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Abstract

Telehealth and remote health monitoring have become increasingly important dur-
ing the SARS-CoV-2 pandemic and it is widely expected that this will have a lasting
impact on healthcare practices. These tools can help reduce the risk of exposing
patients and medical staff to infection, make healthcare services more accessible,
and allow providers to see more patients. However, objective measurement of
vital signs is challenging without direct contact with a patient. We present a video-
based and on-device optical cardiopulmonary vital sign measurement approach.
It leverages a novel multi-task temporal shift convolutional attention network
(MTTS-CAN) and enables real-time cardiovascular and respiratory measurements
on mobile platforms. We evaluate our system on an Advanced RISC Machine
(ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames
per second which enables real-time applications. Systematic experimentation on
large benchmark datasets reveals that our approach leads to substantial (20%-50%)
reductions in error and generalizes well across datasets.

1 Introduction

The SARS-CoV-2 (COVID-19) pandemic is transforming the face of healthcare around the world
[1, 2]. One example of this is the sharp increase (by more than 10x) in the number of medical
appointments held via telehealth platforms because of the increased pressures on healthcare systems,
the desire to protect healthcare workers and restrictions on travel [2]. Telehealth includes the use of
telecommunication tools, such as phone calls and messaging, and online health portals that allow
patients to communicate with their providers. The Center for Disease Control and Prevention is
recommending the “use of telehealth strategies when feasible to provide high-quality patient care
and reduce the risk of COVID-19 transmission in healthcare settings”1. Performing primary care
visits from a patient’s home reduces the risk of exposing people to infections, increases the efficiency
of visits and facilitates care for people in remote locations or who are unable to travel. These are
longstanding arguments for telehealth and will still be valid after the end of the current pandemic.
Healthcare systems are likely to maintain a high number of telehealth appointments in the future [3].

However, despite the longstanding promise of telehealth, it is difficult to provide a similar level of
care on a video call as during an in-person visit. The physician can diagnose a patient based on visual
observations and self-reported symptoms; however, in most cases they cannot objectively assess the
patient’s physiological state. This means that physicians have to make decisions (e.g., recommending
a trip to the emergency department) without important data. In the case of COVID-19, there are
severe cardiopulmonary (heart and lung related) symptoms that are difficult to evaluate remotely. The

Github Link: https://github.com/xin71/MTTS-CAN
1https://www.cdc.gov/coronavirus/2019-ncov/hcp/ways-operate-effectively.html
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symptoms seen in patients have drawn links to acute respiratory distress syndrome [4], myocardial
injury, and chronic damage to the cardiovascular system. Experts suggest that particular attention
should be given to cardiovascular protection during treatment [5]. The development of more accurate
and efficient non-contact cardiopulmonary measurement technology would give remote physicians
access to the data to make more informed decisions. Beyond telehealth, the same technology could
impact passive health monitoring, improving the standard of care for infants in neonatal intensive
care units [6].

Cameras can be used to measure physiological signals, including heart and respiration rates, and
blood oxygenation levels [7, 8, 9], based on facial videos [10, 11]. Non-contact cardiopulmonary
measurement involves capturing subtle changes in light reflected from the body caused by physiologi-
cal processes. Imaging methods can be used to measure volumetric changes of blood in the surface
of the skin cause changes in light absorption (↑ volume of hemoglobin = ↑ light absorption). This
in turns affects the amount of visible light reflected from the skin, which is the source of the photo-
plethysmogram (PPG). The mechanical force of blood pumping around the body also causes subtle
motions and these are the source of the ballistocardiogram (BCG). These color and motion changes
in the video help us extract the pulse signal and heart rate frequency. The PPG and BCG signals
provide complementary information to one another and also contain information about breathing due
to respiratory sinus arrhythmia [12]. Respiratory signals can also be recovered from motion-based
analyses of the head and torso as the subjects breathes in and out [13].

Computer vision for remote cardiopulmonary measurement is a growing field; however, there is
room for improvement in the existing methods. First, accuracy of measurements is critical to avoid
false alarms or misdiagnoses. The US Federal Drug Administration (FDA) mandates that testing
of a new device for cardiac monitoring should show “substantial equivalence” in accuracy with a
legal predicate device (e.g., a contact sensor)2. This standard has not been obtained in non-contact
approaches. Second, designing models that run on-device helps reduce the need for high-bandwidth
Internet connections making telehealth more practical and accessible. Moreover, camera-based
cardiopulmonary measurement is a highly privacy sensitive application. These data are personally
identifiable, combining videos of a patient’s face with sensitive physiological signals. Therefore,
streaming and uploading data to the cloud to perform analysis is not ideal. Finally, the ability to run
at a high frame rates enables opportunistic sensing (e.g., obtaining measurements each time you look
at your phone) and helps capture waveform dynamics that could be used to detect arterial fibrillation
[14], hypertension [15], and heart rate variability [16] where high-frame rates (at least 100Hz) are a
requirement to yield precise measurements.

We propose a novel multi-task temporal shift convolutional attention network (MTTS-CAN) to address
the challenges of privacy, portability, and precision in contactless cardiopulmonary measurement.
Our end-to-end MTTS-CAN leverages temporal shift modules to perform efficient temporal modeling
and remove various sources of noise without any additional computational overhead. An attention
module improves signal source separation, and a multi-task mechanism shares the intermediate
representations between pulse and respiration to jointly estimate both simultaneously. By combining
these three techniques, our proposed network can run on an ARM CPU and achieve the state-of-the-art
accuracy and inference speed.

To summarize, the contributions of this paper are to 1) present an accurate and efficient approach
to perform on-device real-time spatial-temporal modeling of vitals signal, 2) evaluate our system
and show state-of-the-art performance on two large public datasets, 3) provide an implementation
of core tensor operations required for MTTS-CAN using a modern deep learning compiler and an
on-device latency evaluation across different architectures showing MTTS-CAN can run at more
than 150 frame per second. Our code, models, and video figures are provided in the supplementary
materials.

2 Related Work

Camera-based Physiological Measurement: Early work established that the blood volume pulse
can be extracted by analysing skin pixel intensity changes over time [10, 11]. These methods are
grounded by optical models (e.g., the Lambert-Beer law (LBL) and Shafer’s dichromatic reflection

2https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cardiac-monitor-guidance-
including-cardiotachometer-and-rate-alarm-guidance-industry#6_1
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Figure 1: We perform a systematic comparison of several convolutional attention network (CAN)
architectural designs. Starting from previous work that presented a 2D-CAN [31], we introduce a
fully 3D-CAN, a 2D-3D Hybrid CAN in which the appearance branch takes a single frame, and our
proposed temporal shift CAN. Each of these models can be applied in a single or multi-task manner.

model (DRM)) that provide a framework for modeling how light interacts with the skin. However,
traditional signal processing techniques are quite sensitive to noise from other sources in video
data, including head motions and illumination changes [7, 12]. To help address these issues, some
approaches incorporate prior knowledge about the physical properties of the patient’s skin [17,
18]. Although effective, these handcrafted signal processing pipelines make it difficult to capture
the complexity of the spatial and temporal dynamics of physiological signals in video. Neural
network based approaches have been successfully applied using the BVP or respiration as the
target signal [9, 19, 20, 21], but these methods still struggle with effectively combining spatial and
temporal information while maintaining a low computational budget. More recently, researchers have
investigated on-device remote camera-based heart rate variability measurement using facial videos
from smartphone cameras [22]. However, their proposed architecture requires approximately 200ms
per frame inference, which is insufficient for real-time performance, and was not evaluated on public
datasets.

Efficient Temporal Models: Yu et al. [20] have shown that applying 3D convolutional neural
networks (CNNs) significantly improves performance and achieves better accuracy compared to
using a combination of 2D CNNs and recurrent neural networks. The benefit of 3D CNNs implies
that incorporating temporal data in all layers of the model is necessary for high accuracy. However,
direct temporal modeling with 3D CNNs requires dramatically more compute and parameters than
2D based models. In addition to reducing computational cost, there are several reasons that it is
highly desirable to be able to have efficient non-contact physiological measurement models that run
on-device. Temporal Shift Modules [23] provide a clever mechanism that can be used to replace 3D
CNNs without reducing accuracy and requiring only the computational budget of a 2D CNN. This is
achieved by shifting the tensor along the temporal dimension, facilitating information exchange across
multiple frames. TSM has been evaluated on the tasks of video recognition and video object detection
and achieved superior performance in both latency and accuracy. Xiao et al. [24] used pretrained
TSM-based residual networks as a backbone followed by two attention modules for reasoning about
human-object interactions. The differences between this aforementioned work and ours is they
applied attention modules as the head followed by pretrained TSM-based residual feature maps while
our work applies two attention modules to the intermediate feature maps generated from regular 2D
CNNs with TSM.

Machine Learning and COVID-19: Researchers have explored the use of machine learning from
various perspectives to help combat COVID-19 [25]. Recent studies have shown that applying
convolutional neural networks to CT scans can help extract meaningful radiological features for
COVID-19 diagnosis and facilitate automatic pulmonary CT screening as well as cough monitoring
[26, 27, 28, 29]. Researchers have also looked at the correlation between resting heart rate generated
from wearable sensors and COVID-19 related symptoms and behaviors at population scale [30].

3 Method

3.1 Optical Model

For our optical basis we start with Shafer’s Dichromatic Reflection Model (DRM), as in prior work
[18, 9]. Specifically, we aim to capture both spatial and temporal changes and the relationship
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Figure 2: We present a multi-task temporal shift convolutional attention network for camera-based
physiological measurement.

between multiple physiological processes. Let us start with the RGB values captured by the cameras
as given by:

CCCk(t) = I(t) · (vvvs(t) + vvvd(t)) + vvvn(t) (1)

where I(t) is the luminance intensity level, modulated by the specular reflection vvvs(t) and the diffuse
reflection vvvd(t). The quantization noise of the camera sensor is captured by vvvn(t). Following [18]
we can decompose I(t), vvvs(t) and vvvd(t) into stationary and time-dependent parts:

vvvd(t) = uuud · d0 + uuup · p(t) (2)

where uuud is the unit color vector of the skin-tissue; d0 is the stationary reflection strength; uuup is
the relative pulsatile strengths caused by hemoglobin and melanin absorption; p(t) represents the
physiological changes.

vvvs(t) = uuus · (s0 + Φ(m(t), p(t))) (3)

where uuus denotes the unit color vector of the light source spectrum; s0 and Φ(m(t), p(t)) denote the
stationary and varying parts of specular reflections; m(t) denotes all the non-physiological variations
such as flickering of the light source, head rotation, and facial expressions.

I(t) = I0 · (1 + Ψ(m(t), p(t))) (4)

where I0 is the stationary part of the luminance intensity, and I0 · Ψ(m(t), p(t)) is the intensity
variation observed by the camera. As in [9] we can disregard products of time-varying components
as they are relatively small:

CCCk(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 ·Ψ(m(t), p(t))+

uuus · I0 · Φ(m(t), p(t)) + uuup · I0 · p(t) + vvvn(t) (5)

However, unlike in previous work which modeled pulse and respiration signals as independent
[31], we leverage the fact that p(t) actually captures a complex combination of both pulse and
respiration information. Specifically, both the specular and diffuse reflections are influenced by
related physiological processes. Respiratory sinus arrhythmias (RSA) are rhythmical fluctuations
in heart periods at the respiration frequency [32]. Furthermore, the respiration and pulse signals
both cause outward motions of the body in the form of chest and head motions. We can say that the
physiological process p(t) is a complex combination of both the blood volume pulse, b(t), and the
respiration wave, r(t). Thus, p(t) = Θ(b(t), r(t)) and the following equation gives a more accurate
representation of the underlying process:

CCCk(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 ·Ψ(m(t),Θ(b(t), r(t)))+

uuus · I0 · Φ(m(t),Θ(b(t), r(t))) + uuup · I0 · p(t) + vvvn(t) (6)

Since b(t) and r(t) are so closely intertwined, a temporal multi-task learning approach would seem
optimal for this problem and at very least could leverage redundancies between the two signals.
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3.2 Architecture

Efficient Spatial-Temporal Modeling: To achieve state-of-the-art performance in on-device optical
cardiopulmonary measurement, an architecture should have the ability to: 1) efficiently learn spatial
features that map raw RGB values to latent representations corresponding to the pulse and respiratory
signals as well as temporal features that offset various sources of noise (e.g., head motion, ambient
illumination changes, etc.), 2) learn the relationships between associated physiological processes, 3)
work in real-time to support various telehealth deployments. Our solution is a novel temporal shift
convolutional attention architecture (Fig. 1D) which we systematically compare to its variants (Fig.
1A-C) to illustrate its benefits.

Because of the strong performance shown in prior work [9], our architecture leverages a two-branch
structure with a spatial attention module (Fig. 1A). One branch is used for motion modeling, and
the other branch for extracting meaningful spatial (i.e., facial) features. However, it fails to capture
temporal dependencies beyond consecutive frames and thus is still vulnerable to many sources of
noise. Perhaps the simplest way to introduce a strong temporal dependency is a 3D-CAN that leverages
3D convolutions to model temporal relationships (Fig. 1B) which is similar to the model used in
[20] but adds an attention module. However, since 3D convolutions incur quadratic computational
cost compared to 2D convolutions, it is not feasible to achieve real-time on-device performance
using a primarily 3D architecture. Therefore, we present a Hybrid-CAN architecture that is more
computationally efficient than a purely 3D model. Hybrid-CAN combines a 2D-CAN and a 3D-CAN
to maintain temporal modeling while leveraging more efficient 2D convolutions where possible.
Since spatial position changes between adjacent frames are subtle, using 3D convolutions in the
appearance branch is unnecessary. As Fig. 1C illustrates, the input of the appearance branch is
a single frame generated by averaging N (window size) adjacent frames. Although Hybrid-CAN
reduces computational cost significantly, the computational overhead from 3D convolutions in the
motion branch is still not tolerable if we want to achieve real-time inference on low-end mobile
platforms (i.e., ideally at least 60 FPS).

Therefore, we introduce TS-CAN to remove the 3D convolution operations from the architecture
entirely while preserving spatial-temporal modeling. TS-CAN has two major additional components:
the temporal shift module (TSM) [23] and the attention module. TSM performs tensor shifting before
the tensor is fed into the convolutional layers as visualized in Fig.2. More specifically, TSM splits
the input tensor into three chunks across the channel dimension. Then, it shifts the first chunk to
the left by one place (advancing time by one frame) and shifts the second chunk to the right by one
place (delaying time by one frame). Both shifting operations are along the temporal axis, and the
third chunk remains unchanged. It is worth noting that tensor shifting does not add any additional
parameters to the network, but does enable information exchange among neighbouring frames. We
used TSM in the motion branch to mimic the effects of 3D convolution, while the appearance branch
in the TS-CAN is the same as Hybrid-CAN and only takes a single averaged frame. By doing so, the
model not only significantly reduces computational time by only calculating the attention mask once,
but also captures most of the pixels that contain skin and reduces camera quantization error.

Attention on Temporal Shift: Given there are already many different sources of noise described in
the previous section, naively shifting an input tensor in time will introduce extra temporal information
to our representation. It is then important that we pay attention to the pixels with physiological signals
or risk amplifying noise. Therefore, we propose inserting an attention module in TSM to minimize the
negative effects introduced by tensor shifting as well as to enable the network to focus on the target
signals. The spatial and temporal distribution of physiological signals are not uniform on human
skin. Soft-attention masks can assign higher weights to certain shifted pixels with stronger signals
in intermediate representations from the convolutional operations. More concretely, our attention
modules are the bridges between the appearance branch and the motion branch (See Fig. 2). Softmax
attention masks are generated via 1 × 1 convolutions before pooling layers. The attention mask is
calculated as in Equation 7 where k is the index of a layer, ωk is the 1 × 1 convolution and followed
by a sigmoid activate function σ(·). l1 normalization was applied to soften the extreme values in
the mask to make sure the network avoided pixel anomalies. Finally, we perform an element-wise
product to the corresponding representation Xk from the motion branch.

Xk � HkWk · σ(ωkXkα + bk)

2 ‖ σ(ωkXkα + bk) ‖1
(7)
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Multi-Task TS-CAN: We now have an efficient on-device architecture to predict physiological
signals in real-time. However, we still have two independent networks, one for estimating the blood
volume pulse and another for the respiration signals. Thus, the computational cost is doubled while
preventing the possibility for information sharing across these related physiological processes. As
we know that pulse and respiration are linked, we propose a multi-task variant of our network (see
Fig. 2). This shrinks the computational budget by approximately 50% and the tasks of estimating
BVP and respiration can share an intermediate representation. The loss function of this multi-task
TS-CAN (MTTS-CAN) is described in Eqn. 8 where b(t) is the gold-standard BVP waveform and r(t)
is gold-standard respiration waveform. b(t)’ and r(t)’ are the respective predictions from the model.

L =
1

T

T∑
t=1

|b(t)− b(t)′|+ α
1

T

T∑
t=1

|r(t)− r(t)′| (8)

4 Experiments

We compare our methods to four approaches for pulse measurement: POS[18], CHROM[17],
ICA[12], 2D-CAN[9] and two for respiration measurement: 2D-CAN and ARM [13]. Other
than DeepPhys [9], we are not aware of other methods that work for both pulse and respiration
measurement. We run our experiments using the following datasets:

AFRL [33]: 300 videos of 25 participants (17 males) recorded at 658x492 resolution and 120 fps
(down-sampled to 30 fps for our experiments). Fingertip reflectance photoplethysmograms(PPG)
were used to record ground-truth signals for training our network and electrocardiograms(ECG)
were recorded for evaluating performance (this is the medical gold-standard). Each participant was
recorded six times with increasing head motion in each task. The participants were asked to sit still
for the first two tasks and perform three motion tasks rotating their head about the vertical axis with
an angular velocity of 10 degrees/second, 20 degrees/second, 30 degrees/second, respectively. In
the last task, participants were asked to orient their head randomly once every second to one of nine
predefined locations. The six recording were repeated twice in front of two backgrounds.

MMSE-HR [34]: 102 videos of 40 participants were recorded at 1040x1392 resolution and 25 fps
during spontaneous emotion elicitation experiments. The gold standard contact signal was measured
via a Biopac2 MP150 system3 which provided pulse rate at 1000 fps and was updated after each heart
beat. These videos feature smaller but more spontaneous motions than those in the AFRL dataset
including facial expressions. Respiration measurements were not provided.

Experiment Details: At a high-level all our proposed networks share a similar two-branch architec-
ture. Each branch has four convolutional layers. There is an averaging pooling layer and dropout layer
placed after the second and fourth convolutional layers as shown in Fig. 2. Different architectures in
Fig. 1 require different convolutional operations (e.g., 3D-CAN requires 3D CNNs). To preprocess
the input of the appearance branch, we downsample each frame c(t) to 36×36, which balances
maintaining spatial resolution quality and suppressing camera noise [35]. For the motion branch, we
calculate normalized frames using every two adjacent frames as (c(t+ 1)− c(t))/(c(t) + c(t+ 1)).
The normalized frames are less vulnerable to changes in brightness and skin appearance compared to
the raw frames c(t) and reduce the chance of over-fitting to certain datasets.

Our system is implemented in TensorFlow [36]. We trained our proposed MTTS-CAN architectures
using the Adadelta optimizer [37] with a learning rate of 1.0, batch size of 32, kernel size of 3×3,
pooling size of 2×2, and dropout rates of 0.25 and 0.5. The final model was chosen after the training
converged (12 epochs on the respiration task and 24 epochs on the pulse task). We implemented
2D-CAN, 3D-CAN and Hybrid-CAN as baselines to compare against our proposed architectures.
For the 3D and Hybrid models the training schema is similar to TS-CAN, but we use a kernel size of
3×3×3 and a pooling size of 2×2×2. We used a window size of 10 frames in all temporal models to
provide a fair comparison for our proposed architectures. We picked α = 0.5 for the multi-tasking
loss function in the MTTS-CAN to force estimations of pulse and respiration treated equally (pulse
and respiration signals were both normalized in amplitude). To calculate the performance metrics,
we post-processed the outputs of all methods in the same way using a 2nd-order Butterworth filter
(cut-off frequencies of 0.75 and 2.5 Hz for HR and 0.08 and 0.5 Hz for BR). For the AFRL data, we
divided the dataset into 30-second windows with no overlap. For the MMSE-HR dataset we used a

3https://www.biopac.com/

6

https://www.biopac.com/


Table 1: Pulse and respiration measurement on the AFRL and MMSE-HR datasets.
Heart Rate Respiration Rate

AFRL (All Tasks) MMSE-HR AFRL (All Tasks) Time
Method MAE RMSE ρ SNR MAE RMSE ρ SNR MAE RMSE ρ SNR (ms)

MTTS-CAN 1.45 3.72 0.94 8.64 3.00 5.66 0.92 2.37 2.30 4.52 0.40 18.7 6
MT-Hyb.-CAN 1.15 2.69 0.97 10.2 3.43 6.98 0.88 4.70 2.17 4.24 0.45 19.1 13

TS-CAN 1.32 3.25 0.95 8.86 3.41 7.82 0.84 2.92 2.25 4.47 0.41 18.9 12
Hyb.-CAN 1.12 2.60 0.97 10.6 2.55 4.16 0.96 5.47 2.06 4.17 0.46 19.8 26

3D-CAN 1.18 2.83 0.97 10.5 2.78 5.08 0.94 4.73 2.31 4.42 0.44 19.3 48
2D-CAN [9] 2.32 5.82 0.85 6.23 4.72 8.68 0.82 2.06 2.86 5.16 0.34 16.3 20

POS [18] 2.48 5.07 0.89 2.32 3.90 9.61 0.78 2.33 | -
CHROM [17] 6.42 12.4 0.60 -4.83 3.74 8.11 0.82 1.90 Not Applicable -

ICA [12] 4.36 7.84 0.77 3.64 5.44 12.00 0.66 3.03 | -
ARM [13] Not Applicable 3.68 5.52 0.29 -6.22 -

MAE = Mean Absolute Error, RMSE = Root Mean Squared Error, ρ = Pearson Correlation, SNR = BVP Signal-to-Noise Ratio.

Table 2: Pulse and respiration measurement MAE on the AFRL by motion task.
Heart Rate Respiration Rate

Method T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6
MTTS-CAN 1.08 1.23 0.94 1.27 1.07 3.12 0.68 0.98 2.12 3.81 3.31 2.89

MT-Hybrid-CAN 1.04 1.24 0.95 1.23 0.88 1.53 0.77 0.89 2.23 3.28 3.03 2.80
TS-CAN 1.07 1.25 0.96 1.24 1.01 2.36 0.69 1.14 2.27 3.70 3.18 2.53

Hybrid-CAN 1.04 1.21 0.94 1.22 0.89 1.39 0.77 1.03 1.83 3.19 2.96 2.60
3D-CAN 1.06 1.19 0.92 1.23 0.89 1.77 0.96 0.98 2.58 3.80 2.87 2.65

2D-CAN [9] 1.08 1.21 1.02 1.43 2.15 7.05 1.25 1.11 3.35 4.63 3.77 3.08
POS [18] 1.50 1.53 1.50 1.84 2.05 6.11 |

CHROM [17] 4.53 4.59 4.35 4.84 6.89 10.3 Not Applicable
ICA [12] 1.17 1.70 1.70 4.00 5.22 11.8 |

ARM [13] Not Applicable 2.51 2.53 3.19 4.85 4.22 4.78

window size equal to the number of frames in each video. We then computed four standard metrics
for each window: mean absolute error (MAE), root mean squared error (RMSE) and correlation (ρ)
in heart/breathing rate estimations and the corresponding BVP/respiration signal-to-noise ratio (SNR)
[17]. Details of the calculation for these metrics, training code, architecture and the trained models
are available in the supplementary material.

On-Device Evaluation: Our proposed architectures were deployed on an open-source embedded
system called Firefly-RK33994 for latency evaluation. This embedded system has two large Cortex-
A72 cores and four small Cortex-A53 cores. Although RK3399 also has a mobile Mali GPU, we
focus our evaluation on CPU such that our proposed end-to-end architecture can be generalized to
any ARM based mobile platform and IoT device. In this work, we extend a deep learning compiler
stack - TVM [38] to support the core temporal shift operation required for TS-CAN. TVM takes a
high-level description of a function and generates highly optimized low-level code for a targeted
device. More specifically, our TVM-based on-device system first converts a TensorFlow graph to
a Relay graph [39] and complies the code to Firefly-RK3399 using LLVM. We take advantage of
TVM’s scheduling primitives to generate efficient low-level LLVM code that accelerates expensive
operations such as 2D and 3D convolutions.

5 Results and Discussion

Comparison with the State-of-the-Art: For the AFRL dataset all 25 participants were randomly
divided into five folds of five participants each (same folds as in [9]). The learning models were
trained and tested via five-fold cross-validation using data from all tasks. The evaluation metrics
are averaged over five folds and shown in Table 1. All of our proposed models outperform the
2D-CAN and other baselines. Hybrid-CAN and 3D-CAN achieve similar accuracy, reducing MAE
by 50% on pulse and 20% on respiration measurement. The hybrid model has lower computational
cost and is therefore preferable. TS-CAN also surpasses the 2D-CAN by more than 43% on pulse
and 20% on respiration measurement. We also evaluated a multi-tasking version of TS-CAN and

4http://en.t-firefly.com/product/rk3399.html
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Hybrid-CAN, and call them MTTS-CAN and MT-Hybrid-CAN respectively. We observe that there is
no accuracy benefit from the multi-tasking model variants relative to the single task versions because
the network must use almost all the same parameters for both tasks. However, the MT models require
half the computation and half as many parameters compared to running pulse and respiration models
separately which is a considerable benefit.
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Figure 3: (A) On-Device latency evaluation across
six models; (B) An visualization of TSM on a
normalized frame from motion branch.

Cross-Dataset Generalization: To test
whether our model can generalize to videos with
a different resolution, background, and lighting,
we trained our proposed models on the AFRL
dataset and tested on the MMSE-HR dataset.
Our proposed TS-CAN, Hybrid-CAN and
3D-CAN reduce errors by 25-50% compared
to 2D-CAN (see Table 1). Furthermore, MTTS-
CAN and MT-Hybrid-CAN both perform
strongly, showing that it is possible to share the
representations between pulse and respiration.

Computation Cost and Latency: Fig. 3A and
the last column of Table 1 show that MTTS-
CAN and TS-CAN are the fastest architectures
of those evaluated, taking 6 ms and 12 ms per
frame for inference respectively. It is worth not-
ing that TS-CAN is 40% faster than the 2D-
CAN because the unique design of the appear-
ance branch that only executes once and pro-

vides the generated attention mask to all the frames in the motion branch. MT-Hybrid-CAN and
Hybrid-CAN also achieve 13ms and 26ms inference times respectively, this is approximately double
that of our TS-based methods due to the cost of 3D convolutions relative to 2D convolutions. The
2D-CAN not only has a higher latency compared to TS-CAN, but the accuracy is significantly lower.
It is not surprising that the 3D-CAN achieved the worst inference speed because it has costly 3D
convolutions in both branches. Latency is important because we want our models to run at as high a
frame rate as possible, 30 fps is the bare minimum required to accurately measure heart rate variability
and subtle waveform dynamics and 100 fps would be preferable. Therefore, faster inference increases
the precision at which we can measure inter-beat and systolic-diastolic intervals [16] and could help
with non-invasive blood pressure measurement [15] and detecting arterial fibrillation (AFib) [14].

Temporal Modeling: Capturing such waveform dynamics requires good temporal modeling, there-
fore we compared several designs to help improve this. Our proposed MTTS-CAN, TS-CAN,
MT-Hybrid-CAN, Hybrid-CAN and 3D-CAN all outperform the 2D-CAN and other baseline meth-
ods. This is consistent with prior work that found a 3D-CNN without attention outperformed a
2D-CNN (without attention) [20]. We would anticipate that the focus on modeling the temporal
aspects of the physiological waveform would lead to greater resilience to noise. We perform a
systematic evaluation on videos with varying velocities of angular (rotational) head motion. The
results are shown in Table 2. As expected, all the proposed temporal models perform particularly
strongly on tasks with greater velocity head motion; reducing the error on the most challenging
task (6) by over 75%. Moreover, as Fig. 3B illustrates, although tensor shifting provides important
temporal information, it also introduces extra noise. The results in Table 1 indicate that our attention
module is effective at separating the signal from the added noise.

Multi-task Learning: Comparing our MT models with the non-MT models, we observe that the
MT models do not reduce the error in pulse and respiration rate estimates. But they do significantly
improve the efficiency of inference as shown in Fig. 3A which is critical in resource constrained
mobile platforms. Moreover, in order to estimate heart beat and respiration rate from a video, there is
a number of mandatory pre-processing and post-processing steps to be included in the pipeline such
as down-sampling images, computing averaged frames, calculating the number of peaks etc. Since
MTTS-CAN only takes 6ms for inference on each fraem, even with the pre-processing overhead
real-time inference is still eminently feasible. Also, memory is a valuable resource on edge devices,
and MTTS-CAN only requires half of the memory to store the parameters compared to TS-CAN. We
believe MTTS-CAN can be deployed and especially useful in resource constrained settings.
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Applications of MTTS-CAN: The low latency and high accuracy of our system opens the door for
many other applications. For example, it could be used to improve the measurement of heart rate
variability which is a measure of the variation in the time between each heartbeat. Tracking the subtle
changes between consecutive heart beats requires low latency like that provided by MTTS-CAN.
Contactless and on-device HRV tracking could enable numerous novel applications in mental health
and personalized health. Besides health applications, MTTS-CAN is also potentially be applied to
various computer vision tasks that require on-device computation such as activity recognition and
video understanding.

6 Broader Impact

Non-contact camera-based vital sign monitoring has great potential as a tool for telehealth. Our
proposed system can promote global health equity and make healthcare more accessible for those in
rural areas or those who find it difficult to travel to clinics and hospitals in-person (perhaps because
of age, mobility issues or care responsibilities). These needs are likely to be particularly acute in
low-resource settings. Non-contact sensing has other potential benefits for measuring the vitals of
infants who ideally would not have contact sensors attached to their delicate skin. Furthermore, due
to the exceptionally fast inference speed, the computational budget required for our proposed system
is minimal. Therefore, people who cannot afford high-end computing devices still will be able to
access the technology. While low-cost, ubiquitous sensing democratizes physiological measurement,
it presents other challenges. If measurement can be performed from only a video, what happens if we
detect a health condition in an individual when analyzing a video for other purposes. When and how
should that information be disclosed? If the system fails in a context where a person is in a remote
location, it may lead them to panic.

It is also important to consider how such technology could be used by “bad actors” or applied with
negligence and without sufficient forethought for the implications. Non-contact sensing could be
used to measure personal physiological information without the knowledge of the subject. Law
enforcement might be tempted to apply this in an attempt to detect individuals who appear “nervous”
via signals such as an elevated heart rate or irregular breathing, or an employer may surreptitiously
screen prospective employees for health conditions without their knowledge during an interview.
These applications would set a very dangerous precedent and would be illegal in many cases. Just as
is the case with traditional contact sensors, it must be made transparent when these methods are being
used and subjects should be required to consent before physiological data is measured or recorded.
There should be no penalty for individuals who decline to be measured. Ubiquitous sensing offers
the ability to measure signals in more contexts, but that does not mean that this should necessarily be
acceptable. Just because cameras may be able to measure these signals in a new context, or with less
effort, it does not mean they should be subject to any less regulation than existing sensors, in fact
quite the contrary.

In the United States, the Health Insurance Portability and Accountability Act (HIPAA) and the HIPAA
Privacy Rule sets a standard for protecting sensitive patient data and there should be no exception
with regard to camera-based sensing. In the case of videos there should be particular care in how
videos are transferred, given that significant health data can be contained with the channel. That
was one of the motivations for designing our methods to run on-device, as it can minimize the risks
involved in data transfer.

7 Conclusions

Telehealth and the SARS-CoV-2 pandemic have acutely highlighted the specific need for accurate and
computationally efficient cardiovascular and pulmonary sensing. We have presented a novel multi-task
temporal shift convolutional attention network (MTTS-CAN) that improves on the state-of-the-art in
both of these dimensions.
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