Approximate Partition Selection for Big-Data Workloads using Summary Statistics

Kexin Rong†, Yao Lu†, Peter Bailis; Srikanth Kandula; Philip Levis∗
Microsoft†, Stanford∗

ABSTRACT
Many big-data clusters store data in large partitions that support access at a coarse, partition-level granularity. As a result, approximate query processing via row-level sampling is inefficient, often requiring reads of many partitions. In this work, we seek to answer queries quickly and approximately by reading a subset of the data partitions and combining partial answers in a weighted manner without modifying the data layout. We illustrate how to efficiently perform this query processing using a set of precomputed summary statistics, which inform the choice of partition subset and weights. We develop novel means of using the statistics to assess the similarity and importance of partitions. Our experiments on several datasets and data layouts demonstrate that to achieve the same relative error compared to uniform partition sampling, our techniques offer from 2.7× to 70× reduction in the number of partitions read, and the statistics stored per partition require fewer than 100KB.

PVLDB Reference Format:

1. INTRODUCTION
Approximate Query Processing (AQP) systems allow users to trade off between accuracy and query execution speed. In applications such as data exploration and visualization, this trade-off is not only acceptable but is often desirable. Sampling is a common approximation technique, wherein the query is evaluated on a subset of the data, and much of the literature focuses on row-level samples [12, 15, 23].

When data is stored in media that does not support random access (e.g., flat files in data lakes and columnar stores [1][53]), constructing a row-level sample can be as expensive as scanning the entire dataset. For example, if data is split into partitions with 100 rows, a 1% uniform row sample would only read 1% of the data. We are especially interested in big data clusters, where data is stored in chunks of tens to hundreds of megabytes, instead of disk blocks or pages which are typically a few kilobytes [33][53]. Partition-level sampling is already used in production due to its appealing performance: commercial databases create statistics on partitions; a 10% uniform row sample would touch almost all partitions. As a result, recent work from a production AQP system shows that row-level sampling only offers significant speedups for complex queries where substantial query processing remains after the sampling [41].

In contrast to row-level sampling, the I/O cost of constructing a partition-level sample is proportional to the sampling fraction in our example above, a 1% partition-level sample would only read 1% of the data. We are especially interested in big data clusters, where data is stored in chunks of tens to hundreds of megabytes, instead of disk blocks or pages which are typically a few kilobytes [33][53]. Partition-level sampling is already used in production due to its appealing performance: commercial databases create statistics on partitions; a 1% partition-level sample would only read 1% of the data. We are especially interested in big data clusters, where data is stored in chunks of tens to hundreds of megabytes, instead of disk blocks or pages which are typically a few kilobytes [33][53].

However, since all or none of the rows in a partition are included in the sample, the correlation between rows (e.g., due to layout) can lead to inaccurate answers. A key challenge remains in how to construct partition-level samples that can answer a given query accurately. A uniformly random partition-level sample does not make a representative sample of the dataset unless the rows are randomly distributed among partitions [24], which happens rarely in practice [19]. In addition, even a uniform random sample of rows can miss rare groups in the answer or miss the rows that contribute substantially to SUM-like aggregates. It is not

1In the paper, we use “partition” to refer to the finest granularity at which the storage layer maintains statistics.

Figure 1: Our system PS3 makes novel use of summary statistics to perform importance and similarity-aware sampling of partitions.
known how to compute stratified \[\text{PS}^2\] or measure-biased \[\text{PS}^3\] samples over partitions, which helps with queries that have group-by’s and complex aggregates.

In this work, we introduce \text{PS}^3 (Partition Selection with Summary Statistics), a system that supports AQ\text{P} via weighted partition selection (Figure 1). Our primary use case is in large-scale production query processing systems such as Spark \[\text{PS}^1\], F1 \[\text{PS}^2\], SCOPE \[\text{PS}^3\] where queries only read and datasets are bulk appended. Our goal is to minimize the approximation error given a sampling budget, or fraction of data that can be read. Motivated by observations from production clusters at Microsoft and in the literature that many datasets remain in the order that they were ingested \[\text{PS}^1\], \text{PS}^3 does not require any specific layout or re-partitioning of data. Instead of precomputing and storing samples \[\text{PS}^3\] \[\text{PS}^2\], \text{PS}^3 performs sampling exclusively during query optimization. Finally, similar to the query scope studied in prior work \[\text{PS}^2\] \[\text{PS}^3\], \text{PS}^3 supports single-table queries with \text{SUM}, \text{COUNT(*)}, \text{AVG} aggregates, \text{GROUP BY} on columns with moderate distinctiveness, predicates that are conjunctions, disjunctions or negations over single-column clauses.

To select partitions that are most relevant to a query, \text{PS}^3 leverages the insight that partition level summary statistics are relatively inexpensive to compute and store. The key question is which statistics to use. Systems such as Spark SQL and ZoneMaps already maintain statistics such as maximum and minimum values of a column to assist in query optimization \[\text{PS}^3\]. Following similar design considerations, we look for statistics with small space requirements that can be computed for each partition in one pass at ingest time. For functionality, we look for statistics that are discriminative enough to support decisions such as whether the partition contributes disproportionately large values of the aggregates. We propose such a set of statistics for partition sampling – measures, heavy hitters, distinct values, and histograms – which include but expand on conventional catalog-level statistics. The total storage overhead scales with the number of partitions instead of with the dataset size and we only maintain single-column statistics to keep the overhead low. The resulting storage overhead can be orders of magnitudes smaller than approaches using auxiliary indices to reduce the cost of random access \[\text{PS}^2\]. While this set of statistics is by no means complete, we show that each type of statistics contributes to the sampling performance, and, in aggregate, delivers effective AQ\text{P} results.

We illustrate three ways of leveraging summary statistics to help with partition selection. First, if we knew which partitions contribute more to the query answer, we could sample these partitions more frequently. While it is challenging to manually design rules that relate summary statistics to partition contribution, a model can learn how much summary statistics matter with enough examples. Inspired by prior work which uses learning techniques to improve the sampling efficiency for counting queries on row-level samples \[\text{PS}^2\], we propose a learned importance-style sampling algorithm that works on aggregate queries with \text{GROUP BY} clauses and on partitions. The summary statistics serve as a natural feature representation for partitions, from which we can train models offline to learn a mapping from summary statistics to the relative importance of a partition. During query optimization, we use the trained models to rank partitions into several tiers of importance, and split the sampling budget in decreasing importance of tiers – more important tiers get a greater proportion of the sampling budget. The training overhead is a one time cost for each dataset and workload, and, for high-value datasets in clusters that are frequently queried, this overhead is amortized over time.

In addition, we leverage the redundancy and skewness of the partitions for further optimization. For two partitions that output similar answers to an input query, it suffices to only include one of them in the sample. While directly comparing the contents of the two partitions is expensive, we can use the query-specific summary statistics as a proxy for the similarity between partitions. We also observe that datasets commonly exhibit significant skew in practice. For example, in a prototypical production service request log dataset at Microsoft, the most popular application version out of the 167 distinct versions accounts for almost half of the dataset. Inspired by prior works in AQ\text{P} that recognize the importance of outliers \[\text{PS}^3\], \text{PS}^3 supports single-table queries with \text{SUM}, \text{COUNT(*)}, \text{AVG} aggregates, \text{GROUP BY} on columns with moderate distinctiveness, predicates that are conjunctions, disjunctions or negations over single-column clauses.

In summary, this paper makes the following contributions:

1. We introduce \text{PS}^3, a system that makes novel uses of summary statistics to perform weighted partition selection for many popular queries. Given the query semantics, summary statistics and a sampling budget, the system intelligently combines a few sampling techniques to produce a set of partitions to sample and the weight of each partition.
2. We propose a set of lightweight sketches for data partitions that are not only practical to implement, but can also produce rich partition summary statistics. While the sketches are well known, this is the first time the statistics are used for weighted partition selection.
3. We evaluate on a number of real-world datasets with real and synthetic workloads. Our evaluation shows that each component of \text{PS}^3 contributes meaningfully to the final accuracy and together, the system outperforms alternatives across datasets and layouts, delivering from 2.7× to 70× reduction in data read given the same error compared to uniform partition sampling.

2. SYSTEM OVERVIEW

In this section, we give an overview of \text{PS}^3, including its major design considerations, supported queries, inputs, and outputs, and the problem statement.

2.1 Design Considerations

We highlight a few design considerations in the system.

Layout Agnostic. A random data layout would make the partition selection problem trivial, but maintaining a random layout requires additional efforts and rarely happen in practice \[\text{PS}^3\]. In read-only or append-only data stores, it is also expensive to modify the data layout. As a result, we observe that in practice, many datasets simply remain in the order that they were ingested in the cluster. In addition, prior work \[\text{PS}^3\] has shown that it is challenging and sometimes impossible to find a partitioning scheme that enables
good data skipping for arbitrary input queries. Therefore, instead of requiring re-partitioning or random layout, PS3 explicitly chooses to keep data in situ and tries to make the best out of the given data layout. We show that PS3 can work across different data layouts in the evaluation (§5.5.1).

Sampling on a single table. To perform joins effectively, prior work [33], has shown that sampling each input relation independently is not enough and that the joint distribution must be taken into account. Handling the correlations between join tables at the partition level is another research problem on its own, and is outside the scope of this paper. However, sampling on a single table can still offer non-trivial performance improvements even for queries that involve joining multiple tables. For example, in key–foreign key joins, fact tables are often much larger compared to dimension tables. Sampling the fact table, therefore, already gets us most of the gains.

Generalization. Prior works make various trade-offs between the efficiency and the generality of the queries that they support, ranging from having access to the entire workload [54] to being workload agnostic [37]. Our system falls in the middle of the spectrum, where we make assumptions about the structure and distribution of the query workload. Specifically, we assume that the set of columns used in GROUP BYs and the aggregate functions are known apriori, with the scope defined in §2.4. Predicates can take any form that fits under the defined scope and we do not assume we have access to the exact set of predicates used. We assume that a workload consists of queries made of an arbitrary combination of aggregates, group bys and predicates from the scope of interest. PS3 is trained per data layout and workload, and generalizes to unseen queries sampled from the same distribution as the training workload. Overall, our system is best suited for commonly occurring queries and should be retrained in case of major changes in query workloads such as the introduction of unseen group by columns.

We do not consider generalization to unseen data layouts or datasets and we view broader generalization as an exciting area for future work (§7). Since most summary statistics are computed per column, different datasets might not share any common statistics. Even for the same dataset, the importance of summary statistics can vary across data layouts. For example, the mean of column X can distinguish partitions in a layout where the dataset is sorted by X, but may provide no information in a random layout.

2.2 Supported Queries

In this section, we define the scope of queries that PS3 supports. We support queries with an arbitrary combination of aggregates, predicates and groupbys. Although we do not directly support nested queries, many queries can be flattened using intermediate views [35]. Our techniques can also be used directly on the inner queries. Overall, our query scope covers 11 out of 22 queries in the TPC-H workload (Appendix A.1, extended report [44]).

- **Aggregates.** We support SUM and COUNT(*) (hence AVG) aggregates on columns as well as simple linear projections of columns in the select clause. The projections include simple arithmetic operations ($+$, $-$) on one or more columns in the table. We also support a subset of aggregates with CASE conditions that can be rewritten as an aggregate over a predicate.
- **Predicates.** Predicates include conjunctions, disjunctions and negations over the clauses of the form $c \text{ op } v$, where c denotes a column, op an operation and v a value. We support equality and inequality comparisons on numerical and date columns, equality check with a value as well as the IN operator for string and categorical columns as clauses.
- **Groups.** We support GROUP BY clauses on one or more stored attributes. We do not support GROUP BY on columns with large cardinality since there is little gain from answering highly distinct queries over samples; one could either hardly perform any sampling without missing groups, or would only care about a limited number of groups with large aggregate values (e.g., TOP queries), which is out of the scope of this paper.
- **Joins.** Queries containing key–foreign joins can be supported as queries over the corresponding denormalized table. For simplicity, our discussion in this paper is based on a denormalized table.

In the TPC-H workload, 16 out of the 22 queries can be rewritten on a denormalized table and 11 out of the 16 are supported by our query scope. For the 5 that are not supported, 4 involve group bys on high cardinality columns and 1 involves the MAX aggregate. A number of prior work have also studied similar query scopes [13 48 54].

2.3 Inputs and Outputs

PS3 consists of two main components: the statistics builder and the partition picker (Figure 1). In this section, we give an overview of the inputs and outputs of each component during preprocessing and query time.

2.3.1 Statistics Builder

Preparation. The statistics builder takes a partition as input and outputs a number of lightweight sketches for each partition. The sketches are stored separately from the partitions. We describe the sketches used in detail, including the time and space complexity for constructing and storing the sketches in §3.1.

Query Time. During query optimization, one can access the sketches without touching the raw data. Given an input query, the statistics builder combines pre-computed column statistics with query-specific statistics computed using the stored sketches and produces a set of summary statistics for each partition and for each column used in the query.

2.3.2 Partition Picker

Preparation. In the preparation phase, the picker takes a specification of workload in the form of a list of aggregate functions and columnsets that are used in the GROUP BY. We can sample a query from the workload by combining randomly generated predicates and randomly selected aggregate functions and group by columnsets (0 or 1) from the specification. For each sampled query, we compute the summary statistics as well as the answer to the query on each partition as the training data, which the picker uses to learn the relevance of different summary statistics. The
Table 1: Per partition, the time and space overheads to construct and store sketches for a dataset with \(R_0 \) rows in each partition.

<table>
<thead>
<tr>
<th>Sketch</th>
<th>Construction</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histograms</td>
<td>(O(R_0 \log R_0))</td>
<td>(O(# \text{buckets}))</td>
</tr>
<tr>
<td>Measures</td>
<td>(O(R_0))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>AKMV</td>
<td>(O(R_0))</td>
<td>(O(k))</td>
</tr>
<tr>
<td>Heavy Hitter</td>
<td>(O(R_0))</td>
<td>(O(\frac{1}{\text{support}}))</td>
</tr>
</tbody>
</table>

training is a one-time cost and we train one model for each workload to be used for all test queries. We elaborate on the design of the picker in Section 4.

Query Time. The picker takes an input query, summary statistics and a sampling budget as inputs, and outputs a list of partitions to sample, as well as the weight of each partition in the sample. This has a net effect of replacing a table in the query execution plan with a set of weighted partition choices with a small overhead. Prior work has suggested ways to augment query execution to handle weights for each row.

2.4 Problem Statement

Let \(N \) be the total number of partitions and \(M \) be the dimension of the summary statistics. For an aggregation query \(Q \), let \(G \) be the set of groups in the answer to \(Q \). For each group \(g \in G \), denote the aggregate values for the group as \(A_g \in \mathbb{R}^d \), where \(d \) is the number of the aggregates. Denote the aggregates for group \(g \) on partition \(i \) as \(A_{g,i} \).

Given the input query \(Q \), the summary statistics \(S \in \mathbb{R}^{N \times M} \) as well as sampling budget \(n \) in the form of number of partitions to read, our system returns a set of weighted partition choices with a small overhead. Prior work has suggested ways to augment query execution to handle weights for each row.

3. PARTITION SUMMARY STATISTICS

The high-level insight of our approach is that we want to differentiate partitions based on their contribution to the query answer, and that the contribution is estimated using a rich set of summary statistics on the partitions. As a simple example, for SUM-type aggregates, partitions with a higher average value of the aggregate should be preferred all else being equal. We are unaware of prior work that uses partition level summary statistics for performing non-uniform partition-level sampling. In this section, we describe the design and implementation of the summary statistics.

3.1 Lightweight Sketches

Our primary use case, similar to columnar databases, is read-only or append-only stores. Summary statistics are constructed for each new data partition when the partition is sealed. The necessary data statistics should be simple, small in size and can be computed incrementally in one pass over data. The necessary statistics should also be discriminative enough to set partitions apart and rich enough to support sampling decisions such as estimating the number of rows that pass the predicate in a partition. We opt to use only single-column statistics to keep the memory overhead light, although more expensive statistics such as multi-column histograms can help estimate selectivity more accurately. The design considerations lead us to the following sketches:

- **Measures**: Minimum, maximum, as well as first and second moments are stored for each numeric column. For columns whose value is always positive, we also store measures on the log transformed column.
- **Histogram**: We construct equal-depth histograms for each column. For string columns, the histogram is built over hashes of the strings. By default, each histogram has 10 buckets.
- **AKMV**: We use an AKMV (K-Minimum Values) sketch to estimate the number of distinct values. The sketch keeps track of the \(k \) minimum hashed values of a column as well as the number of times these values appeared in the partition. We use \(k = 128 \) by default.
- **Heavy Hitter**: We maintain a dictionary of heavy hitters and their frequencies for each column in the partition using lossy counting. By default, we only track heavy hitters that appear in at least 1% of the rows, so the dictionary has at most 100 items.

Table 1 summarizes the time complexity to construct the sketches and the space overhead to store them, ignoring small logarithmic factors. The sketches can be constructed in parallel for each partition. We do not claim that the above choices make a complete set of sketches that should be used for the purpose of partition selection. Our point is that these are a set of inexpensive sketches that can be easily deployed or might have already been maintained in big-data systems, and that they can be used in new ways to improve partition sampling.

3.2 Summary Statistics as Features

Given the set of sketches, we compute summary statistics for each partition, which can be used as feature vectors to discriminate partitions based on their contribution to the answer of a given query. The features consist of two parts: pre-computed per column features and query-specific selectivity estimates.

Table 2: Summary statistics and the sketches used to compute them. Selectivity is computed per query and all other statistics is computed per column.

<table>
<thead>
<tr>
<th>Summary Statistics</th>
<th>Sketch</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau, \min(x), \max(x), \frac{x^2}{\sqrt{\text{std}(x)}})</td>
<td>Measures</td>
</tr>
<tr>
<td>log((x)), log((x)^2), min((\log(x))), max((\log(x)))</td>
<td>Measures</td>
</tr>
<tr>
<td>number of distinct values</td>
<td>AKMV</td>
</tr>
<tr>
<td>avg/max/min/sum freq. of distinct values</td>
<td>AKMV</td>
</tr>
<tr>
<td># hh, avg/max freq. of hh occurrence bitmap of heavy hitters</td>
<td>Heavy Hitter</td>
</tr>
<tr>
<td>selectivity</td>
<td>Heavy Hitter</td>
</tr>
</tbody>
</table>

Table 1: Per partition, the time and space overheads to construct and store sketches for a dataset with \(R_0 \) rows in each partition.

<table>
<thead>
<tr>
<th>Sketch</th>
<th>Construction</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histograms</td>
<td>(O(R_0 \log R_0))</td>
<td>(O(# \text{buckets}))</td>
</tr>
<tr>
<td>Measures</td>
<td>(O(R_0))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>AKMV</td>
<td>(O(R_0))</td>
<td>(O(k))</td>
</tr>
<tr>
<td>Heavy Hitter</td>
<td>(O(R_0))</td>
<td>(O(\frac{1}{\text{support}}))</td>
</tr>
</tbody>
</table>
Overall, there are four types of features based on the underlying sketches that generate them: measures, heavy hitters, distinct values and selectivity. Each type of feature captures different information about the partitions and the queries. Measures help identify partitions with disproportionately large values of the aggregates; heavy hitters and distinct values help discriminate partitions from each other and selectivity helps assess the impact of the predicates. We found that all types of features are useful in PS3 but the relative importance of each varies across datasets (§5.4.2).

Extracting features from sketches is in general, straightforward; here, we discuss two interesting cases.

Occurrence Bitmap. We found that it is not only helpful to know the number of heavy hitters, but also which heavy hitters are present in the partition. To do so, we collect a set of k global heavy hitters for a column by combining the heavy hitters from each partition. For each partition, we compute a bitmap of size k, each bit representing whether the corresponding global heavy hitter is also a heavy hitter in the current partition. The feature is only computed for grouping columns and we cap k at 25 for each column.

Selectivity Estimates. The selectivity estimate is a real number between 0 and 1, designed to reflect the fraction of rows in the partition that satisfies the query predicate. The estimate supports predicates defined in our query scope (§2.2) and is derived using histograms over individual columns. We describe a few special cases below. If a string column has a small number of distinct values, each distinct value and its frequency is stored exactly; this can support regex-style textual filters on the string column (e.g., `\%promo\%`). We jointly evaluate predicates that use the same column (e.g., $X < 1$ or $X > 10$). We use the following four features to represent the selectivity of predicates which can be a conjunction or disjunction of individual clauses:

1. **selectivity_upper**: For ANDs, the selectivity is at most the min of the selectivity of individual clauses; for ORs, the selectivity is at most 1 and at most the sum of selectivity of individual clauses.

2. **selectivity_indep**: This feature computes the selectivity assuming independence between predicate clauses. For ANDs, the feature is the product of the selectivity for each individual clauses; for ORs, the feature is the min of the selectivity of individual clauses.

3. **selectivity_min, selectivity_max**: We store the min and max of the selectivity of individual clauses.

If the upper bound of the selectivity is zero, the partition contains no rows that pass the predicate; if the upper bound is nonzero however, the partition can have zero or more rows that pass the predicate. In other words, as a classifier for identifying partitions that satisfy the predicate, $selectivity_upper > 0$ has perfect recall and uncertain precision. For simple predicates such as $X > 1$, the precision is 100%; for complicated predicates involving conjunctions and disjunctions over many clauses and columns (e.g., TPC-H Q19), the precision can be as low as 10%.

4. PARTITION PICKING WITH STATISTICS

In this section, we describe PS3’s partition picker component and how it makes novel use of the summary statistics to realize weighted partition selection.

Algorithm 1 Partition Picker

Input: partition features F, sampling budget n, group bys columns $groups$, models $regrs$, decay rate α

Output: part_choice: $[\{p_1, w_1\}, \{p_2, w_2\}, \ldots, \{p_n, w_n\}]$

1. $outliers, inliers \leftarrow \text{OUTLIER}(F, groups)$
2. $n_0 \leftarrow \text{outliers}.size()$
3. $weights \leftarrow [1] \ast n_0$
4. $\text{part_choice.add(outliers, weights)}$
5. $\text{buckets \leftarrow IMPORTANCE_Buckets(F, inliers, regrs)}$
6. $n_o \leftarrow \text{ALLOCATE_SAMPLES}(\text{buckets, } n - n_0, \alpha)$
7. for $j \leftarrow 1, \ldots, \text{buckets}.size()$
8. \hspace{1em} $\text{part_choice.add(CLUSTERING}(F|\text{buckets}[j], n_o[j])$)
9. end for

4.1. Picker Overview

To start, we give an overview of how our partition picker works. Recall that the picker takes a query, the summary statistics and a sampling budget as inputs, and outputs a set of weighted partition choices consisting of a list of partitions to evaluate the query on and the weight of each partition. Partial answers from the selected partitions are combined in a weighted manner, as described in §2.4.

Algorithm 1 describes the entire procedure. We first identify outlier partitions with rare groups using procedure described in §4.3. Each outlier partition has a weight of 1. We then use the trained models to sort the remaining partitions into buckets of different importance, using algorithm described in §4.3. We allocate the remaining sampling budget across buckets such that the sampling rate decreases by a factor of α from the ith important to the $(i + 1)$th important bucket. Finally, given a sample size and a set of partitions in each bucket, we select samples via clustering using procedure described in §4.2. An exemplar partition is selected from each cluster as a sample, and the weight of the exemplar equals the size of the cluster. We explain each component of the picker in detail in the following sections.

4.2. Sample via Clustering

We use feature vectors to compute a similarity score between partitions, which consequently enables us to choose dissimilar partitions as representative samples of the dataset. In fact, two identical partitions must have identical summary statistics. While the reverse does not hold, having summary statistics on multiple columns as well as multiple statistics for each column make it less likely that different partitions share identical summary statistics.

We propose to use clustering as a sampling strategy: given a sampling budget of n partitions, we perform clustering using feature vectors with a target number of n clusters; an exemplar partition is chosen per cluster, with an assigned weight equals the number of partitions in the cluster. Denote the answer to the query on cluster i‘s exemplar partition as A_i and the size of cluster i as s_i. The estimate of the query answer is therefore given by $\hat{A} = \sum_{i=1}^{n} s_i A_i$.

Concretely, we compute partition similarity using Euclidean distances of the feature vectors. We zero out features for unused columns in the query so they have no impact on the result; we also perform normalization such that the distance is not dominated by any single feature (4.4). Appendix B.

Regarding the choice of the clustering algorithm, we experimented with KMeans and Agglomerative Clustering and found that they perform similarly. Finally, the cluster ex-
Importance Funnel

Figure 2: The trained regressors are used to sort input partitions into buckets of different importance. The sampling rate decrease by a factor of \(\alpha > 1 \) from the \(i^{th} \) important to the \((i+1)^{th} \) important bucket.

4.3 Learned Importance-Style Sampling

While clustering helps select partitions that are dissimilar, it makes no distinction between partitions that contribute more to the query and partitions that contribute less. The notion of contribution is useful since sampling the more important partitions more frequently could reduce the variance of the estimate \(^6\).

The feature vectors are useful in assessing partition contribution. Consider the following query: \(\text{SELECT SUM}(X), Y \text{ FROM table WHERE } Z > 1 \text{ GROUP BY } Y \). The subset of partitions that answer this query well should contain disproportionately large values of \(X \), many rows that satisfy the predicate and many distinct values of \(Y \). Feature vectors provide supporting evidence for each of the desired characteristics: measures statistics (e.g. max, std) reveal large values of \(X \), selectivity reflects the effective fraction of the partition that is relevant to the query, and heavy hitter and distinct value measures statistics summarize the distribution of groups across partitions. However, it is challenging to manually quantify how much does each feature matter for each query. In our example, it is unclear whether a partition with a high variance of \(X \) but few rows that match the predicate should be prioritized over a partition with low variances and many rows matching the predicate.

While it is not obvious how to manually design rules that relate feature vectors to partition contribution, a model may learn to do so from examples. An intuitive design is to use partition features as model inputs and predict partition weights, which turns out to be a non-traditional regression problem. The goal of the regressor is to assign a weight vector to \(N \) partitions such that the weighted partition choice produces a small approximation error. Given a sampling budget of \(n \) partitions, there are exponentially many choices of subsets of partitions of size \(n \) and the optimal choice is discontinuous on \(\{1\} \). In addition, the decision depends jointly on the set of partitions chosen; the weight assigned to one partition, for example, may depend on how many other partitions with nearly identical content are picked in the sample. Therefore, a simple, per partition regressor is unable to capture the combinatorial nature of the decision space. Existing solutions \([17, 45]\) would require significantly more resources and we pursue a lightweight alternative instead.

Given the challenges to directly use a trained model for sampling, we leverage the learned model in a more controlled manner; similar observation was made for using learned models in a much simpler sampling setting with count queries \([50]\). Specifically, we consider a classification problem in which we are only interested in the relative importance of

\(^6\)a small change in \(n \) can completely change the set of partitions to pick and the weights to assign to them.
partitions; the relative importance can be learned by picking up correlations between feature vectors and how much a partition contributes to the query answer. We propose a design based on this idea, which we describe below.

Partition Contribution. We consider the “contribution” of a partition to the answer of a query as its largest relative contribution to any group and any aggregate in the answer. Denote the aggregates for group \(g \in G \) as \(A_g \in \mathbb{R}^d \), where \(d \) is the number of the aggregate functions, and denote the aggregates for group \(g \) on partition \(i \) as \(A_{g,i} \in \mathbb{R}^d \). Partition \(i \)’s contribution is defined as: \(\max_{g \in G} \max_{j=1}^d \left(\frac{A_{g,i}[j]}{A_{g,j}} \right) \). There are several alternative definitions of contribution, such as using the average instead of the max of the ratios, or using absolute values instead of the relatives. Among all variants, the max of the relatives is perhaps the most generous: it recognizes a partition’s importance if it helps with any aggregates in any groups, and is not biased towards large groups or aggregates with large absolute values. We find that our simple definition above already leads to good empirically results.

Training. Given the partition contributions for all queries in the training data, we train a set of \(k \) models to distinguish the relative importance of partitions. When \(k \) is large, training the set of models is equivalent to solving the regression problem in which we are directly predicting partition contribution from feature vector; when \(k \) is small, the training is a simplified version of the regression problem. The \(k \) models discretize partition contribution into \(k + 1 \) bins, and we choose exponentially spaced bin boundaries: the number of partitions that satisfy the \(i^{th} \) model increase exponentially from the number of partitions that satisfy the \((i+1)^{th} \) model. In particular, the first model identifies all partitions that have non zero contribution to the query and the \(k^{th} \) model identifies partitions whose contribution is ranked in the top 1% of all partitions.\(^5\) We use the XGBoost regressor as our base model, and provide additional details of the training in Appendix B of the extended version \([44]\).

Testing. During test time, we run partitions through a funnel that utilizes the set of trained models as filters and sort partitions into different buckets of importance (Algorithm 2). The advantage of building a funnel is that it requires as our base model, and provide additional details of the training in Appendix B of the extended version \([44]\).

Algorithm 2 Using learned models as bucketing functions.

<table>
<thead>
<tr>
<th>Input: partition features (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. function (\text{ImportanceBucket}(F, \text{parts}, \text{regressors}))</td>
</tr>
<tr>
<td>2. (\text{buckets.add}([\text{FilterByPredicate}(F, \text{parts})))</td>
</tr>
<tr>
<td>3. for (\text{regr} \in \text{regressors}) do</td>
</tr>
<tr>
<td>4. (\text{to.examine} \leftarrow \text{buckets[-1]})</td>
</tr>
<tr>
<td>5. (\text{to.pick} \leftarrow p \in \text{to.examine}) s.t. (\text{regr}(F[p]) > 0)</td>
</tr>
<tr>
<td>6. (\text{buckets[-1]} \leftarrow \text{to.examine.difference(to.pick)})</td>
</tr>
<tr>
<td>7. (\text{buckets.add(to.pick)})</td>
</tr>
<tr>
<td>8. end for</td>
</tr>
<tr>
<td>9. return buckets</td>
</tr>
<tr>
<td>10. end function</td>
</tr>
</tbody>
</table>

the sensitivity analysis \([44]\). Appendix C.2). In general, increasing \(\alpha \) improves the overall performance especially when the trained models are accurate, but the marginal benefit decreases as \(\alpha \) becomes larger. If the trained models are completely random however, a larger \(\alpha \) would increase the variance of the estimate. We have found that a decays rate of \(\alpha = 2 \) with \(k = 4 \) models works well across a range of datasets and layouts empirically. However, it is possible to fine-tune \(\alpha \) for each dataset to further improve the performance and we leave the fine-tuning to future work.

4.4 Outliers

Finally, we observe that datasets often exhibit significant skew in practice (example in § 1). Prior work in AQP has shown that augmenting random samples with a small number of samples with outlying values or from rare groups helps reduce error caused by the skewness \([15, 23]\). We recognize the importance of handling outliers and allocate a small portion of the sampling budget for outlying partitions.

We are especially interested in partitions that contain a rare distribution of groups for \(\text{GROUP BY} \) queries. These partitions are not representative of other partitions and should therefore be excluded from clustering. To identify such partitions, we take advantage of the occurrence bitmap feature that tracks which heavy hitters are present in a partition. We cluster partitions with identical bitmap features for columns in the \(\text{GROUP BY} \) clause. We consider a bitmap cluster outlying if its size is small in both absolute and relative terms. For example, if there are a total of 100 such bitmap clusters and 10 partitions per cluster, we do not consider any as outlying although the absolute size of the clusters is small. We allocate up to 10% of the sampling budget to evaluate outliers. We have empirically found that increasing the outlier budget further does not significantly improve with the performance.

5. EVALUATION

In this section, we evaluate the empirical performance of \(\text{PS}^3 \). Experiments show that:

1. \(\text{PS}^3 \) consistently outperforms alternatives on a variety of real-world datasets, delivering \(2.7 \times 70 \) reduction of data read to achieve the same average relative error compared to uniform partition sampling, with storage overhead ranging from 12KB to 103KB per partition.
2. Every component of \(\text{PS}^3 \) and every type of features contribute meaningfully to the final performance.
3. \(\text{PS}^3 \) works across datasets, partitioning schemes, partition counts and generalizes to unseen queries.

\(^5\)The class imbalance and the small number of positive examples make it challenging to train an accurate model beyond 1%.
5.1 Methodology

In this subsection, we describe the experimental methodology, which includes the datasets, query generation, methods of comparison and error metrics.

5.1.1 Datasets

We evaluate on four real-world datasets that are summarized below. We include a specification of the table schema in Appendix A of the extended version [44].

TPC-H*. Data is generated from a Zipfian distribution with skewness of 1 and a scale factor of 1000 [7]. We denormalize all tables against the lineitems table. The resulting table has 6B rows, with 14 numeric columns and 31 categorical columns. Data is sorted by column `SHIPDATE`.

TPC-DS*. `catalog_sales` table from TPC-DS, joined with dimensions tables `item`, `promotion`, `customer_demographics`, and `date_dim`, with 4.3M rows, 27 numeric columns and 20 categorical columns. Data is sorted by `year`, `month` and `day`.

Aria. Production service request log at Microsoft [10, 32]. 10M rows, 7 numeric columns and 4 categorical columns. Data is sorted by categorical column `TenantId`.

KDD. KDD Cup’99 dataset on network intrusion detection [16]. 4.8M rows, 27 numeric columns and 14 categorical columns. Data is sorted by numeric column `count`.

By default we use a partition count of 1000, the smallest size from which partition elimination becomes interesting. The TPC-H* dataset (sf=1000) has 2844 partitions, with a partition size of 2.5GB, consistent with scale of the big-data workloads seen in practice. We evaluate the impact of the total number of partitions in the sensitivity analysis (§5.5.2). We also report results from additional data layouts, including a random distribution of 2.5GB, consistent with scale of the big-data workloads seen in practice. We evaluate the sensitivity of our findings to the number of partitions in the sensitivity analysis (§5.5.2). We also report results from additional data layouts, including a random distribution of 2.5GB, consistent with scale of the big-data workloads seen in practice.

5.1.2 Query Set

To train PS3, we construct a training set of 400 queries for each dataset by sampling at random the following aspects:

- between 0 and 8 columns as the group-by columns
- between 0 and 5 predicate clauses; each of which picks a column, an operator and a constant at random
- between 1 and 3 aggregates over one or more columns

We generate a held-out set of 100 test queries in a similar way. For TPC-H*, we include an additional test set of 10 TPC-H queries (§5.5.3). We ensure that there are no identical queries between the train and testing sets; that is, there is substantial entropy in our choice of predicates, aggregates and grouping columns.

5.1.3 Methods of Comparison

All methods except for simple random sampling have access to feature vectors, and use the `selectivity_upper` feature to filter out partitions that do not satisfy the predicate before sampling. Recall that this filter has false positives but no false negatives. All methods have access to the same set of features. We report the average of 10 runs for methods that use random sampling.

Random Sampling. Partitions are sampled uniformly at random. The final estimate is scaled by the sampling rate.

Random+Filter. Same as random sampling except that only partitions that pass the selectivity filter are sampled.

Learned Stratified Sampling (LSS). A baseline inspired by prior work on learned row-level stratified sampling [39]. The core idea is leveraging learned models for stratification to reduce within-stratum variance. Specifically, we rank partitions by the model’s prediction and perform stratification such that each strata covers partitions whose predictions fall into a consecutive range. We made three modifications to LSS to enable partition-level sampling: moving training from online to offline for I/O savings, changing inputs and outputs to operate on partitions instead of rows, and adopting a different stratification strategy since the suggested version does not apply. We include a detailed description of the modifications in the extended report [44] (Appendix C.1).

PS3. A prototype that matches the description given so far. Unless otherwise specified, default parameter values for PS3 in all experiments are $k = 4, \alpha = 2$ and up to 10% sampling budget dedicated to outliers.

5.1.4 Error Metric

Similar to prior work [12, 15, 41], we report multiple accuracy metrics. It is possible, for example, for a method to have a small absolute error but miss all small groups and small aggregate values. We therefore consider all three metrics below for a complete picture.

Missed Groups. Percentage of groups in the true answer missed by the estimate.

Average Relative Error. The average of the relative error for each aggregate in each group. For missed groups, the relative error is counted as 1.

Absolute Error over True. The average absolute error value of an aggregate across groups divide by the average true value of the aggregate across groups, averaged over multiple aggregates.

5.2 Macro-benchmarks

We compare the performance of methods of interest under varying sampling budgets on four datasets (Figure 3). The closer the curve is to the bottom left, the better the results.

While the scale of the three error metrics is different, the ordering of the methods is relatively stable. Using the selectivity feature to filter out partitions that do not satisfy the predicate strictly improves the performance for all methods, except on datasets like TPC-DS* where most partitions pass the predicate. The modified LSS (green) clearly improves upon random sampling by leveraging the correlation between feature vectors and partition contribution, consistent with findings of prior work.

Overall, PS3 consistently outperforms alternatives across datasets and error metrics. On our large scale experiment with the TPC-H* data, PS3 achieves an average relative error of 1.5% with 1% sampling rate, improving the error achieved by 17.5× compared to random sampling, 10.8× compared to random sampling with filter and 3.6× compared to LSS with the same sampling rate. To achieve an average relative error of 1.5%, PS3 reduces the fraction of data read by over 70× compared to random sampling, over 40× compared to random sampling with filter and 5× compared to LSS. We observe similar trends on the three smaller datasets but the performance gap is smaller: PS3 reduces the data read by 2.7 to 8.5× compared to simple random sampling to achieve ≤10% average relative error.
Figure 3: Comparison of error under varying sampling budget on four datasets, lower is better. PS3 (red) consistently outperforms others across datasets and different error metrics.

We additionally show that the fraction of data read is a reliable proxy for reductions in resources used, measured by total compute time. We evaluate example queries on the TPC-H* dataset using SCOPE clusters [21, 59], Microsoft’s main batch analytics platform, which consist of tens of thousands of nodes. Table 3 shows that reading 1%, 5% and 10% of the partitions results in a near linear speedup of 105.3×, 19.6×, 11.4× in the total compute time. Improvement of query latency however, is less than linear and depends on stragglers and other concurrent jobs on the cluster.

5.3 Overheads

We report the space overhead of storing summary statistics in Table 4. The statistics are computed for each column and therefore require a constant storage overhead per partition. The overheads range from 12KB to 103KB across the four datasets. The larger the partition size, the lower the relative storage overhead of the statistics. For example, with a partition size of 2.5GB, the storage overhead is below 0.003% for the TPC-H* dataset.

The AKMV sketch for estimating distinct values takes a fixed size; otherwise the sketch size is proportional to the number of distinct values. The KDD dataset, for example, has more columns but a smaller AKMV sketch size compared to the Aria dataset since a number of its columns are binary.

We also report the single-thread performance overhead of the partition picker (Algorithm 1) in Table 5, measured on an Intel Xeon E5-2690 v4 CPU. Our prototype picker is implemented in Python using the XGBoost and Sklearn libraries. Overall, the overhead is a small fraction of the query time, ranging from 86.5ms to around 1s across datasets. In comparison, the average query takes tens of total computation hours on the TPC-H* dataset. As the number of partitions and the dimension of the feature vectors increase, the total overhead increases and the clustering component takes up an increasing proportion of the overhead.

5.4 Lesion Study

In this section, we take a closer look at individual components of the picker and their impact on the final performance, as well as the importance of partition features.

5.4.1 Picker Lesion Study

We inspect how the three components of the partition picker introduced in §4 impact the final accuracy. To examine the degree to which a single component impacts the performance, we perform a lesion study where we remove each component from the picker while keeping the others enabled (Figure 4, top). To disable clustering (§4.2), we use random sampling to select samples. To disable identification of outlier partitions (§4.4), we take away the sampling budget dedicated to outliers. To disable the regressor (§4.3), we apply the same sampling rate to all partitions.
Figure 4: Lesion study and factor analysis on the Aria dataset. Each component of our system contributes meaningfully to the final accuracy.

The result shows that the final error increases when each component is disabled, illustrating that each component is necessary to achieve the best performance.

We additionally measure how the three components contribute to overall performance. Figure 4 (bottom) reports a factor analysis. We start from the simple random sampling baseline (random). Using selectivity_upper ≥ 0 as a filter (+filter) strictly improves the performance. Similar to the lesion study, we enable each component on top of the filter (not cumulative) while keeping others disabled. The results show that the identification of outlier partitions (+outlier) contributes the least value individually and the use of clustering (+cluster) contributes the most.

5.4.2 Feature Importance

We divide partition features into four categories based on the sketches used to generate them: selectivity, heavy hitter, distinct value and measures. We investigate the contribution of features in each component of PS³. Filtering and outliers depend exclusively on histograms (selectivity) and heavy hitters (occurrence bitmap). For regressors, we estimate feature contribution using regressors’ feature importance scores. We report the “gain” feature importance metric which measures the improvement in accuracy brought by a feature to the branches it is on [9]. For each dataset, we report the total importance score for features in each category as a percentage of the total importance score aggregated over all regressors used in the funnel; the larger the percentage, the more important the feature is to the final accuracy. We report the result in Figure 5.

Overall, all four types of features contribute to the regressor accuracy, but the relative importance of features vary across the datasets. In other words, no single feature dominates the regressor’s performance. Selectivity estimates, despite being almost irrelevant for regressors, are useful in other components of PS³.

5.5 Sensitivity Analysis

In this section, we evaluate the sensitivity of the system’s performance to changes in setups and parameters.

Figure 5: Feature importance for the regressors. The higher the percentage, the more important the statistics is to the regressor’s accuracy.

5.5.1 Effect of Data Layouts

One of our design constraints is to be able to work with data in situ. To access how PS³ performs on different data layouts, we evaluate on two additional layouts for each dataset using the same training and testing query sets from experiments in §5.2. Figure 6 summarizes the average relative error achieved under varying sampling budgets for the six combinations of datasets and data layouts.

Similar to observations in §5.2, our method is still able to consistently outperform alternatives across the board. However, the sizes of the improvements vary across datasets and layouts. Overall, the more random/uniform the data layout is, the less room for improvement for importance-style sampling. As an example, in dataset TPC-DS*, random sampling achieves much smaller average relative error in the layout sorted by column cs_net_profit compared to the layout sorted by column p_promo_sk; in the former layout, LSS is only marginally better than random sampling, indicating a weak correlation between features and partition importance.

As a special case, we explicitly evaluate PS³ on a random layout for the TPC-H dataset with a scale factor of 1 (Figure 2 left). As expected, sampling partitions uniformly at random performs well on the random layout. PS³ underperforms random sampling in this setting, but the performance difference is small. Realistically, we do not expect PS³ to be used for random data layouts; users would have chosen random sampling were they paying the cost to maintain a
5.5.2 Effect of Partition Count

In this subsection, we investigate the impact of partition count on the final performance. We report results on the TPC-H* dataset (sf=1) with 1000 and 10,000 partitions in the middle and right plot of Figure 7. Compared to results on the same dataset with fewer partitions, the percentage of partitions that can be skipped increases with the increase of the number of partitions. In addition, as the partition count increases, the error achieved under the same sampling fraction becomes smaller.

However, the cost of storing and constructing samples increases as the number of partitions increases. First, while the time complexity of computing statistics does not change with the increase in partition counts, the storage overhead increases linearly with the number of partitions. Perhaps more concerning is the increase in I/O costs. The larger the partition count, the smaller the size of each partition. In the limit when each partition only contains one row, partition-level sampling is equivalent to row-level sampling, which is expensive to construct as discussed earlier (§1).

5.5.3 Generalization Test on TPC-H Queries

To further assess the ability of the trained models to generalize to unseen queries, we test PS3 trained on the randomly generated training queries with TPC-H schema (described in §5.1.2) on 10 unseen TPC-H queries supported by our query scope3 the set of aggregate functions and group by column sets are shared between the trained and test set. We generate 20 random test queries for each TPC-H query template. We report the average, worst and best performances across the test queries on the TPC-H* dataset (sf=1000) in Figure 8. On average, PS3 is still able to outperform uniform partition sampling, despite the larger domain gap between training and test set compared to experiments conducted in §5.2. We report a detailed performance break down by query in [44] (Appendix C). Overall, we enable larger improvements on queries such as Q1, where 5Q4 is excluded since it operates on the `orders` table.

5.5.4 Effect of Query Selectivity

We investigate how queries with different sensitivities benefit from PS3. Figure 9 reports the error breakdown by query selectivity for random partition-level sampling and PS3 on the TPC-H* dataset; other datasets show similar trends. Compared to naive random partition level sampling (blue), PS3 offers more improvements for more selective queries (selectivity < 0.2), since the selectivity feature effectively filters out a large fraction of partitions that are irrelevant to the query. Compared to random partition level sampling with the selectivity filter (orange), PS3 offers more improvements for non-selective queries (selectivity > 0.8), since they have larger errors at small sampling rates.

5.5.5 Clustering Algorithm and Feature Selection

We evaluate the effect of clustering algorithm and feature selection on the clustering performance.

We compare a bottom-up clustering algorithm (Hierarchical Agglomerative Clustering) to a top-down algorithm (KMeans). For Agglomerative clustering, we compare two linkage metrics: the “single” linkage minimizes the minimum distances between all points of the two merged clusters, while the “ward” linkage minimizes the variances of two merged clusters. For each dataset, we evaluate the average relative error achieved under different sampling budgets, and report the area under the curve (Table 6). The smaller the area, the better the clustering performance.

HAC using the “ward” linkage metric and K-Means consistently produce similar results, suggesting that the clustering performance is not dependent on the choice of the clustering algorithm. The single linkage metric, however, produces worse clustering results compared to the “ward” linkage metric as well as the K-Means algorithm, especially on the TPCDS dataset. Feature selection consistently improves clustering performance for both clustering methods, reducing the area from 0.5% to 15% across datasets.

Table 6: Area under the curve for the average relative error of clustering under different sampling budgets; smaller is better.

<table>
<thead>
<tr>
<th></th>
<th>single</th>
<th>ward</th>
<th>+feat sel</th>
<th>KMeans</th>
<th>+feat sel</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPCDS</td>
<td>12.1</td>
<td>4.2</td>
<td>3.8 (-9%)</td>
<td>4.2</td>
<td>3.8 (-8%)</td>
</tr>
<tr>
<td>Aria</td>
<td>3.2</td>
<td>2.6</td>
<td>2.3 (-14%)</td>
<td>2.7</td>
<td>2.3 (-15%)</td>
</tr>
<tr>
<td>KDD</td>
<td>.71</td>
<td>.58</td>
<td>.55 (-5%)</td>
<td>.55</td>
<td>.54 (-5%)</td>
</tr>
</tbody>
</table>
6. RELATED WORK

In this section, we discuss related work in sampling-based AQP, block-level sampling, and partition pruning.

Sampling-based AQP. Sampling-based approximate query processing has been extensively studied, where query results are estimated from a carefully chosen subset of the data [25]. A number of techniques have been proposed to improve upon simple row-level random sampling, for example, by using auxiliary data structures like outlier index [23] or by introducing stratification to bias the samples towards small groups [11, 12]. Prior work has shown that, despite the improvements in sampling techniques, it is often difficult to construct a sample pool that offers good results for arbitrary queries given feasible storage budgets [13]. Instead of computing and storing samples apriori [13, 15, 22], our work makes sampling decisions exclusively during query time.

Prior works have used learning to improve the sampling efficiency for AQP. One line of work uses learning to model the dataset and reduce the number of samples required to answer queries. For example, a model that estimates sensor readings can help with queries on the sensor network [39]. Similarly, prior work tries to learn the underlying distribution that generates the data over queries, and relies on the learned model to reduce sample size over time [48]. Our work is closer to another line of work that uses the learned model to improve the design of the sampling scheme. Recent work proposes a learned stratified sampling scheme, in which the model predictions are used as stratification criteria [56]. However, the work focuses on row-level samples and on count queries; we support a broader scope of queries with aggregates and group bys and work with block-level samples. In the evaluation, we compare against a scheme inspired by learned stratified sampling.

Data Skipping. Our work is also closely related to the line of work in data skipping. Many prior works have studied the problem of optimizing data layout to improve data skipping given a query workload. Building on the observation that it is often difficult, if not impossible, to find a data layout that offers optimal data skipping for all queries, we instead choose to work with data in situ. Researchers as well as practitioners have also looked at ways to use statistics and metadata to prune partitions that are irrelevant to the query. A variety of approaches have been proposed, ranging from using simple statistics such as min and max to check for predicate ranges [3, 4] to deriving complex pruning rules beyond joins [42]. Our work is directly inspired by this line of work and extends deterministic pruning to probabilistic sampling.

Partition-level sampling. Researchers have long recognized the I/O benefits of partition-level sampling over row-level sampling [54, 55, 58, 57]. Partition-level samples have been used to build statistics such as histogram and distinct value estimation for query optimizers [24, 26]. Prior work has studied combining row-level and partition-level Bernoulli style sampling for SUM, COUNT, and AVG queries, in which each sample is treated equally [24, 34]. However, partition-level sampling can be more closely resembles the importance sampling where sample more important blocks with higher probability.

Partition level sampling is also studied in the context of online aggregation (OLA) where query estimates can be progressively refined as more data gets processed, and users can stop the processing early once the answer reaches target accuracy [25, 27, 31]. Classic work in OLA assume that tuples are processed in a random order, which often require random shuffling as an expensive processing step [19]. Our approach does not require random layout, and in fact, should not be used if the data layout is random. Prior work has also studied OLA over raw data, which requires an expensive tuple extraction step to convert raw files into database format [27]. We work with data that are already stored in database format and focus on selecting fewer partitions instead of stopping processing early within a partition, since the most expensive operation for our setup is the I/O cost of reading the partition.

7. DISCUSSION AND FUTURE WORK

Our work shows promise as a first step towards using learning techniques to improve upon uniform block-level sampling. We highlight a few important areas for future work.

First, our system is designed mainly for read-only and append-only data stores, so the proposed set of sketches should be reconsidered to support deletes and edits to datasets. We believe that automatically detecting distribution shifts in summary statistics to trigger the retraining of the partition picker will be an interesting area of future research.

Second, our work only considers generalization to unseen queries in the same workload on the same dataset and data layout. While retraining can help with generalizing to unseen columns in the same dataset and layout, supporting broader forms of generalization such as to different data layouts is non-trivial and could require more sophisticated partition featureizers such as multicolored statistics.

Third, our work demonstrates empirical advantages to uniform block-level sampling on several real-world datasets but provides no formal guarantees. Developing error guarantees for a restricted query class and diagnostic procedures for failure cases will be of immediate value to practitioners.

8. CONCLUSION

We introduce PS³, a system that leverages lightweight summary statistics to perform weighted partition selection in big-data clusters. We propose a set of sketches – measures, heavy hitters, distinct values, and histograms – to generate partition-level summary statistics that help assess partition similarity and importance. Together, PS³ provides sizable speed ups compared to random partition selection with minimum storage overhead.

9. ACKNOWLEDGEMENT

We thank Laurel Orr for her contributions to an early version of this project. We thank Surajit Chaudhuri and many members of the Stanford InfoLab for their valuable feedback. Kexin Rong, Peter Bailis and Philip Levis were supported in part by affiliate members and other supporters of the Stanford DAWN project—Ant Financial, Facebook, Google, Infosys, NEC, and VMware—as well as Toyota Research Institute, Northrop Grumman, Amazon Web Services, Cisco, the NSF under CAREER grant CNS-1651570 and the NSF under Grant No. CPS-1931750. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. Toyota Research Institute ("TRI") provided funds to assist the authors with their research but this article solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity.
10. REFERENCES

