(b) RUBiS Benchmark (Java)

0

50

100

150

200

250

300

350

400

L1
(W2)
5M

L2
(W1)
10K

L3
(W1)

9K

L4
(W2)
7M

L5
(W2)
7M

L6
(W2)
40K

L7
(W3)
7M

L8
(W2)
3*2M

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
s) Original With Aggify

(c) Customer workloads.

Figure 9: Performance improvements across multiple workloads

0.01

0.1

1

10

100

1000

10000

50 500 5000

Ex
ec

u
ti

o
n

 t
im

e
 (

se
c)

, l
o

g
sc

al
e

Loop Iteration count in thousands, log scale

Original Aggify

Aggify+ Forcibly terminated

(a) TPC-H Q2 (MinCostSupplier).

0.0001

0.01

1

100

10000

0.1

1

10

100

1000

200 2K 20K 200K 2M 20M

D
at

a
Tr

an
sf

e
rr

e
d

 (
M

B
),

 lo
g

sc
al

e

Ex
e

cu
ti

o
n

 t
im

e
 (

se
cs

),
 L

o
g

sc
al

e

Number of loop iterations
Original With Aggify

Data (Original) Data (Aggify)

(b) MinCostSupplier (Java)

0.0001

0.01

1

100

10000

0.001

0.01

0.1

1

10

100

30 300 3K 30K 300K 3M 30M

D
at

a
tr

an
sf

e
rr

ed
 (M

B
),

 lo
g

sc
al

e

Ex
ec

u
ti

o
n

 t
im

e
 (

m
s)

, l
o

g
sc

al
e

Loop iteration count

Original With Aggify+

Data (Original) Data (Aggify+)

(c) CumulativeROI (Java).
Figure 10: Scalability across multiple workloads (varying loop iteration counts).

0

20

40

60

80

100

200 400 800 1600 3200 6400

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Loop iteration count in thousands (Log scale)

Original

Aggify

Figure 11: Scalability for loop L1 (workload W2).

reads with Aggify alone (column 3), and Aggify+ (column 4)

which denotes Aggify with Froid. Columns 5 and 6 denote

the savings in logical reads due to Aggify and Aggify+. In-

terestingly, we observe that using Froid with aggify results

in more logical reads, but improves execution time.

10.5 Scalability
We now show the results of our experiments to evaluate the

scalability of Aggifywith varying data sizes. Figures 10(a), (b),

(c) and Figure 11 show the results for experiments described

below. The x-axis shows the number of loop iterations, and

y-axis shows execution time in all 4 experiments.

Experiment 1: Figure 10(a) shows the results for TPC-H

query Q2.We show the results for the original UDF (blue), the

UDF transformed using Aggify (orange), and further apply-

ing Froid (red) indicated as Aggify+. For smaller sizes, Aggify

does not offer any improvement by itself. Beyond a certain

point, the original program degrades drastically, while Ag-

gify stays constant. For Aggify+, we observe about an order

of magnitude improvement in performance all through.

Experiment 2: Next, we consider the Java implementation

of minimum cost supplier functionality. The original pro-

gram first runs a query that retrieves the required number

of parts, and then the loop iterates over these parts, and

computes the minimum cost supplier for each. We restrict

the number of parts using a predicate on P_PARTKEY. By

varying its value, we can control the iteration count of the

loop. There were 2 million tuples in the PART table, and

hence we vary the iteration count from 200 to 2 million in

multiples of 10. The transformed Java program eliminates

this loop completely, and executes a query that makes use

of the custom aggregate MinCostSuppAgg.
Figure 10(b) shows the results of this experiment with

warm cache. The solid line (in blue) and the dashed line (in

orange) represent the original program and the transformed

program respectively. We observe that at smaller number of

iterations, the benefits are lesser, but beyond 2K iterations,

we see a consistent improvement by an order of magnitude.

Experiment 3: We consider a variant of the example de-

scribed in Section 2.2 (Figure 2) that computes the cumula-

tive rate of return on investments. The table had 50 columns

which store the monthly rate of return per investment cate-

gory for that investor. The TOP keyword is used to control

the iteration count of the loop from 30 to 3 million in multi-

ples of 10. Figure 10(c) shows the results of this experiment.

We see that beyond 3K iterations, Aggify starts to offer an

order of magnitude improvement, all the way up to 3 million.

This transformation uses Aggify to eliminate the loop,

and then follows the technique of [23] as described in Sec-

tion 8.2. Without Aggify, the technique of [23] will not be

able to translate this loop into SQL. The benefits for these

two experiments are due to a combination of (i) pushing

compute from the remote Java application into the DBMS,

(ii) reducing the amount of data transferred from the DBMS

to the application, and (iii) the SQL translation of [23].

Experiment 4: We consider loop L1 from the real workload

W1 (the loop is given in [13]) and vary loop iteration count;

the results are given in Figure 11. The benefits of Aggify get

better with scale, similar to the other scalability experiments.

These benefits arise due to pipelining as well as reduction in

data movement.

10.6 Data Movement
One of the key benefits due to Aggify is the reduction in data

movement from a remote DBMS to client applications. We

measure the magnitude of data moved, and show how Aggify

significantly reduces this. The results of this experiment for

the MinCostSupplier and Cumulative ROI Java programs

are plotted in Figures 10(b) and 10(c) using the secondary

y-axis. In both figures, the dotted line (red) shows the data

moved from the DBMS to the client for the original program

in megabytes, and the dash-dot line (green) shows the data

movement for the rewritten program.

For the MinCostSupplier experiment, the original program

ends up transferring (140 ∗ 𝑛) bytes of data where 𝑛 is the

number of iterations (i.e. number of parts), assuming 4-byte

integers (P_PARTKEY), 9-byte decimals(PS_SUPPLYCOST)

and 25-byte varchars (S_NAME). The rewritten program

transfers only (38 ∗ 𝑛) bytes, resulting in a reduction of 3.6x.

For the CumulativeROI experiment, the original program

transfers 200 bytes per iteration (assuming 4-byte floating

point values). At 30million tuples, this is 6GB of data transfer!

Aggify only returns the result of the computation, a single

tuple with 50 floating point values (200 bytes) irrespective

of the number of iterations.

11 RELATEDWORK
Optimization of loops in general, has been an active area

of research in the compilers/PL community. Techniques for

loop parallelization, tiling, fission, unrolling etc. are mature,

and are part of state-of-the-art compilers [32, 35]. Lieuwen

and DeWitt [34] describe techniques to optimize set iteration

loops in object oriented database systems (OODBs). They

show how to extend compilers to include database-style

optimizations such as join reordering.

There have been recent works that have explored the use

of program synthesis to address problems such as (a) opti-

mization of applications that use ORMs [19], (b) translation of

imperative programs into the Map Reduce paradigm [16, 37].

In contrast to these works, Aggify relies on program analysis

and query rewriting. Further, Aggify expresses an entire loop

as a relational aggregation operator. Cheung et al. [18] show

how to partition database application code such that part of

the code runs inside the DBMS as a stored procedure. Aggify

also pushes computation into the DBMS, but moves entire

cursor loops as an aggregate function thereby leveraging

optimization techniques for aggregate functions [21].

The idea of expressing loops as custom aggregates was

first proposed by Simhadri et. al. [39] as part of the UDF

decorrelation technique. Aggify is based on this idea. We (i)

formally characterize the class of cursor loops that can be

transformed into custom aggregates, (ii) relax a pre-condition

given in [39] thereby expanding the applicability of this

technique, and (iii) show how this technique extends to FOR

loops and applications that run outside the DBMS.

The DBridge line of work [23, 24, 29] has had many con-

tributions in the area of optimizing data access in database

applications using static analysis and query rewriting. [29]

consider the problem of rewriting loops to make use of pa-

rameter batching. Emani et. al [23] describe a technique

to translate imperative code to equivalent SQL. Recently,

there have been efforts to optimize UDFs by transforming

them into sub-queries or recursive CTEs [22, 38]. As we have

shown in Section 8.2, Aggify can be used in conjunction with

all these techniques leading to better performance.

12 CONCLUSION
Although it is well-known that set-oriented operations are

generally more efficient compared to row-by-row operations,

there are several scenarios where cursor loops are preferred,

or are even inevitable. However, due to many reasons that

we detail in this paper, cursor loops can not only result in

poor performance, but also affect concurrency and resource

consumption. Aggify, the technique presented in this paper,

addresses this problem by automatically replacing cursor

loops with SQL queries that invoke custom aggregates that

are automatically constructed based on the loop body. Our

evaluation on benchmarks and real workloads show the po-

tential benefits of such a technique. We believe that Aggify,

can positively impact real-world workloads both in database-

backed applications as well as UDFs and stored procedures.

REFERENCES
[1] [n.d.]. CLR User-Defined Aggregates - Requirements.

https://docs.microsoft.com/en-us/sql/relational-databases/clr-

integration-database-objects-user-defined-functions/clr-user-

defined-aggregates-requirements?view=sql-server-ver15

[2] [n.d.]. Cursors - Curse or blessing? https://social.msdn.

microsoft.com/Forums/sqlserver/en-US/c34ea336-42cd-47ab-8dbe-

6a1b7c0d5783/cursors-curse-or-blessing

[3] [n.d.]. Java Documentation: Retrieving and Modifying Values from

Result Sets. https://docs.oracle.com/javase/tutorial/jdbc/basics/

retrieving.html

[4] [n.d.]. Microsoft SQL Server 2019. https://www.microsoft.com/en-

us/sql-server/sql-server-2019

[5] [n.d.]. Performance Considerations of Cursors. https://www.brentozar.

com/sql-syntax-examples/cursor-example/

[6] [n.d.]. RUBBoS: Rice University Bulletin Board System Benchmark.

http://jmob.ow2.org/rubbos.html

[7] [n.d.]. RUBiS: Rice University Bidding System Benchmark. http:

//rubis.ow2.org/

[8] [n.d.]. Scalar UDF Inlining. https://docs.microsoft.com/en-

us/sql/relational-databases/user-defined-functions/scalar-udf-

inlining?view=sql-server-ver15

[9] [n.d.]. The Curse of the Cursors: Why You Don’t Need Cursors in

Code Development. https://www.datavail.com/blog/curse-of-the-

cursors-in-code-development/

[10] [n.d.]. The Truth About Cursors. http://bradsruminations.blogspot.

com/2010/05/truth-about-cursors-part-1.html

[11] [n.d.]. Transact SQL. https://docs.microsoft.com/en-us/sql/t-sql/

language-elements/language-elements-transact-sql

[12] 2020. Adempiere: Opensource ERP Software. http://adempiere.net/

[13] 2020. Aggify Evaluation Workloads. http://aka.ms/WL-Aggify

[14] 2020. Azure SQL Database. https://azure.microsoft.com/en-us/

services/sql-database/

[15] 2020. LISTAGG: Oracle Database SQL Language Refer-

ence. https://docs.oracle.com/cd/E11882_01/server.112/e41084/

functions089.htm#SQLRF30030

[16] Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically

Leveraging MapReduce Frameworks for Data-Intensive Applications.

In Proceedings of the 2018 International Conference on Management of
Data (SIGMOD ’18). ACM, New York, NY, USA, 1205–1220. https:

//doi.org/10.1145/3183713.3196891

[17] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.

Compilers: Principles, Techniques, and Tools. Addison-Wesley.

[18] Alvin Cheung, Samuel Madden, Owen Arden, , and Andrew C Myers.

2012. Automatic Partitioning of Database Applications. In Intl. Conf.
on Very Large Databases.

[19] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013.

Optimizing database-backed applications with query synthesis (PLDI).
3–14. https://doi.org/10.1145/2462156.2462180

[20] CLRU [n.d.]. CLR User-Defined Functions, https://msdn.micro-

soft.com/en-us/library/ms131077.aspx. https://msdn.microsoft.com/

en-us/library/ms131077.aspx

[21] Sara Cohen. 2006. User-defined Aggregate Functions: Bridging Theory

and Practice. In ACM SIGMOD. 49–60.
[22] Christian Duta, Denis Hirn, and Torsten Grust. 2019. Compiling

PL/SQL Away. arXiv e-prints, Article arXiv:1909.03291 (Sep 2019),

arXiv:1909.03291 pages. arXiv:cs.DB/1909.03291

[23] K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and

S. Sudarshan. 2016. Extracting Equivalent SQL from Imperative Code

in Database Applications (ACM SIGMOD). 16. https://doi.org/10.1145/

2882903.2882926

[24] K Venkatesh Emani and S Sudarshan. 2018. Cobra: A Framework

for Cost-Based Rewriting of Database Applications. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 689–700.

[25] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.
Program. Lang. Syst. 9, 3 (July 1987), 319–349. https://doi.org/10.1145/

24039.24041

[26] Sofoklis Floratos, Yanfeng Zhang, Yuan Yuan, Rubao Lee, and Xiaodong

Zhang. 2018. SQLoop: High Performance Iterative Processing in Data

Management. In 38th IEEE International Conference on Distributed
Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018. 1039–
1051. https://doi.org/10.1109/ICDCS.2018.00104

[27] César A. Galindo-Legaria and Milind Joshi. 2001. Orthogonal Opti-

mization of Subqueries and Aggregation. In SIGMOD. 571–581. https:

//doi.org/10.1145/375663.375748

[28] S. Gupta, S. Purandare, and K. Ramachandra. 2020. Technical Report:

Optimizing Cursor Loops In Relational Databases. ArXiv e-prints (April
2020). http://aka.ms/TR-Aggify

[29] Ravindra Guravannavar and S Sudarshan. 2008. Rewriting Procedures

for Batched Bindings. In Intl. Conf. on Very Large Databases.
[30] HPLSQL [n.d.]. Procedural SQL on Hadoop, NoSQL and RDBMS.

http://www.hplsql.org/why

[31] JDBC 2020. The Java Database Connectivity API. https://docs.oracle.

com/javase/8/docs/technotes/guides/jdbc/

[32] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan Kaufmann

Publishers Inc.

[33] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. 2009. Data
Flow Analysis: Theory and Practice. CRC Press.

[34] Daniel Lieuwen and David DeWitt. 1992. A Transformation-Based

Approach to Optimizing Loops in Database Programming Languages.

Sigmod Record 21, 91–100. https://doi.org/10.1145/141484.130301

[35] Steven S. Muchnick. 1997. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[36] Kisung Park, Hojin Seo, Mostofa Kamal Rasel, Young-Koo Lee, Chanho

Jeong, Sung Yeol Lee, Chungmin Lee, and Dong-Hun Lee. 2019. Iter-

ative Query Processing Based on Unified Optimization Techniques.

In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’19). ACM, New York, NY, USA, 54–68. https:

//doi.org/10.1145/3299869.3324960

[37] Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan.

2014. Translating Imperative Code to MapReduce. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’14). ACM, New York, NY,

USA, 909–927. https://doi.org/10.1145/2660193.2660228

[38] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan

Halverson, César Galindo-Legaria, and Conor Cunningham. 2017.

Froid: Optimization of Imperative Programs in a Relational Database.

PVLDB 11, 4 (2017), 432–444.

[39] V. Simhadri, K. Ramachandra, A. Chaitanya, R. Guravannavar, and S.

Sudarshan. 2014. Decorrelation of user defined function invocations

in queries. In ICDE 2014. 532–543.
[40] Weipeng P. Yan and Per bike Larson. 1995. Eager aggregation and lazy

aggregation. In In VLDB. 345–357.

https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates-requirements?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates-requirements?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates-requirements?view=sql-server-ver15
https://social.msdn.microsoft.com/Forums/sqlserver/en-US/c34ea336-42cd-47ab-8dbe-6a1b7c0d5783/cursors-curse-or-blessing
https://social.msdn.microsoft.com/Forums/sqlserver/en-US/c34ea336-42cd-47ab-8dbe-6a1b7c0d5783/cursors-curse-or-blessing
https://social.msdn.microsoft.com/Forums/sqlserver/en-US/c34ea336-42cd-47ab-8dbe-6a1b7c0d5783/cursors-curse-or-blessing
https://docs.oracle.com/javase/tutorial/jdbc/basics/retrieving.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/retrieving.html
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.brentozar.com/sql-syntax-examples/cursor-example/
https://www.brentozar.com/sql-syntax-examples/cursor-example/
http://jmob.ow2.org/rubbos.html
http://rubis.ow2.org/
http://rubis.ow2.org/
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
https://www.datavail.com/blog/curse-of-the-cursors-in-code-development/
https://www.datavail.com/blog/curse-of-the-cursors-in-code-development/
http://bradsruminations.blogspot.com/2010/05/truth-about-cursors-part-1.html
http://bradsruminations.blogspot.com/2010/05/truth-about-cursors-part-1.html
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-transact-sql
http://adempiere.net/
http://aka.ms/WL-Aggify
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions089.htm#SQLRF30030
https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions089.htm#SQLRF30030
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/2462156.2462180
https://msdn.microsoft.com/en-us/library/ms131077.aspx
https://msdn.microsoft.com/en-us/library/ms131077.aspx
http://arxiv.org/abs/cs.DB/1909.03291
https://doi.org/10.1145/2882903.2882926
https://doi.org/10.1145/2882903.2882926
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/ICDCS.2018.00104
https://doi.org/10.1145/375663.375748
https://doi.org/10.1145/375663.375748
http://aka.ms/TR-Aggify
http://www.hplsql.org/why
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://doi.org/10.1145/141484.130301
https://doi.org/10.1145/3299869.3324960
https://doi.org/10.1145/3299869.3324960
https://doi.org/10.1145/2660193.2660228

	Abstract
	1 Introduction
	2 Motivation
	2.1 Example: Cursor Loop within a UDF
	2.2 Example: Cursor Loop in a database-backed Application
	2.3 Cursor loop Evaluation

	3 Background
	3.1 Custom Aggregate Functions
	3.2 Data Flow Analysis

	4 Aggify Overview
	4.1 Applicability
	4.2 Supported operations

	5 Aggregate Construction
	5.1 Fields
	5.2 Init()
	5.3 Accumulate()
	5.4 Terminate()

	6 Query Rewriting
	6.1 Order enforcement
	6.2 Discussion
	6.3 Aggify Algorithm

	7 Preserving Semantics
	8 Enhancements
	8.1 Optimizing Iterative FOR Loops
	8.2 Extending existing techniques

	9 Implementation
	10 Evaluation
	10.1 Workloads
	10.2 Applicability of Aggify
	10.3 Performance improvements
	10.4 Resource Savings
	10.5 Scalability
	10.6 Data Movement

	11 Related Work
	12 Conclusion
	References

