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Abstract
Rapid unsupervised speaker adaptation in an E2E system posits
us new challenges due to its end-to-end unified structure in ad-
dition to its intrinsic difficulty of data sparsity and imperfect
label [1]. Previously we proposed utilizing the content rele-
vant personalized speech synthesis for rapid speaker adaptation
and achieved significant performance breakthrough in a hybrid
system [2]. In this paper, we answer the following two ques-
tions: First, how to effectively perform rapid speaker adapta-
tion in an RNN-T. Second, whether our previously proposed
approach is still beneficial for the RNN-T and what are the
modification and distinct observations. We apply the proposed
methodology to a speaker adaptation task in a state-of-art pre-
sentation transcription RNN-T system. In the 1 min setup, it
yields 11.58 % or 7.95 % relative word error rate (WER) reduc-
tion for the sup/unsup adaptation, comparing to the negligible
gain when adapting with 1 min source speech. In the 10 min
setup, it yields 15.71 % or 8.00 % relative WER reduction, dou-
bling the gain of the source speech adaptation. We further apply
various data filtering techniques and significantly bridge the gap
between sup/unsup adaptation.
Index Terms: rapid speaker adaptation, unsupervised adapta-
tion, RNN-T, personalization

1. Introduction
End-to-end models (E2E) adopting a unified framework with
joint optimization has made significant progress in recent
years [3–9]. Among the various forms of E2E models [10–14],
RNN Transducer (RNN-T) [11] has gained popularity and been
developed extensively due to its convenient streaming [7, 8].
Personalization is a widely practiced strategy in industry speech
recognition systems [1, 15, 16]. Personalizing an E2E sys-
tem [16–19] posits us new challenges due to its end-to-end uni-
fied structure in addition to the intrinsic difficulty of the data
sparsity and imperfect label [1].

Rapid speaker adaptation refers to adapting a speech model
to a specific speaker with limited data (e.g. less than 10 min).
It has been studied substantially in the hybrid systems [20–26].
Previously we proposed utilizing the personalized speech syn-
thesis and neural language generator for rapid speaker adapta-
tion and achieved significant performance gain in a hybrid sys-
tem [2]. In this paper, we would like to answer the following
two questions: First, how to effectively perform rapid adapta-
tion in an RNN-T. Second, whether our previously proposed
methodology is still beneficial in the RNN-T and what are the
specific modification and distinct observations.

We first compare different adaptation architectures in the
RNN-T. We found that adapting the encoder network per-
forms significantly better than the prediction network, consis-
tent with [17,27]. In the supervised setup adapting the encoder,
joint, and softmax yields the best performance, while in the un-

supervised setup it is better to remove the softmax adaptation to
alleviate its sensitivity to the labeling errors.

We then apply our previously proposed rapid speaker
adaptation using content relevant synthesized personalized
speech [2] to the RNN-T. Through leveraging the speaker trait
distilled from small amount of source speech and the general
phonological and morphological information embedded in the
synthesis model and the neural language generator, this ap-
proach fundamentally alleviates the data sparsity. Furthermore,
when the synthesized personalized speech is consumed for
adaptation, the original unsupervised adaptation is effectively
converted to a pseudo-supervised one as the synthesized speech
seldom exhibits perceptible mismatch with the input text. The
imperfect label in the source speech is often rendered as less
perceptible spectrum distortion in the synthesized speech.

In a state-of-art presentation transcription RNN-T sys-
tem, with 1 min source speech, our proposed approach yields
11.58 % or 7.95 % relative word error rate (WER) reduction for
the supervised and unsupervised adaptation respectively, while
adapting with the 1 min source speech only yields negligible
gain. In the 10 min setup, it yields 15.71 % or 8.00 % rela-
tive WER reduction, roughly doubling the gain of the 10 min
source speech adaptation. To further improve the unsupervised
adaptation, we apply various data filtering to remove the source
speech possibly mislabeled and the TTS speech of lesser qual-
ity, achieving 10.46 % and 11.73 % relative WER reduction for
the 1 min and 10 min setup .

To the best of our knowledge, we are not aware of any
previous work reporting similar significant gain in rapid unsu-
pervised RNN-T adaptation, especially in the 1 min adaptation
setup. We also compare with applying the similar approach to
the hybrid model and discuss the distinct observations.

The rest of this paper is organized as: Section 2 introduces
the methodology; Section 3 presents the experiments and re-
sults; Section 4 concludes the paper.

2. Methodology
In this section, we describe our proposed RNN-T adaptation
using personalized synthesis and neural language generator.

2.1. System Architecture

We adopt a similar architecture we proposed previously for the
hybrid model adaptation [2]. It consists of personalized synthe-
sis, neural language generator, and RNN-T adaption as in Fig 1.

We first use small amount of source speech to train the
personalized text-to-speech (TTS) model through model refine-
ment; then use the neural language generator to generate content
relevant text to be synthesized. Alternatively, random conversa-
tional speech text can be used. Lastly, the synthesized speech
is added to the source speech for adaptation. In the supervised



Figure 1: (a) System architecture; (b) RNN-T model structure.

setup, human transcription of the source speech is used for the
personalized TTS training, content relevant text generation, and
model adaptation. Otherwise, in the unsupervised setup, the
first-pass decoding result is used throughout the pipeline.

2.2. RNN-T adaptation

RNN-T models the acoustic, language, pronunciation, and
acoustic-language score fusion within an end-to-end frame-
work. Rapid adaptation with as little as 1 min speech in the
RNN-T is extremely prone to overfitting. Therefore identifying
the key network component for adaptation is critical.

An RNN-T consists of an encoder, a prediction, and a joint
network as in Fig 1 (b). The encoder network converts the
acoustic feature xt into a high-level representation henc

t , where
t is the index of time:

henc
t = fenc(xt). (1)

The prediction network generates a high-level representation
hu
pre by conditioning on the previous non-blank target yu−1

predicted by the RNN-T, where u is the index of the label:

hpre
u = fpre(yu−1). (2)

The joint network zt,u is a feed-forward network that combines
the encoder output ht

enc and the prediction output hpre
u :

zt,u = fjoint(h
enc
t , hpre

u ). (3)

zt,u is connected to the output layer with a linear transform fol-
lowed by a softmax. The posterior of each output token k is

P (k|t, u) = softmax(Wyz
k
t,u + by). (4)

The modeling of acoustics including the speaker voice trait
largely resides in the encoder. The prediction network, gen-
erally believed to carry primarily language-level information
or simply handling speech alignment according to a recent
study [27] , is expected to be less relevant in rapid adaptation
with limited amount of adaptation data. The joint network spec-
ifies the fusion of acoustic and language information, which can
also potentially be optimized per speaker basis. The softmax
layer with the linear projection directly modeling the posterior
of the word piece unit can be efficiently and effectively adapted,
though it is expected to be most sensitive to labeling errors.

Regularization is usually applied to address overfitting in
rapid adaptation [16, 20, 28]. We experiment with different reg-
ularization approaches, but found its limited impact especially
for this work where large amount of TTS speech is added.

2.3. Personalized Speech Synthesis

We use the same multi-speaker neural TTS system for person-
alized speech synthesis [2]. As depicted in Figure 2, it consists
of a spectrum predictor, a neural vocoder, and a speaker embed-
ding. The spectrum predictor converts the input text to the Mel

Figure 2: Diagram of personalized speech synthesis.

spectral using an encoder-decoder with attention model. The
vocoder generates the waveform conditioning on the Mel spec-
tral using a WaveNet neural vocoder [29]. The speaker embed-
ding is introduced to model multi speaker latent space and con-
catenated with the encoder output as input to the attention layer,
then jointly trained with the spectrum predictor [30]. We use an
in-house TTS corpus with 30 professional en-US speakers and
more than 200 hours phonetic rich recordings for training. The
spectrum predictor is adapted to each target speaker with a new
speaker embedding optimized to the enrollment data, while a
universal WaveNet model is adopted without adaptation.

One particular challenge is that, in unsupervised adaptation,
only the first-pass decoding result is available. The imperfect
transcription may affect the personalized TTS model training.
Furthermore, rapid adaptation with as little as 1 min speech
makes robust estimation of personalized TTS more challenging.

2.4. Neural Language Generator

We use an LSTM language model [31] with a beam search algo-
rithm [32] to generate content relevant target text as in [2]. Each
sentence is provided as a prompt to the neural language gener-
ator to generate various continuations of the prompts. Similar
to [33], we impose diversity constraints during the beam search,
namely by penalizing repeated tokens, restricting the number of
beams that end with the same bigram, and preventing n-gram
repetitions within a beam. The language model has a vocabu-
lary size of 59K BPE tokens [33] and three LSTM layers, with
a total of 220M parameters. We trained the language model to
convergence on 3B words of paragraph level web-crawled data.

3. Experiments and Results
We present experiments in a presentation transcription system.
All experiments were conducted on anonymized data with per-
sonally identifiable information removed.

3.1. Experimental Setup

The baseline RNN-T is trained from 65K hour anonymized
speech with the cross-entropy criteria. It consists of six layer-
normalized LSTM layers for the encoder and two layers of the
same structure for the prediction network. Each LSTM layer
has 1600 hidden units and the output size is reduced to 800 us-
ing a linear projection layer. The acoustic feature is formed by
stacking three 80-dimension log Mel filter bank calculated for
every 10 millisecond speech. The output layer models 4000
word pieces plus an additional blank label.

The speaker adaptation task consists of six speakers, each
with 10 min for training and 20 min for testing. As in [2], we
configured 8 setups, specified by the source data amount (1 or



10 min), source label type (human or ASR), and TTS script type
(random or target).

3.2. RNN-T Model Adaptation

We compare adapting different components of the RNN-T and
various combination of these components. Table 1 presents the
1 min and 10 min supervised adaptation results.

For the 10 min setup, the encoder adaptation is much more
effective than adapting other component of the network. Adding
the joint and subsequently the softmax layer adaptation yields
incrementally more gains. Nevertheless, further adding the pre-
diction network to allow the full model to be adapted does not
yield further improvement. 1 min setup presents sever data
scarcity challenge with small gain only for the encoder adapta-
tion. We also experiment with different regularization method-
ologies. They are found to be slightly beneficial in extreme data
scarcity and in full model adaptation. When using large amount
of TTS speech for adaptation, regularization only has limited
benefit and therefore is not adopted in this paper.

Table 1: Comparison of supervised adaptation results of adapt-
ing the encoder (E), predictor (P ), joint (J), softmax (S), and
various combination of these components, including the full net-
work (ALL). WER.R refers to the relative WER reduction.

Model 1 min WER.R 10 min WER.R
baseline 14.15 NA 14.15 NA
E 13.91 1.68 13.43 5.08
P 14.16 -0.07 14.14 0.06
J 14.15 -0.01 14.24 -0.62
S 14.27 -0.82 14.05 0.74
E + J 14.10 0.35 13.39 5.36
E + J + S 14.29 -0.97 13.34 5.71
ALL 14.31 -1.13 13.51 4.55

We select four representative structures as presented in Ta-
ble 2 and proceed to unsupervised adaptation. The encoder and
joint adaptation (E + J) performs the best with no further gain
observed when adding the softmax in unsupervised adaptation.
The softmax layer directly modeling the word-piece target is
particularly sensitive to the labeling error. We therefore choose
the encoder, joint, and softmax adaptation (E + J + S) as the
default for the supervised and the encoder and joint adaptation
(E+J) for the unsupervised adaptation for the rest of this paper.

Table 2: Comparison of 10 min sup/unsup adaptation for four
selected structures: predictor (P ), encoder + joint (E + J),
encoder + joint + softmax (E + J + S), full network (ALL).

Model SUP WER.R UNSUP WER.R
baseline 14.15 NA 14.15 NA
P 14.14 0.06 14.25 -0.71
E + J 13.39 5.36 13.51 4.55
E + J + S 13.34 5.71 13.66 3.44
ALL 13.51 4.55 13.63 3.67

3.3. Adaptation with Personalized TTS and NNLM

Table 3 presents the RNN-T adaptation with personalized TTS
and NNLM generator. We focus on the target script and leave
the comparison with the random script in Section 3.4.

For the supervised setup, 1 min source speech adaptation
can barely yield any gain. After adopting our proposed method-

ology, adapting with 100 min content relevant personalized syn-
thesis speech yields 5.91 % relative WER reduction. The 1 min
source speech is translated into large amount of synthesized
speech, incorporating the speaker voice trait from the source
speech with the general phonological and morphological in-
formation embedded in the TTS and neural language model.
Blending in the 1 min source speech with TTS speech results
in additional gain. This suggests that the source speech is still
particularly valuable. We subsequently introduce weighting
to boost the representativeness of the source speech, yielding
10.75 % and 11.25 % relative WER reduction with 100 min
and 200 min synthesized speech. The weight is set to roughly
balance the source/TTS data amount. In the 10 min setup, we
observe similar pattern. Adapting with 200 min TTS speech and
10 min source speech yields 15.71 % relative WER reduction,
comparing to 5.71 % for the 10 min source speech adaptation.

Table 3: Performance of 1 min and 10 min sup/unsup adapta-
tion with synthesis speech. (T) and (R) refer to the target or ran-
dom text; (W) refers to applying weighting to original speech;
+ refers to adding TTS speech to the source for adaptation. (f,
*, *), (*, f, *), and (*, *, f) refer to applying filtering only to the
source speech when used for embedding training, to the source
speech when used for adaptation, or to the TTS speech.

Model 1 min WER.R 10 min WER.R
baseline 14.15 NA 14.15 NA
SUPorg 14.29 -0.97 13.34 5.71
SUPR100 14.19 -0.27 13.73 2.94
SUPT100 13.31 5.91 13.00 8.14
SUP+T100 13.18 6.89 12.74 10.00
SUP+T100(W ) 12.63 10.75 12.26 13.38
SUP+R200(W ) 13.15 7.06 12.30 12.29
SUP+T200(W ) 12.56 11.25 11.93 15.71
UNSUPorg 14.04 0.75 13.51 4.55
UNSUPR100 14.36 -1.45 14.10 0.33
UNSUPT100 13.42 5.17 13.41 5.24
UNSUP+T100 13.47 4.81 13.50 6.44
UNSUP+T100(W ) 13.39 5.39 13.16 6.97
UNSUP+R200(W ) 14.14 0.11 13.37 3.75
UNSUP+T200(W ) 13.03 7.95 13.02 8.00
UNSUP

(f,∗,∗)
+T200(W ) 12.91 8.76 12.80 9.54

UNSUP
(f,f,∗)
+T200(W ) 12.81 9.47 12.69 10.32

UNSUP
(f,f,f)

+T200(W ) 12.78 9.68 12.59 11.02

The unsupervised adaptation exhibits similar performance
pattern with generally smaller amount of gains. For example,
adapting with 200 min target script synthesized personalized
speech combined with weighted source speech yields 7.95 %
relative WER reduction for the 1 min setup and 8.00 % for the
10 min setup, which compares to 0.75 % and 4.55 % when only
using source speech for adaptation.

To further reduce the gap of sup/unsup adaptation, we use
multiple system decoding to filter the source speech possibly
mislabeled and the TTS speech of lesser quality. We use a hy-
brid system with comparable performance to generate alterna-
tive hypothesis and measure the agreement level as basis for
data filtering. When applying this filtering only to the source
speech for personalized TTS training (f, *, *), the unsupervised
adaptation gain increases to 8.76 % and 9.54 % for the 1 min
and 10 min setup respectively; when further applying it to the
source speech when consumed for adaptation (f, f, *), the gain



increases to 9.47 % and 10.32 %; when in additionally apply-
ing it to TTS speech (f, f, f), the gain increases to 9.68 % and
11.02 %. Finally, we can achieve closer-to supervised adap-
tation performance. We also tried other approaches based on
alignment score, which was not found to be as effective.

Next we will discuss how TTS script type, source data
amount, label quality, TTS data amount affect the performance.

3.4. Random Text versus Target Text

Previously we found that in the hybrid model adaptation using
content relevant target text for TTS yields consistent but small
additional gain comparing to using the random text [2]. For
the RNN-T, as shown in Table 3, adapting with the target text
synthesized speech consistently outperforms using the random
text and the benefit of using the content relevant script for TTS
is much more significant. Despite that we don’t explicitly adapt
the prediction network, the end-to-end framework and the word-
piece modeling in the RNN-T makes it more sensitive to the
content of the adaptation data.

3.5. Source Speech Data Amount

The source data amount can affect the adaptation in two ways:
first, it determines whether personalized speech synthesis model
can be robustly estimated and thus affects the TTS quality; sec-
ond, it directly affects the performance when consumed for
RNN-T adaptation. Generally more source speech is expected
to result in larger gain. Practically we need to find a good op-
erating point as a trade-off to minimize the user enrollment ef-
fort. As presented in Fig. 3, with as little as 0.5 min source
speech, the synthesized personalized speech already starts to
yield improved performance. Increasing source speech benefits
both sup/unsup adaptation, but the gain is notably larger for su-
pervised adaptation. Understandably without the ground truth
label, increasing source data amount is not as valuable. Com-
paring adapting with TTS speech only or with the source and
TTS speech, we find that the gain primarily comes from the
direct consumption of the increased amount of source speech
for RNN-T adaptation. The personalized TTS can benefit from
more source speech, but only moderately in comparison.

3.6. Source Speech Label Quality

The imperfect label results in poor personalized TTS model
estimation and thus degrades the quality of synthesis speech.
When consuming the source speech for RNN-T adaptation, the
incorrect source data label can generate catastrophic gradient
update and result in poor adaptation performance. We simulate
transcription at different quality levels. The human transcrip-
tion is empirically treated as the golden standard with 0.00 %
WER. As presented in Fig. 3 (b), the adaptation performance
degrades as the source speech label becomes less accurate. The
personalized TTS training is robust to minor labeling errors (e.g
below 10 %). As the label quality continues to degrade surpass-
ing a certain limit, we observe sharp performance degradation.
This also explains why it is important to perform effective data
filtering, especially for speakers with higher WERs.

3.7. TTS Data Amount

Fig. 3 (c-d) presents sup/unsup adaptation with increased
amount of TTS data. No data filtering is applied for unsuper-
vised adaptation. In all cases, the adaptation performance im-
proves as more TTS data is added, with generally larger slope
for the 1 min setup (v.s. 10 min), for the supervised setup (v.s.

Figure 3: (a) Adaptation performance with respect to source
data amount; (b) source label quality; (c-d) TTS data amount.

supervised), and using the target script (v.s. random). The per-
formance is plateaued earlier for the 1 min setup after adding
100 min TTS speech. After applying weighting to the source
speech, all cases continue to improve without being plateaued
with 200 min TTS speech. We observe that the rate of improve-
ment becomes smaller when further adding more TTS speech.

3.8. Comparison with Hybrid Model

Finally we compare with applying it to the hybrid model [2].
The RNN-T and the hybrid model have comparable baseline
performance[34]. Synthesizing content relevant speech is criti-
cal for its success in the RNN-T despite the fact that the predic-
tion network is not adapted, while it is less critical in the hybrid
model. RNN-T is more sensitive to the labeling error of the
source speech and the spectrum distortion in the TTS speech,
while the hybrid model appears to be less impacted. Overall,
the proposed rapid speaker adaptation yields significant gain on
both models. With careful choice of content relevant text and ef-
fective source/TTS data selection, we can harvest even greater
gain in the RNN-T.

4. Conclusions
In conclusion, we proposed an effective rapid RNN-T adapta-
tion methodology using personalized synthesis and NNLM gen-
erator. By leveraging the speaker trait distilled from the source
speech and the general phonological and morphological infor-
mation from the TTS and neural language model, it initiates a
new perspective in how to consume the unlabeled speech for un-
supervised adaptation. In a state-of-art presentation transcrip-
tion RNN-T system, our proposed approach achieves 10.46 %
and 11.73 % relative WER reduction for 1 min and 10 min un-
supervised adaptation.
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