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Shiftry: RNN Inference in 2KB of RAM
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Traditionally, IoT devices send collected sensor data to an intelligent cloud where machine learning (ML)
inference happens. However, this course is rapidly changing and there is a recent trend to run ML on the edge
IoT devices themselves. An intelligent edge is attractive because it saves network round trip (efficiency) and
keeps user data at the source (privacy). However, the IoT devices are much more resource constrained than
the cloud, which makes running ML on them challenging. Specifically, consider Arduino Uno, a commonly
used board, that has 2KB of RAM and 32KB of read-only Flash memory. Although recent breakthroughs in ML
have created novel recurrent neural network (RNN) models that provide good accuracy with KB-sized models,
deploying them on tiny devices with such hard memory requirements has remained elusive.

We provide, Shiftry, an automatic compiler from high-level floating-point ML models to fixed-point
C-programs with 8-bit and 16-bit integers, which have significantly lower memory requirements. For this
conversion, Shiftry uses a data-driven float-to-fixed procedure and a RAM management mechanism. These
techniques enable us to provide first empirical evaluation of RNNs running on tiny edge devices. On simpler
ML models that prior work could handle, Shiftry-generated code has lower latency and higher accuracy.

CCS Concepts: • Software and its engineering → Compilers; Domain specific languages; • Hardware →
On-chip resource management.

1 INTRODUCTION
Machine learning (ML) algorithms are increasingly being deployed to build smart systems that
deploy sensor devices (IoT devices) to collect data from the environment and process the data
using powerful ML algorithms. Recently, there is a growing number of applications that require
the ML inference to be run directly on the IoT device for reasons including energy efficiency and
privacy. Examples of such applications are anomaly detection [Chakraborty et al. 2018], accessibility
devices [Patil et al. 2018], sports training [Wang et al. 2018], etc. However, today, there is a mismatch
between IoT devices and ML algorithms. On one hand, IoT devices have very low compute and
memory resources. For example, Arduino Uno, a widely-used board by makers, has a 16 MHz
processor with no hardware support for floating-point, 2 KB of read/write RAM, and 32 KB of
read-only Flash memory. On the other hand, ML practitioners typically generate models in floating-
point arithmetic with the goal of maximizing accuracy, often with no regard for the amount of
memory available in the target device.
While there are libraries that can emulate floating-point in software, prior works (e.g., See-

Dot [Gopinath et al. 2019a], TensorFlow-Lite [Jacob et al. 2017], etc.) have also proposed tools
that can automatically convert floating-point models to integer models. These tools eliminate the
overhead of software emulation of floating-point, thereby significantly reducing the latency of
executing the prediction algorithms. However, these tools assume that the generated integer models
will fit in the memory of the target device. Unfortunately, unlike compute constraints wherein a
slow micro-controller will just take a long time to run a program, memory constraints are hard. A
model that does not fit in the memory resources of the target device cannot be run on the device.
Our goal in this work is to build a compiler that compiles floating-point ML models (targeted

for IoT devices) to code that can actually run on the target device with as high performance and

Authors’ addresses: Aayan Kumar, Microsoft Research, India, t-aak@microsoft.com; Vivek Seshadri, Microsoft Research,
India, visesha@microsoft.com; Rahul Sharma, Microsoft Research, India, rahsha@microsoft.com.
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2 Aayan Kumar, Vivek Seshadri, and Rahul Sharma

as little loss in accuracy as possible. IoT devices typically have two types of memory: 1) a read-
only Flash that contains static data like the ML model parameters, and 2) a read/write RAM that
contains all mutable states during program execution. Each of these two memories pose a different
challenge. To successfully execute an ML inference algorithm on the target device, first, the ML
model parameters should fit in the Flash memory. While ideally, we would like all variables to be
8-bit integers (the smallest unit of data supported by most IoT devices), we have observed that this
choice is disastrous for accuracy in practice. Second, most IoT devices have limited or no support
for dynamic memory allocation. ML inference algorithms typically maintain many intermediate
variables with overlapping scopes throughout the program. Therefore, when the RAM available in
the target device is not big enough to store all the intermediate variables, the compiler must be
aware of the available RAM and manage memory in target code intelligently.
We propose Shiftry1, a compiler that takes a floating-point ML model as input and generates

fixed-point code for a target device with given memory constraints. Along with the model, Shiftry
assumes that a small amount of validation set for the model is available to compare the accuracy of
different programs. It handles the Flash constraint and RAM constraint using two techniques. First,
generating fixed-point code requires a compiler to identify the bitwidth and scale for each variable
in the program (Section 2.2). Shiftry starts by assigning 16-bits to each variable. It uses data-driven
scaling (Section 6.1) to determine the scale for each variable. Then, Shiftry iteratively demotes
different 16-bit variables to 8-bits by using the validation set to estimate the loss in accuracy for
such demotions. At each iteration, Shiftry reassigns the scale of the demoted variable based on
the new bitwidth and the profiled data.

Second, today, there are two possible ways to handle the RAM constraint. One is to allocate all
temporary variables on the stack (supported by embedded C compilers). The other approach is to
use dynamic memory allocation. However, both these solutions are insufficient in our scenario.
On one hand, allocating variables on the stack can result in many variables that are no longer in
use consuming unnecessary memory. On the other hand, dynamic memory allocation can result
in severe fragmentation and may run out of contiguous free space to assign to new variables. In
particular, we have observed that allocation based on malloc/free fails to run any of our benchmarks.
Shiftry works around this problem by exploiting our observation that all the variable sizes and
shapes are known at compile time. Based on this, Shiftry statically simulates dynamic memory
allocation of variables and allocates them in blocks to provide contiguous free space for future
variables. Even in the worst case, when free space may get fragmented, Shiftry inserts code for
appropriately migrating variables, which will allow it to allocate memory for new variables.
With these techniques, the only programs that Shiftry cannot compile to a target device are

those in which the model would not fit in the Flash even when using 8-bits for all variables or
programs in which there is at least one program point where the live variables require more memory
than the available RAM. Typical CNNs for computer vision, like AlexNet, ResNet, LeNet, VGGNet,
etc., fall in this category of programs when considering IoT devices and are beyond the scope of
this paper.
For our evaluations, we study two types of models. The first is the class of powerful models

called the Recurrent Neural Network (RNNs). RNNs are sequence-to-sequence learning models and
are a natural fit for IoT-based applications where the input data is often a time-series. We show
the first evaluation of running state-of-the-art RNNs on an Arduino Uno, a task that has been
out of reach for prior work. Second, we compare the performance of Shiftry for state-of-the-art
variants of simpler models like decision trees [Kumar et al. 2017] and nearest neighbors [Gupta

1Implementation hosted at https://github.com/aayan636/shiftry
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Shiftry: RNN Inference in 2KB of RAM 3

et al. 2017]. For these models, while prior work can generate fixed-point code that can run on Uno,
Shiftry-generated code is both faster and has better accuracy.
Because of our focus on tiny IoT devices like the Uno, one might wonder, if using IoT devices

with more memory makes Shiftry moot. Although IoT devices with more memory are becoming
cheaper, the ML models are becoming larger as well. As a result, the problem of compressing
ML models to fit into the memory constraints of the target device, the problem which Shiftry
addresses, is here to stay. We demonstrate that Shiftry is applicable in settings that employ more
resourceful devices as well by squeezing a complex face detection model on an ARM cortex M4
class device. Nonetheless, we mainly focus on the Uno, as more RAM generally implies a higher
power consumption. Hence, applications where minimizing power consumption is the top priority
prefer devices with lesser RAM.
The rest of the paper is organized as follows: After discussing some preliminaries in Section 2,

we show the execution of Shiftry on a simple example in Section 3. We provide a brief description
of the architecture of Shiftry compiler in Section 4. Next, we show the input language of Shiftry
(Section 5), the use of data-driven scaling to generate precise 16-bit code (Section 6.1), and demotion
of variables to 8-bit (Section 6.2). We discuss our memory management scheme to improve RAM
usage in Section 7. Our evaluation in Section 8 shows that Shiftry generated code has better
accuracy and latency compared to the code generated by prior work. We also show that Shiftry
enables the first evaluation of RNNs executing on tiny microcontrollers in Section 8. Finally,
Section 9 discusses related work and Section 10 concludes.

2 PRELIMINARIES
In this section, we discuss the required terminology frommachine learning and standard fixed-point
arithmetic operations.

2.1 ML Preliminaries
An ML classifier takes a vector of Real-valued features (𝑋 ) as input and returns a class label (𝑙).
For example, we can design a classifier to take an image as an input and return a label that says
if the image contains a cat. To perform the classification task, the ML model consists of a set of
parameters (𝑊 ). The classifier is associated with a training algorithm, a training dataset of inputs,
and labels that are used to learn the parameters𝑊 using supervised learning. ML models also
typically use a validation dataset for hyperparameter tuning. A simple linear classifier is of the form
𝑙 =𝑊 × 𝑋 > 0. In this paper, we focus our attention on ML models that are specifically targeted to
run on IoT devices with small amounts of memory.

The standard way to measure the performance of an ML model is its classification accuracy on a
testing dataset (that is separate from the training dataset). As ML algorithms are expressed over Real
numbers, a floating-point implementation of the model is typically considered as the benchmark for
accuracy. The effectiveness of any approximation of the ML model (e.g., using fixed-point values
instead of floating-point values) is judged by how well it performs compared to the floating-point
model. For instance, a fixed-point model that achieves classification accuracy within 1% of the best
performing floating-point model may be deemed good enough.

2.2 Fixed-Point Preliminaries
In fixed-point arithmetic, a real number 𝑟 is stored as a 𝑏-bit integer ⌊𝑟 × 2𝑠⌋𝑏 . This representation
is parameterized by two values, 𝑠 and 𝑏. The bitwidth 𝑏 denotes that this value occupies 𝑏 bits in
memory. The parameter 𝑠 is called the scale of the number, and determines the number of mantissa
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bits. For example, if 𝑟 = 5.697, 𝑏 = 16, and 𝑠 = 12 then

5.697 = 5.697 × 212/212 ≈ ⌊5.697 × 212⌋16/212 = ⌊23334.912⌋16/212 = 2333416/212

Here, 23334 is the integer stored in a 16 bits wide block of memory with the scale 12. This integer
value is interpreted as 23334/212 ≈ 5.6968 which is a close approximation of the actual value. The
same value when represented using a lower scale, say 6, results in the integer 364.

5.697 = 5.697 × 26/26 ≈ ⌊5.697 × 26⌋16/26 = ⌊364.608⌋16/26 = 36416/26

For a given bitwidth and a real number, a higher scale results in a more precise value as long as
there is no overflow. In fact, in the example above, 12 is the best scale for the given value and
bitwidth. Using a scale higher than 12 (say 13) will result in an overflow, as shown below.

5.697 = 5.697 × 213/213 ≈ ⌊5.697 × 213⌋16/213 = ⌊46669.824⌋16/213 = −1886716/213

Here, due to limited range of 16-bit integers, there is an overflow, due to which the end result,
if parsed in fixed-point arithmetic, gives −2.303, which is garbage. Hence, we need to determine
the optimum scale for each variable in the program so that we have the best precision and avoid
overflows.

In Shiftry, we often demote variables to reduce the memory footprint, i.e., reduce the bitwidth of
numbers, e.g, from 16-bit to 8-bit. Similarly, increasing the number of bits assigned to a variable is
called promotion. Note that if a variable is demoted, it’s scale would need to be altered too. Consider
the same number as above: 5.697. If we use the same scale as in the 16-bit case, 12, the resulting
integer, 23334, would overflow an 8-bit integer. It turns out the best scale for an 8-bit integer, so
that the resulting integer doesn’t cross 127 (INT_MAX for 8-bit integers) is 4:

5.697 = 5.697 × 24/24 ≈ ⌊5.697 × 24⌋8/24 = ⌊91.152⌋8/24 = 918/24

The resulting integer representation, 91 with scale 4, evaluates in fixed-point arithmetic to 5.6875,
a slightly worse approximation than the 16-bit representation.

3 WORKING EXAMPLE
In this section, we use a toy example of a linear model to both motivate the problem we address in
the paper and the end-to-end working of our proposed solution, Shiftry. Non-linear activation
functions are also supported by Shiftry and will be described in Section 5. Pseudocode 1 shows
the example program in Shiftry DSL. The program consists of 5 read-only parameters𝑊1 ∈ R2×2,
𝐵1 ∈ R2×1,𝑊2 ∈ R2×1, 𝐵2 ∈ R, and 𝑋 ∈ R2×1 and returns a real number. For this example, our goal
is to run this program on a target device with 14 bytes of Flash memory available for parameters
and 8 bytes of RAM for intermediate computations.

Pseudocode 1: Example in Shiftry DSL

𝑊1 :=
(
0.0421 0.1948
1.021 −0.827

)
𝐵1 :=

(
−0.032
0.619

)
𝑋 :=

(
2.391
−3.583

)
𝑊2 :=

(
−0.402 −1.013

)
𝐵2 :=

(
0.737

)
return𝑊2 × (𝑊1 × 𝑋 + 𝐵1) + 𝐵2

In the following discussion, we will use numerical accuracy as a metric to compare different
programs. We will measure numerical accuracy of a program as the difference in output of the
program and the output of the floating-point implementation of themodel.We refer to this difference
as precision loss.
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Shiftry: RNN Inference in 2KB of RAM 5

Pseudocode 2:Homogenous fixed-point
code generated by Shiftry.

int16 [2] [2]𝑊1 :=
(
68916 319116
1672816 −1354916

)
int16 [2] [1]𝐵1 :=

(
−104816
2028316

)
int16 [2] [1]𝑋 :=

(
1958716
−2935116

)
int16 [1] [2]𝑊2 :=

(
−658616 −1659616

)
int16 [1] [1]𝐵2 :=

(
2415016

)
int16 [2] [1] 𝑡1; int16 [2] [1] 𝑡2;
int16 [1] [1] 𝑡3; int16 [1] [1] 𝑡4;

𝑡1 = (𝑊1 ×int32 𝑋 )/215
𝑡2 = 𝑡1 +int16 (𝐵1/23)
𝑡3 = (𝑊2 ×int32 𝑡2)/214
𝑡4 = 𝑡3 +int16 (𝐵2/23)
return 𝑡4

Pseudocode 3: Heterogenous Fixed-
point code: 𝐵1 uses 8 bits, rest use 16 bits

int16 [2] [2]𝑊1 :=
(
68916 319116
1672816 −1354916

)
int8 [2] [1]𝐵1 :=

(
−48
798

)
int16 [2] [1]𝑋 :=

(
1958716
−2935116

)
int16 [1] [2]𝑊2 :=

(
−658616 −1659616

)
int16 [1] [1]𝐵2 :=

(
2415016

)
int16 [2] [1] 𝑡1; int16 [2] [1] 𝑡2;
int16 [1] [1] 𝑡3; int16 [1] [1] 𝑡4;

𝑡1 = (𝑊1 ×int32 𝑋 )/215
𝑡2 = (𝑡1/25) +int16 𝐵1
𝑡3 = (𝑊2 ×int32 𝑡2)/29
𝑡4 = 𝑡3 +int16 (𝐵2/23)
return 𝑡4

In our example, the result of the floating-point code is −5.11167404. The floating-point model
consumes 44 bytes of Flash. A naive program implementing the model in floating-point requires 24
bytes of working memory. Both of these requirements exceed the constraints of our target device.
Prior work [Gopinath et al. 2019a] has proposed a compiler that can automatically convert

floating-point code to fixed-point code with a given bitwidth. Even this solution does not work for
this example. On one hand, 16-bit fixed-point code (shown in Pseudocode 2) has a low precision loss
(When run, it outputs -20935, which when translated to a floating-point number gives −5.11108398,
an error of 0.0006). However, it still consumes 22 bytes of Flash and 12 bytes of RAM which does
not fit our target device. On the other hand, although the 8-bit fixed point code meets the Flash
constraint, it has high precision loss (0.2366, refer to Table 2). Our goal is to generate the code that
has the least precision loss while meeting the memory constraints.

To reduce the memory usage, Shiftry demotes a subset of variables to use 8-bit integers instead
of 16-bits. Shiftry supports two strategies. In the first strategy, it demotes the minimum number of
variables that are required to fit the model on the device, thus maximizing accuracy. In the second
strategy, Shiftry demotes the maximum number of variables while ensuring that the precision
loss stays below a user-provided threshold (say 0.1). The latter usually leads to better latency as
operations on demoted variables are cheaper. Shiftry identifies these demote-able variables as
follows. First, for each variable, Shiftry generates a program with that variable demoted. For
example, for the variable 𝐵1, Shiftry generates the code in Pseudocode 3 which uses 8-bits for 𝐵1.
When demoting a variable, Shiftry automatically identifies both the initialization for the variable
and the scale for the variable under the new bitwidth.
Shiftry records the precision loss of demoting each variable in the program. Table 1 shows

this data for our example program. Shiftry then orders the variables in the increasing order
of the corresponding precision loss. In our example, the order is 𝐵2, 𝐵1, 𝑋 ,𝑊1,𝑊2, 𝑡3, 𝑡4, 𝑡1, 𝑡2.
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Var 𝑡4 Precision Loss

𝑊1 -5.0456 0.0660
𝑊2 -5.0402 0.0713
𝐵1 -5.1022 0.0093
𝐵2 -5.1171 0.0055
𝑋 -5.0788 0.0328
𝑡1 -5.0012 0.1104
𝑡2 -5.0012 0.1104
𝑡3 -5.1875 0.0758
𝑡4 -5.1875 0.0758

Table 1. Partial Demote

Var 𝑡4 Precision Loss

𝐵2 -5.1171 0.0055
𝐵2, 𝐵1 -5.1093 0.0022
𝐵2, 𝐵1, 𝑋 -5.0781 0.0335
𝐵2, 𝐵1, 𝑋 ,𝑊1 -5.0156 0.0960
𝐵2, 𝐵1, 𝑋 ,𝑊1,𝑊2 -4.9453 0.1663
𝐵2, 𝐵1, 𝑋 ,𝑊1,𝑊2, 𝑡3 -5.0000 0.1116
𝐵2, 𝐵1, 𝑋 ,𝑊1,𝑊2, 𝑡3, 𝑡4 -5.0000 0.1116
𝐵2, 𝐵1, 𝑋 ,𝑊1,𝑊2, 𝑡3, 𝑡4, 𝑡1 -4.8750 0.2366
𝐵2, 𝐵1, 𝑋 ,𝑊1,𝑊2, 𝑡3, 𝑡4, 𝑡1, 𝑡2 -4.8750 0.2366

Table 2. Cumulative Demote

Finally, Shiftry demotes variables cumulatively in the order computed above. Specifically, Shiftry
generates a program where 𝐵2 is demoted, then a program where both 𝐵2 and 𝐵1 are demoted,
and so on. Shiftry stops demoting variables when the precision loss exceeds the user-specified
limit. Table 2 shows the precision loss of cumulatively demoting variables in our example. In this
example, for the user-specified loss of 0.1, Shiftry chooses the program that demotes the variables
𝐵2, 𝐵1, 𝑋 , and𝑊1. Pseudocode 4 shows the corresponding program. It meets the Flash constraint as
the read-only parameters𝑊1,𝑊2, 𝐵1, 𝐵2, and 𝑋 fit within 14 bytes.
A naive implementation of the chosen program consumes 12 bytes of working memory (for

𝑡1, 𝑡2, 𝑡3, 𝑡4), which still does not fit in the RAM of the target device. Unfortunately, currently available

Pseudocode 4: Heterogenous Fixed-
point code: only 𝐵2, 𝐵1, 𝑋 ,𝑊1 use 8 bits,
rest use 16 bits

int8 [2] [2]𝑊1 :=
(
28 128
658 −528

)
int8 [2] [1]𝐵1 :=

(
−48
798

)
int8 [2] [1]𝑋 :=

(
768
−1148

)
int16 [1] [2]𝑊2 :=

(
−658616 −1659616

)
int8 [1] [1]𝐵2 :=

(
948

)
int16 [2] [1] 𝑡1; int16 [2] [1] 𝑡2;
int16 [1] [1] 𝑡3; int16 [1] [1] 𝑡4;

𝑡1 = (𝑊1 ×int16 𝑋 )
𝑡2 = (𝑡1/24) +int16 𝐵1
𝑡3 = (𝑊2 ×int32 𝑡2)/29
𝑡4 = (𝑡3/25) +int16 𝐵2
return 𝑡4

Pseudocode 5: Heterogenous fixed-
point code generated by Shiftry

int8 [2] [2]𝑊1 :=
(
28 128
658 −528

)
int8 [2] [1]𝐵1 :=

(
−48
798

)
int8 [2] [1]𝑋 :=

(
768
−1148

)
int16 [1] [2]𝑊2 :=

(
−658616 −1659616

)
int8 [1] [1]𝐵2 :=

(
948

)
int8 𝑚𝑒𝑚0:8;(
𝑚𝑒𝑚0:2
𝑚𝑒𝑚2:4

)
= (𝑊1 ×int16 𝑋 )(

𝑚𝑒𝑚4:6
𝑚𝑒𝑚6:8

)
= (

(
𝑚𝑒𝑚0:2
𝑚𝑒𝑚2:4

)
/24) +int16 𝐵1(

𝑚𝑒𝑚0:2
)
= (𝑊2 ×int32

(
𝑚𝑒𝑚4:6
𝑚𝑒𝑚6:8

)
)/29(

𝑚𝑒𝑚2:4
)
= (

(
𝑚𝑒𝑚0:2

)
/25) +int16 𝐵2

return
(
𝑚𝑒𝑚1:2

)
, Vol. 1, No. 1, Article . Publication date: September 2020.
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embedded compilers fall in this category. As mentioned in the introduction, dynamic memory
management is both costly and results in fragmentation of free space.
Shiftry exploits two observations to mitigate this problem. First, as is the case with many

programs, variables in the program are live only for a subset of instructions in the program with
some variables having overlapping lifetimes. Second, for a program in Shiftry DSL, both the live
range and the size of each variable is statically known at compile time. Table 3 shows the size and
live range of each of the variables in working memory.

Var Size Live Range Var Size Live Range

𝑡1 (2 × 1) × 16 bits = 4 bytes 1-2 𝑡3 (1 × 1) × 16 bits = 2 bytes 3-4
𝑡2 (2 × 1) × 16 bits = 4 bytes 2-3 𝑡4 (1 × 1) × 16 bits = 2 bytes 4-5

Table 3. Temporary Variable Details

From the live ranges in Table 3, Shiftry recognizes that variables 𝑡3 and 𝑡4 can fit into the memory
block originally reserved for variable 𝑡1. Shiftry views available memory as an array of values and
determines the appropriate offsets into the array for each variable such that no two variables with
overlapping live ranges conflict in memory. Pseudocode 5 shows this memory-optimized code for
our example. This program consumes 8 bytes of RAM that fits in the target device.

4 OVERVIEW
In this section, we provide an overview of Shiftry and provide details in the subsequent sections.
The input code to Shiftry is a program written using the source language, Shiftry-DSL (Figure 1),
a high level language that provides compact syntax for operations that are commonly used in ML
models (Appendix B). These include arithmetic operations over matrices of Reals. The Shiftry
compiler first typechecks this program (Figure 3) and bugs like multiplying or adding matrices
with incompatible dimensions are caught at compile time. The Shiftry compiler then compiles the
input program, using the rules described in Figure 5, to a program in the target language (Figure 2).
As opposed to the source language, the target language of Shiftry only supports integers and
arrays over integers. A program in the target language is essentially a main procedure that makes
calls to Shiftry’s library functions (Library 7, 8 and 9) with the appropriate arguments. To reduce
the RAM usage, Shiftry employs a memory management mechanism (Section 7) that replaces all
intermediate variables with accesses to a single global array. This AST is then converted to C++ using
a codegen pass [Aho et al. 2006]. Finally, the C++ program is compiled by the Arduino IDE [Banzi
and Shiloh 2014] to assembly that can be run on an Arduino Uno for latency measurements.

For compiling a floating-point source program to a fixed-point target program, Shiftry crucially
relies on two environments: 𝜎 , a map from variables to their scales, and 𝛽 , a map from variables to
their bitwidths. Shiftry determines these maps via exploration (Section 6). Shiftry assigns scales
using runtime data (Section 6.1) and these scales are fine tuned to accommodate demotions in
bitwidth (Section 6.2). In this process, Shiftry generates many fixed-point programs, evaluates their
accuracy, and outputs (if possible) a program that meets the user-provided memory constraints.
For measuring accuracy, Shiftry uses an x86-codegen and runs the fixed-point programs on
commodity hardware. Although the exploration is embarrassingly parallel, it still constitutes the
bulk of the compilation time. Moreover, the compilation time grows with the size of datasets and
for very large datasets subsampling might be needed to keep the compilation times tractable.

For a simple example, consider the following source program and environments:
𝑥 := 2.25;𝑦 := 1.50;R 𝑧; 𝑧 = 𝑥 × 𝑦, 𝜎 = [𝑥 ↦→ 2, 𝑦 ↦→ 1, 𝑧 ↦→ 3], 𝛽 = [𝑥 ↦→ 8, 𝑦 ↦→ 8, 𝑧 ↦→ 16]
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Here, Shiftry outputs the following (simplified) C++ fragment as fixed-point code:
int8_t x = 9; // 9 = 2.25 * 4
int8_t y = 3; // 3 = 1.50 * 2
int16_t z = int16_t(x)*int16_t(y);

In the subsequent sections, we describe this compilation process formally (Section 5), inference of
𝜎 and 𝛽 (Section 6), and our memory management mechanism (Section 7).

5 FORMAL DEVELOPMENT
The Shiftry compiler takes an ML model expressed in the Shiftry DSL as input. To keep the
presentation simple, we focus only on the core constructs of the Shiftry DSL in Figure 1. We
provide a complete list of operators supported by Shiftry in Appendix B. The Shiftry DSL,
L, is a high level imperative language that helps represent ML models compactly by providing
arithmetic operators over matrices. See Pseudocode 19 for the implementation of an RNN in only
12 lines of Shiftry DSL code. The target language of the Shiftry compiler, T in Figure 2, has been
designed to simplify code-generation for embedded devices. We present the type system for L in
Figure 4 and the rules to compile programs in L to T in Figure 5. While a program in L expresses
a mathematical computation over Reals, a program in T is a computation over fixed-point integers
with finite bitwidths. We also describe our approaches to compute the transcendental functions
occurring in ML models by fixed-point integers in Section 5.4.

5.1 Syntax
Figure 1 describes the syntax of the source language L of Shiftry. The input program is a sequence
of declarations (𝜏 𝑥 ) and initializations with values 𝑣 (𝑥 := 𝑣), followed by a sequence of statements
𝑠 , and ending with a return of a binary classification label. A statement can be either an assignment
with a computational expression 𝑒 (e.g., matrix multiplication, scalar exponentiation, etc.) or a
for-loop. We disallow compound expressions for brevity of presentation.

𝑃 ::= 𝑥 := 𝑣 ; 𝑃 | 𝜏 𝑥 ; 𝑃 | 𝑠; return 𝑥 > 0
𝑠 ::= 𝑠1; 𝑠2 | 𝑥 = 𝑒 | for 𝑖 = [0 : 𝑛] do 𝑠
𝑒 ::= 𝑣 | 𝑥 | 𝑦 [𝑧] | 𝑦 × 𝑧 | 𝑦 + 𝑧 | 𝑓 (𝑦)
𝑣 ::= 𝑛 | 𝑟 | [𝑣1, 𝑣2, ..., 𝑣𝑛]
𝑓 ::= exp | tanh | sigmoid

Fig. 1. Syntax of the core source language L

𝑃 ′ ::= 𝜏 ′𝑥 := 𝑣 ′; 𝑃 ′ | 𝜏 ′𝑥 ; 𝑃 ′ | 𝑆 ′; return 𝑥 > 0
𝑠 ′ ::= 𝑠 ′1; 𝑠

′
2 | 𝑥 = 𝑒 ′ | for 𝑖 = [0 : 𝑛] do 𝑠 ′

𝑒 ′ ::= 𝑣 ′ | 𝑦 [𝑧] | 𝑦 ×𝜏 ′ 𝑧 | Ψ𝜏′ (𝑒 ′, 𝑛) |
𝑒 ′1 +𝜏 ′ 𝑒 ′2 | 𝑓 ′(𝑒 ′)

𝑣 ′ ::= 𝑛𝑏 | [𝑣 ′1, 𝑣 ′2, ..., 𝑣 ′𝑛]
𝑓 ′ ::= ExpQ𝑏 | TanhQ𝑏 | SigmoidQ𝑏
𝜏 ′ ::= int𝑏 | int𝑏 [n] | int𝑏 [n1] [n2]

Fig. 2. Syntax of the target language T

5.2 Type system

𝜏 ::= R | Z | R[𝑛] | R[𝑛1] [𝑛2]

Fig. 3. Possible types in the source language of Shiftry

Figure 3 describes the possible types in L. A variable can be a mathematical Integer (Z), or a Real
(R), or a 1- or 2- dimensional matrix of Reals (R[𝑛1] or R[𝑛1][𝑛2]). The type system is described in
Figure 4. Here, we have two types of judgments, for statements and for expressions. The statement
judgment Γ1 ⊢𝑠 𝑠 : 𝜏, Γ2 is read as: “under the typing environment Γ1, the statement 𝑠 is well typed
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𝑥 ∉ domain(Γ)
Γ ⊢𝑠 𝜏 𝑥 : 𝜏, Γ [𝑥 ↦→ 𝜏] T − Decl Γ ⊢𝑒 𝑥 : R

Γ ⊢𝑠 return 𝑥 > 0 : Z, Γ T − Return

Γ ⊢𝑒 𝑣 : 𝜏 𝑥 ∉ domain(Γ)
Γ ⊢𝑠 𝑥 := 𝑣 : 𝜏, Γ [𝑥 ↦→ 𝜏] T − Init Γ ⊢𝑒 𝑒 : 𝜏 Γ ⊢𝑒 𝑥 : 𝜏

Γ ⊢𝑠 𝑥 = 𝑒 : 𝜏, Γ T − Assn

𝑖 ∉ Γ1 Γ1 [𝑖 ↦→ Z] ⊢𝑠 𝑠 : 𝜏, Γ2
Γ1 ⊢𝑠 for 𝑖 = [0, 𝑛] do 𝑠 : 𝜏, Γ2 \ {𝑖}

T − Loop
Γ ⊢𝑠 𝑠1 : 𝜏1, Γ1 Γ1 ⊢𝑠 𝑠2 : 𝜏2, Γ2

Γ ⊢𝑠 𝑠1; 𝑠2 : 𝜏2, Γ2
T − Seq

⊢𝑒 𝑟 : R T − Real ⊢𝑒 𝑛 : Z T − Int 𝑥 ∈ Γ
Γ ⊢𝑒 𝑥 : Γ(𝑥) T − Var

Γ ⊢𝑒 𝑥 : R
Γ ⊢𝑒 𝑓 (𝑥) : R T − Exp

Γ ⊢𝑒 𝑣1 : R . . . Γ ⊢𝑒 𝑣𝑛1 : R
Γ ⊢𝑒 [𝑣1, . . . 𝑣𝑛1 ] : R[𝑛1]

T − Arr1D
Γ ⊢𝑒 𝑣1 : R[𝑛2] . . . Γ ⊢𝑒 𝑣𝑛1 : R[𝑛2]

Γ ⊢𝑒 [𝑣1, . . . 𝑣𝑛1 ] : R[𝑛1] [𝑛2]
T − Arr2D

Γ ⊢𝑒 𝑥 : R[𝑛1] [𝑛2] Γ ⊢𝑒 𝑦 : R[𝑛1] [𝑛2]
Γ ⊢𝑒 𝑥 + 𝑦 : R[𝑛1] [𝑛2]

T − Add

Γ ⊢𝑒 𝑥 : R[𝑛1] [𝑛2] Γ ⊢𝑒 𝑦 : R[𝑛2] [𝑛3]
Γ ⊢𝑒 𝑥 × 𝑦 : R[𝑛1] [𝑛3]

T −Mult

Γ ⊢𝑒 𝑥 : R[𝑛] Γ ⊢𝑒 𝑦 : Z
Γ ⊢𝑒 𝑥 [𝑦] : R

T − Idx1D
Γ ⊢𝑒 𝑥 : R[𝑛1] [𝑛2] Γ ⊢𝑒 𝑦 : Z

Γ ⊢𝑒 𝑥 [𝑦] : R[𝑛2]
T − Idx2D

Γ ⊢𝑒 𝑒 : 𝜏 [1]
Γ ⊢𝑒 𝑒 : 𝜏

T − Squeeze Γ ⊢𝑒 𝑒 : 𝜏
Γ ⊢𝑒 𝑒 : 𝜏 [1]

T − Unsqueeze

Fig. 4. Type system

and has a type 𝜏 , and results in a new environment Γ2”. The expression judgment Γ ⊢𝑒 𝑒 : 𝜏 is read
as “under the typing environment Γ, the expression 𝑒 is well typed and has a type 𝜏”. L is statically
typed and the compiler checks that the arithmetic operators are applied to matrices of compatible
dimensions. For example, when adding matrices, we check that the both the matrices have the
same dimensions. The static information about dimensions is used to generate accurate fixed-point
code expressed in the syntax of the target language T (Figure 2).

5.3 Compilation
Figure 5 describes the rules used by Shiftry to compile input code in L (Figure 1) to the target
language T (Figure 2). We omit the operational semantics of T as they are standard and only
present the semantics of the operators of T in Library 7, 8 and 9, and helper methods (used during
the compilation process) in Library 6.

The main difference between L and T is that of explicit type-based parametrization of operators.
For example, ×𝜏′ multiplies two matrices and generates an output matrix whose entries have a type
𝜏 ′ (Library 7). In the types 𝜏 ′ of T (Figure 2), int𝑏 denotes a 𝑏-bit integer. Since different variables
in T can have different bitwidths, these annotations are required to ensure that the computations
are performed with the right bitwidths. The function dim returns the dimensions of the matrices;
this information is used in compiling arithmetic operators in Figure 5.

The compilation process requires two environments 𝜎 and 𝛽 . The environment 𝛽 maps variables
to their bitwidths and 𝜎 maps variables to scales. The judgement 𝜎, 𝛽 ⊢ 𝑠 → 𝑠 ′ is read as: “Under
scales 𝜎 and bitwidths 𝛽 , the statement 𝑠 ∈ L is compiled to 𝑠 ′ ∈ T ”.
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Apart from 𝜎 and 𝛽 , the compilation process requires the following parameters: 𝜎𝑒𝑖𝑛8 , 𝜎𝑒𝑜𝑢𝑡8
,

𝜎𝑒𝑖𝑛16
, 𝜎𝑒𝑜𝑢𝑡16

, 𝑇8, 𝑇 1
16, 𝑇

2
16 and𝜓 . These parameters are used to evaluate transcendental functions and

we discuss them in Section 5.4. We show how 𝜎 and 𝛽 are set in Section 6. Library 7’s method
ShiftVars is required for memory management and we discuss it in Section 7.1.

𝜏 ′𝑦 = int𝛽 (𝑦) 𝜎𝑥𝑦 = 𝜎 (𝑥) − 𝜎 (𝑦)
𝜎, 𝛽 ⊢ 𝑦 = 𝑥 → 𝑦 = Ψ𝜏 ′𝑦 (𝑥, 𝜎𝑥𝑦)

C − Var

𝑣𝑄 = ⌊𝑣 × 2𝜎 (𝑥)⌋𝛽 (𝑥)
𝜎, 𝛽 ⊢ 𝑥 = 𝑣 → 𝑥 = 𝑣𝑄

C − Assn2D
𝜎, 𝛽 ⊢ return 𝑥 > 0→ return 𝑥 > 0 C − Ret

(𝑛1, 𝑛2) = dim(𝑥)
𝜏 ′ = int𝛽 (𝑥) [n1] [n2]
𝑣𝑄 = ⌊𝑣 × 2𝜎 (𝑥)⌋𝛽 (𝑥)

𝜎, 𝛽 ⊢ 𝑥 := 𝑣 → 𝜏 ′𝑥 := 𝑣𝑄
C − Init2D

(𝑛1, 𝑛2) = dim(𝑥)
𝜏 ′ = int𝛽 (𝑥) [n1] [n2]
𝜎, 𝛽 ⊢ 𝜏 𝑥 → 𝜏 ′𝑥

C − Decl2D

𝜎, 𝛽 ⊢ 𝑠 → 𝑠 ′

𝜎, 𝛽 ⊢ for 𝑖 = [0 : 𝑛] do 𝑠 → for 𝑖 = [0 : 𝑛] do 𝑠 ′ C − Loop

𝜎, 𝛽 ⊢ 𝑥 = 𝑦 [𝑧] → 𝑥 = 𝑦 [𝑧] C − Index
𝜎, 𝛽 ⊢ 𝑠1 → 𝑠 ′1 𝜎, 𝛽 ⊢ 𝑠2 → 𝑠 ′2

𝜎, 𝛽 ⊢ 𝑠1; 𝑠2 → 𝑠 ′1; 𝑠
′
2

C − Seq

𝜏 ′𝑥 = int𝛽 (𝑥) 𝜏 ′𝑦 = int𝛽 (𝑦) 𝜏 ′𝑧 = int𝛽 (𝑧) 𝜏 ′𝑡𝑒𝑚𝑝 = intmax(𝛽 (𝑥),𝛽 (𝑦))
dim(𝑥) = dim(𝑦) = dim(𝑧) = (𝑛1, 𝑛2) 𝜎min = min(𝜎 (𝑥), 𝜎 (𝑦))

𝜎 ′𝑥 = 𝜎 (𝑥) − 𝜎min 𝜎 ′𝑦 = 𝜎 (𝑦) − 𝜎min 𝜎 ′𝑧 = 𝜎min − 𝜎 (𝑧)
𝜎, 𝛽 ⊢ 𝑧 = 𝑥 + 𝑦 → 𝑧 = Ψ𝜏 ′𝑧 (Ψ𝜏 ′temp

(𝑥, 𝜎 ′𝑥 ) +𝜏 ′temp
Ψ𝜏′temp

(𝑦, 𝜎 ′𝑦), 𝜎 ′𝑧)
C −MatAdd

𝜏 ′𝑥 = int𝛽 (𝑥) 𝜏 ′𝑦 = int𝛽 (𝑦) 𝜏 ′𝑧 = int𝛽 (𝑧) dim(𝑥) = (𝑛1, 𝑛2)
dim(𝑦) = (𝑛2, 𝑛3) dim(𝑧) = (𝑛1, 𝑛3) 𝜏 ′temp = 𝑖𝑛𝑡2⌈𝑙𝑜𝑔2 (𝛽 (𝑥 )+𝛽 (𝑦)+⌈𝑙𝑜𝑔2 (𝑛2 )⌉−1)⌉

𝜎, 𝛽 ⊢ 𝑧 = 𝑥 × 𝑦 → 𝑧 = Ψ𝜏 ′𝑧 (𝑥 ×𝜏′temp
𝑦, 𝜎 (𝑥) + 𝜎 (𝑦) − 𝜎 (𝑧) − ⌈𝑙𝑜𝑔2 (𝑛2)⌉)

C −MatMul

𝛽 (𝑦) = 𝛽 (𝑥) = 8 𝜎 (𝑦) = 𝜎𝑒out8
𝜎 ′𝑥 = 𝜎 (𝑥) − 𝜎𝑒 in8 𝑇8 = getTable8 (𝜎ein8 , 𝜎eout8

)

𝜎, 𝛽 ⊢ 𝑦 = exp(𝑥) → 𝑦 = ExpQ8 (𝑇8,Ψ𝑖𝑛𝑡8 (𝑥, 𝜎 ′𝑥 ))
C − Exp8

𝛽 (𝑦) = 𝛽 (𝑥) = 16 𝜎 (𝑦) = 𝜎𝑒out16
𝜎 ′𝑥 = 𝜎 (𝑥) − 𝜎𝑒 in16

(𝑇 1
16,𝑇

2
16) = getTables16 (𝜎𝑒 in16 , 𝜎𝑒out16

,𝜓 )
𝜎, 𝛽 ⊢ 𝑦 = exp(𝑥) → 𝑦 = ExpQ16 (𝑇 1

16,𝑇
2
16,Ψ𝑖𝑛𝑡16 (𝑥, 𝜎 ′𝑥 ),𝜓, 𝜎𝑒𝑜𝑢𝑡16

)
C − Exp16

𝛽 (𝑦) = 𝛽 (𝑥) = 8 𝜎 (𝑦) = 𝜎𝑒out8
𝜎 ′𝑥 = 𝜎 (𝑥) − 𝜎𝑒 in8 𝑇8 = getTable8 (𝜎ein8 , 𝜎eout8

)

𝜎, 𝛽 ⊢ 𝑦 = sigmoid(𝑥) → 𝑦 = SigmoidQ8 (𝑇8,Ψ𝑖𝑛𝑡8 (𝑥, 𝜎 ′𝑥 ), 𝜎𝑒𝑜𝑢𝑡8
)

C − Sgmd8

Fig. 5. Compilation rules

Consider the compilation rules for matrix multiplication (operator ×) and matrix addition (opera-
tor +) in Figure 5. Here, the scales of the arguments are first adjusted using the scale shifting function
Ψ and then the relevant operator of Library 7, 8 or 9 is called with these adjusted arguments. These
operators first convert arguments to a common bitwidth, say 𝑏, and then perform a standard matrix
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addition (MatAdd) or matrix multiplication (MatMul) over 𝑏-bit integers. Entire copies of typecasted
input matrices are not made in the actual implementation, the type conversions are done on the
fly while carrying out the operation. In the actual implementation, calls to Ψ are inlined with
other operators like MatAdd, MatMul, etc., and Ψ is shown as a separate function call for ease of
presentation.

The scale shifting function, Ψ divides an integral fixed-point value by a power-of-two to alter its
scale. In Ψint𝑏 , 𝑏 denotes the bitwidth of the result. For example, consider the 16-bit fixed-point
representation of 5.697, as discussed in Section 2. In 16-bit fixed-point arithmetic, for a scale of
12, 5.697 is represented by the integer 23334. The transformation: Ψ(23334, 8) = 23334 /28 = 91
produces 91, which is 5.697 in 16-bit fixed-point arithmetic with a scale of 4. Thus, applying the
Ψ(𝑣, 𝑛) function to a value 𝑣 of scale 𝑠 reduces its scale to 𝑠 − 𝑛. The Ψ operations incur a runtime
overhead proportional to the complexity of the primary operation, e.g., while multiplying an 𝑖 × 𝑗

matrix with a 𝑗 × 𝑘 matrix, the Ψ operations incur O(𝑖 𝑗𝑘) shift operations.

5.4 Computing Exponentials
The source language L provides three transcendental functions 𝑓 that depend on the irrational 𝑒 .
We show how to compute tanh and sigmoid using a procedure to compute 𝑒𝑥 in Section 5.4.1. We
start by describing the techniques used by Shiftry for computing 𝑓 (𝑥) = exp(𝑥) when the input 𝑥
is a 16-bit/8-bit fixed-point number.

For 16-bit integers, Shiftry uses the exponentiation method of Seedot [Gopinath et al. 2019a]
that approximates exponentiation as a product of two values looked up from two different tables:

𝑒𝑥 = 𝑒2
𝜓𝑎+𝑏 = 𝑒2

𝜓𝑎 × 𝑒𝑏 ≈ 𝑇 1
16 [𝑎] ×𝑇 2

16 [𝑏]
Here, 𝑎 is a 15−𝜓 -bit number and 𝑏 is a𝜓 bit number. Our procedure differs from Seedot [Gopinath
et al. 2019a] in the choice of 𝜓 . We set 𝜓 = 7 in our evaluation which leads to a slightly higher
Flash usage but better precision. Specifically, we need to store the table 𝑇 1

16 with 28 entries and the
table 𝑇 2

16 with 27 entries of 16-bits each which brings the total Flash usage to 0.75KB for positive 𝑥 .
For negative 𝑥 , we need another 0.75KB.
For 8-bit integers, instead of breaking 𝑥 into 2 parts, we simply perform a single table lookup

from a table 𝑇8, which occupies only 128 bytes (a table with 27 entries, each occupying 8 bits).

Library 6: Auxillary functions
Function getTable8(𝜎𝑖𝑛 , 𝜎𝑜𝑢𝑡):

Table : int8 []
for 𝑖 ∈ [0 : 27] do

Table[𝑖] ←− ⌊𝑒
𝑖

2𝜎in × 2𝜎out ⌋
return Table

Function getTables16(𝜎𝑖𝑛 , 𝜎𝑜𝑢𝑡 ,𝜓):
Table1, Table2 : int16 []
for 𝑖 ∈ [0 : 215−𝜓 ] do

Table1 [𝑖] ←− ⌊𝑒
𝑖

2(𝜎in−𝜓 ) × 2𝜎out ⌋
for 𝑖 ∈ [0 : 2𝜓 ] do

Table2 [𝑖] ←− ⌊𝑒
𝑖

2𝜎in × 2𝜎out ⌋
return (Table1, Table2)

Library 7: Functions for codegen
Operator +𝜏′(𝐴, 𝐵):

return MatAdd((𝜏 ′)𝐴, (𝜏 ′)𝐵)
Operator −𝜏 ′(𝐴, 𝐵):

return MatSub((𝜏 ′)𝐴, (𝜏 ′)𝐵)
Operator ×𝜏 ′(𝐴, 𝐵):

return MatMul((𝜏 ′)𝐴, (𝜏 ′)𝐵)
Function Ψ𝜏 ′(𝐴, 𝑛):

return (𝜏 ′) ( 𝐴2𝑛 )
Function ShiftVars(migrateList):

for (𝑎, 𝑏, 𝑐) ∈ migrateList do
mem[𝑏:𝑏+𝑐 ] ←− mem[𝑎:𝑎+𝑐 ]

return
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12 Aayan Kumar, Vivek Seshadri, and Rahul Sharma

Although the table-based approach suffices to compute one exponentiation, if there are multiple
calls to exp with arguments of distinct scales then we need different tables for each such call. To
save memory, we use the following observation that enable us to compute all calls to exp in under
1KB of Flash.

The ML algorithms in our benchmarks can be rewritten to ensure that we need to compute 𝑒𝑥
only for negative 𝑥 (Section 5.4.1). Hence, we need the table(s) only for negative values of 𝑥 . For
𝑥 ≤ 0, 𝑒𝑥 lies in the range (0, 1]. For 8-bit integers, to avoid overflows, the maximum possible scale
of the output is 6 (the scale of 7 would overflow for 𝑒0). Recall, that higher scales lead to more
precise results and we set the output scale of 8-bit exponentiation, 𝜎𝑒𝑜𝑢𝑡8

, as 6. With an output scale
of 6, the smallest non-zero output of fixed-point exponentiation is 2−6 ≈ 𝑒−4.15. Hence, for any
input below −4.15, the fixed-point output of exponentiation must be zero. Therefore, we can set
the input scale 𝜎𝑒𝑖𝑛8 to 4 and map the output of all negative numbers with magnitude more than
4.15 to zero. Similarly for 16 bit exponentiation, 𝜎𝑒𝑖𝑛16 is set to 11, and 𝜎𝑒𝑜𝑢𝑡16

is set to 14. By fixing
these values, we only need one instance each of 𝑇8, 𝑇 1

16, and 𝑇
2
16, and the scales of arguments are

adjusted to match the input scales 𝜎𝑒𝑖𝑛 using Ψ.

Library 8: Functions for codegen
Function ExpQ8(𝑥 , 𝑇):

return 𝑇 [𝑥]
Function SigmoidQ8(𝑥 , 𝑇 , 𝑛):

if 𝑥 ≤ 0 then
𝑎 ←− ExpQ8(𝑥,𝑇)

return (2𝑛 × 𝑎)/(2𝑛 + 𝑎)
else

𝑎 ←− ExpQ8(−𝑥,𝑇)
return (2𝑛 × 2𝑛)/(2𝑛 + 𝑎)

Library 9: Functions for codegen
Function ExpQ16(x, 𝑇1, 𝑇2,𝜓 , 𝑛):

return Ψint16(𝑇1 [x/2𝜓 ] ×𝑇2 [x%2𝜓 ], 𝑛)
Function TanHQ16(𝑥 , 𝑇1, 𝑇2,𝜓 , 𝑛1, 𝑛2):

if 𝑥 ≤ 0 then
𝑎 ←− ExpQ16(2𝑥,𝑇1,𝑇2,𝜓, 𝑛1)
return (2𝑛2 × (𝑎 − 2𝑛2 ))/(𝑎 + 2𝑛2 )

else

𝑎 ←− ExpQ16(−2𝑥,𝑇1,𝑇2,𝜓, 𝑛1)
return (2𝑛2 × (2𝑛2 − 𝑎))/(𝑎 + 2𝑛2 )

5.4.1 Computing sigmoid and tanh.
We use 𝑒𝑄 (𝑥) to denote 𝑒𝑥 with 𝑥 < 0. Here, we show how to express sigmoid and tanh using 𝑒𝑄 .

Consider the sigmoid function sigmoid(𝑥) = 1
1+𝑒−𝑥 . For 𝑥 ≥ 0, sigmoid(𝑥) = 1

1+𝑒𝑄 (−𝑥) . For 𝑥 < 0,

sigmoid(𝑥) = 𝑒𝑄 (𝑥)
1+𝑒𝑄 (𝑥) . Similarly, for 𝑥 < 0, tanh(𝑥) = 𝑒𝑄 (2𝑥)−1

𝑒𝑄 (2𝑥)+1 and for 𝑥 ≥ 0, tanh(𝑥) = 1−𝑒𝑄 (−2𝑥)
1+𝑒𝑄 (−2𝑥) .

The 8-bit fixed-point implementation for sigmoid is provided in Library 8. It performs an integer
division between a 16-bit number and an 8-bit number to output an 8-bit result. Similarly the 16-bit
fixed-point implementation for tanH is provided in Library 9, which divides a 32-bit number and a
16-bit number to output a 16-bit result.

6 SCALE AND BITWIDTH ASSIGNMENT
The compilation process described in the previous section outputs a fixed-point code givenmappings
from variables to their bitwidths and their scales. We discuss how Shiftry infers scales assuming a
bitwidth assignment (Section 6.1) and then Shiftry’s mechanism to assign bitwidths (Section 6.2).

In this section, we use the reciprocal of disagreement ratio as our precision metric to measure the
deviation between the floating-point model and fixed-point code. The disagreement ratio between
two models𝐴 and 𝐵 is a measure of the fraction of points in the validation set where the predictions
of 𝐴 and 𝐵 do not match. In particular, disagreement ratio between model 𝐴 and 𝐴 is 0. Although
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classification accuracy appears to be a reasonable candidate for a precision metric, empirically, we
have observed that the best code (good classification accuracy, better speed, smaller model size) is
obtained when we used disagreement ratio, rather than classification accuracy, as the precision
metric.

6.1 Data-Driven Scaling

Algorithm 10: Data-Driven scale computation
1 Function GetScale(value : float, bitwidth : Int):
2 return (bitwidth − 1) − ⌊log2 (value) + 1⌋
3 Function Profile(var : Var, value : float, varToMinMax : Var ↦→ (Float, Float)):
4 (𝑚,𝑀) ←− varToMinMax [𝑣𝑎𝑟 ]
5 varToMinMax [𝑣𝑎𝑟 ] ←− (Min(m, value), Max(M, value))
6 return

7 Function ComputeVarScales(varToMinMax : Var ↦→ (Float, Float),
varToBitwidth : Var ↦→ Int):

8 varToScale : Var ↦→ Int

9 for var ↦→ (𝑚,𝑀) ∈ varToMinMax do

10 varToScale[var] ←− GetScale(Max(|m|, |M|), varToBitwidth[var])

11 return varToScale

Shiftry computes the scale of all the variables in the program by profiling the floating-point
version of the code on the given validation set of inputs. It runs the floating-point code for available
inputs, and records the maximum and minimum values taken by the variables, using the Profile
procedure of Algorithm 10. Once these extrema are stored in varToMinMax, Algorithm 10’s method
ComputeVarScales computes the scales for the variables using their bitwidths varToBitwidth.
This technique results in a good scale assignment for most variables. However, it produces

unsatisfactory results in two cases:
• For the input 𝑋 to the classifier, outliers result in a poor scale assignment. For example,
consider a bitwidth of 16 and 100,000 samples, where 99,998 samples lie in the range (-2, 2),
but the remaining two are 9 and 17. Thus, for most inputs, a scale of 14 ensures that there are
no overflows. However, to ensure that the outliers do not overflow, the scale would have to
be reduced from 14 to 10, resulting in a loss of 4 bits of precision, which degrades precision
for most inputs.
• Similarly, for 8-bit integers, the scale computed by this method can be too coarse; To fit the
extrema within an 8-bit integer, we end up losing too much precision.

We discuss our techniques to address these challenges in Section 6.2. Finally, the scales of inputs to
exponentiation are set using 𝜎𝑒𝑖𝑛 (Section 5.4).

6.2 Setting Bitwidths
Algorithm 11 is the driver method that returns varToBitwidth (𝛽) and varToScale (𝜎). The function
Evaluate takes 𝛽 and 𝜎 as inputs, generates a fixed-point code using Figure 5, runs this code
on the validation set, and returns the precision (Algorithm 12 and 13) or classification accuracy
(Algorithm 14). Algorithm 11 uses a 4-stage process and we describe these stages next:
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Algorithm 11: Lowering bitwidths of variables
1 Function PerformSearch(varToMinMax : 𝑉𝑎𝑟 ↦→ (Float, Float)):
2 allVars←− list of all variables used in the code
3 varToBitwidth←− {var ↦→ defaultBitwidth} ∀ var ∈ allVars
4 varToScale←− ComputeVarScales(varToMinMax, varToBitwidth)
5 ExploreScaleForX(varToScale, varToBitwidth)
6 varToDemotedScalePrecision←− PartialDemote(varToScale, varToBitwidth, allVars)
7 varToDemote←− CumulativeDemoteVariables(floatAccuracy, dropPermitted,

varToDemotedScalePrecision, varToScale, varToBitwidth)
8 for var ∈ varToDemote do
9 varToBitwidth[var] ←− defaultBitwitdth/2

10 varToScale[var] ←− varToDemoteScalePrecision[var] [0]
11 return varToBitwidth, varToScale

• Stage IAssigning data-driven scales. Shiftry sets the bitwidth of all variables to defaultBitwidth
(set to 16) in Algorithm 11 line 3. Using this, Shiftry computes the scales for all variables
using data-driven scaling (Algorithm 10) in Algorithm 11 line 4.
• Stage II Computing Scale of input 𝑋 . Shiftry computes the scale for the classifier input 𝑋 in
Algorithm 11 line 5. Shiftry iterates over all possible scales in the range [0, defaultBitwidth],
compiles the code for each scale, and picks the one with the best precision, as described in
Algorithm 12.

Algorithm 12: Subroutine for assigning scale for X
Function ExploreScaleForX(varToScale : Var ↦→ Int, varToBitwidth : Var ↦→ Int):

1 scaleToPrecisionLoss : Int ↦→ Precision

2 for scaleX ∈ 0 : defaultBitwidth do

3 modifiedScales←− varToScale[𝑋 ↦→ scaleX ]
4 scaleToPrecisionLoss[scaleX ] ←− Evaluate(varToBitwidth, modifiedScales)

5 varToScale[𝑋 ] ←− ArgMax(scaleToPrecisionLoss)
return

• Stage III Demoting one variable at a time and finding its best scale. For each variable 𝑣

in the program, Shiftry generates a new output code 𝑃𝑣 where 𝑣 is demoted to a lower
bitwidth. Since Algorithm 10 does not provide good scale assignments for 8-bits variables
(Section 6.1), Shiftry explores multiple possible scales for the demoted variables. For each
variable, Shiftry chooses the scale which gives the best precision. Algorithm 13 defines this
function and Algorithm 11 line 6 invokes it.
• Stage IV Demoting variables cumulatively maintaining reasonable accuracy. Shiftry proceeds
to demote the variables cumulatively, ensuring that the classification accuracy does not dip
below a user-provided threshold. The variables 𝑣𝑖 are arranged in decreasing precision of 𝑃𝑣𝑖 ,
in an attempt to first demote the variables that decrease the classification accuracy the least.
The relevant function is defined in Algorithm 14 and called in Algorithm 11 line 7.
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Algorithm 13: Computing scale and evaluating precision for one demoted variable
Function PartialDemote(varToScale : Var ↦→ Int, varToBitwidth : Var ↦→ Int,
allVars : Var[]):

1 varToDemotedScalePrecision : Var ↦→ (Int, Precision)
2 for var ∈ allVars do
3 scaleToPrecisionLoss : Int ↦→ Precision

4 newBitwidths←− varToBitwidth[var ↦→ defaultBitwidth/2]
5 demoteScale←− varToScale[var] − defaultBitwidth/2
6 for scale ∈ demoteScale : demoteScale + 3 do
7 newScales←− varToScale[var ↦→ scale]
8 scaleToPrecisionLoss[scale] ←− Evaluate(newBitwidths, newScales)

9 varToDemotedScalePrecision[var] ←−
(ArgMax(scaleToPrecisionLoss), Max(scaleToPrecisionLoss))

10 return varToDemotedScalePrecision

Algorithm 14: Cumulatively demoting variables while maintaining accuracy
Function CumulativeDemoteVariables(floatAccuracy : float, dropPermitted : float,
varToDemotedScalePrecision : Var ↦→ (scale : Int, precision : Precision),
varToScale : Var ↦→ Int, varToBitwidth : Var ↦→ Int):

1 Sort(varToDemotedScalePrecision, descending=True, key=precision)
2 newBitwidths←− Copy(varToBitwidth)
3 newScales←− Copy(varToScale)
4 varToDemote : Var[]
5 for var ↦→ (scale, precision) ∈ varToDemotedScalePrecision do

6 newBitwidths←− newBitwidths[var ↦→ defaultBitwidth/2]
7 newScales←− newScales[var ↦→ varToDemotedScalePrecision[𝑣𝑎𝑟 ]]
8 accuracy ←− Evaluate(newBitwidths, newScales)
9 if accuracy ≤ floatAccuracy − dropPermitted then

10 break

11 varToDemote.Insert(varName)

12 return varToDemote

The output of these stages is a fixed-point code with 16-bit and 8-bit variables that has significantly
less memory footprint compared to 32-bit floating-point code (Section 8). Next, we discuss our
memory management mechanism to further reduce the RAM usage.

7 MEMORY MANAGEMENT
We describe the memory management mechanism of Shiftry that minimizes the RAM usage of
a program by reusing the memory locations for temporally disjoint variables. In particular, the
fixed-point code generated by Shiftry has temporary variables that have short but overlapping
live ranges (e.g., Table 3); the variables with disjoint live ranges can use the same RAM locations.
Algorithm 16 is the top level algorithm. It takes as input the size of the available RAM, memo-

ryLimit, and returns a mapping varToBlockList, which maps instructions to maps from variables

, Vol. 1, No. 1, Article . Publication date: September 2020.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Aayan Kumar, Vivek Seshadri, and Rahul Sharma

Algorithm 15: Data structure used for memory management
Class Memory:

1 varToLocation : 𝑉𝑎𝑟 ↦→ (start : Addr, end : Addr)
2 memoryUsage←− 0

Function Collide((start1, end1) : (Addr, Addr), (start2, end2) : (Addr, Addr)):
3 return end1 < start2 ∨ end2 < start1

Function IsFree(start : Addr, end : Addr):
4 for var ↦→ (varStart, varEnd) ∈ varToLocation do

5 if Collide((varStart, varEnd), (start, End)) then

6 return false

7 return true

Function FreeDead(varToLiveRange : 𝑉𝑎𝑟 ↦→ (start : Int, end : Int), inst : Int):
8 for var ↦→ (_, end) ∈ varToLiveRange) do
9 if end < inst then
10 delete varToLocation[var]

return

Function Allocate(var : Var, (start, end) : (Addr, Addr)):
11 varToLocation←− varToLocation[var ↦→ (start, end)]
12 memoryUsage←− Max(memoryUsage, end)

return

Function MemoryUsage():
13 return memoryUsage

Function GetBlockForVar(var : Var):
14 return varToLocation[var]

to their memory locations (i.e., the starting memory address and the ending memory address).
Because of defragmentation (Algorithm 17), the same variable might be placed at different memory
addresses at different instructions (Section Section 7.1). Although computing varToBlockList stati-
cally is impossible for arbitrary programs, here Shiftry knows the size of all the parameters at
compile time (line 11 of Algorithm 16) that makes computing this mapping feasible. In Section 3,
such a mapping is used to generate Pseudocode 5 from Pseudocode 4. If there is an instruction 𝑖

where the sum of sizes of all live variables, SumSize𝑖 , exceeds the memoryLimit then Algorithm 16
fails at line 21. By default, Shiftry sets memoryLimit as max𝑖 SumSize𝑖 .

Algorithm 16 uses the Memory class described in Algorithm 15. This class maintains a map from
variables to their start and ending memory addresses. It also records the maximum ending address
of the allocated variables in memoryUsage. It encapsulates the following procedures:

• IsFree: Checks whether the given continguous memory block is occupied by some other
currently live variable.
• FreeDead: Deallocates all dead variables using the information about live ranges.
• Allocate: Allocate the given memory block to the given variable. Assumes that IsFree
returns 𝑡𝑟𝑢𝑒 for the given memory block.
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Algorithm 16: Reusing memory for temporary variables
Function VarToMemoryLocation(memoryLimit : Int):

1 varToBlockList : Int ↦→ Var ↦→ (start : Addr, end : Addr)
2 varToBlock : Var ↦→ (start : Addr, end : Addr)
3 varToLiveRange : Var ↦→ (start : Int, end : Int)
4 for var ∈ allVars do
5 varToLiveRange[var] .start ←− instruction number where var is first used
6 varToLiveRange[var] .end ←− instruction number where var is last used
7 Sort (varToLiveRange, key=(start, end))
8 currentInstruction←− 0
9 mem←− Memory()

10 for var ↦→ (startInstruction, _) ∈ varToLiveRange do
11 blockSize←− ComputeBlockSize(Size(var))
12 currentInstruction←− startInstruction
13 mem.FreeDead(currentInstruction, varToLiveRange)
14 𝑖 ←− minn≥0 (𝑛 : mem.IsFree(n*blockSize, (n+1)*blockSize))
15 block ←− (𝑖 ∗ blockSize, (𝑖 + 1) ∗ blockSize)
16 mem.Allocate(var, block)
17 if mem.MemoryUsage() > memoryLimit then
18 varToBlockList [currentInstruction] ←− varToBlock
19 mem,migrateList ←− Defragment(mem, var)
20 if mem.MemoryUsage() > memoryLimit then
21 throw𝑈𝑛𝑎𝑏𝑙𝑒 𝑡𝑜 𝑓 𝑖𝑡 𝑖𝑛 𝑚𝑒𝑚𝑜𝑟𝑦 𝑙𝑖𝑚𝑖𝑡

22 varToBlock ←− Copy(mem.varToLocation)

23 varToBlock[var] ←− mem.GetBlockForVar(var)

24 varToBlockList [currentInstruction] ←− varToBlock
25 return varToBlockList

At a high level, Algorithm 16 works as follows. First, it determines the live ranges [Aho et al. 2006]
and then sorts the variables based on the first2 instruction they are live (line 7). Then, Algorithm 16
assigns memory blocks to the variables. It iterates through the sorted list of variables and for each
variable, it computes a blockSize, by rounding the size of the variable to the next multiple of the
most frequently occurring variable size in the program. For example, a variable which needs 25
bytes is assiged a block size of 32 if most variables have a size of 16. Next, we perform the following
steps:
• Since the variables are arranged in ascending order of the starting instruction, if we arrive
at a variable, say 𝑥 , all variables that are live before 𝑥 have some memory assigned to them.
Specifically, variables whose ending instruction is less than 𝑥 ’s starting instruction are dead
and we do not need to store their values anymore. Algorithm 16 deallocates the memory
blocks of these dead variables on line 13.
• We look for a contiguous block of memory (line 14) of 𝑥 ’s blockSize which is not assigned
to another live variable. We only look for empty blocks aligned to an integral multiple of

2We do not consider declarations (Section 5.1) while computing the live ranges.
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blockSize. For example, for a variable with block size 32, we only check if addresses 0 to 32,
or 32 to 64, or 64 to 96 etc. are free. This heuristic ensures that small variables are assigned
memory blocks close by and once freed, create a large contiguous chunk of memory to
accommodate the larger variables.
• We assign the first available block found in the previous step to 𝑥 , and continue the loop
(lines 10 to 23) until all variables are handled. We also check whether the allocation overflows
the specified memoryLimit. If an overflow occurs, we run a defragmentation procedure
(Section 7.1) that arranges the variables more compactly and makes space for 𝑥 . If we fail to
allocate 𝑥 , even after defragmentation, then Shiftry raises an exception.

Once Algorithm 16 has computed the map varToBlockList, Shiftry uses it to replace variable names
with the memory addresses. For example, in Section 3, Pseudocode 5, variable names have been
replaced by memory blocks (for example 𝑡1 is replaced by the 4-byte access𝑚𝑒𝑚0:4). Note that this
memory management mechanism is only applied to the (mutable) temporaries and is not applied
to (read-only) model parameters as the parameters reside in the Flash.

7.1 Defragmentation

Algorithm 17: Defragmentation
Function Defragment(oldMem : Memory, lastVar : Var):

newMem←− Memory()
Sort(oldMem.varToLocation, key=start, order=ascending)
filledMemory ←− 0
migrateList : (Addr, Addr, Int) []
for var ↦→ (varStart, varEnd) ∈ oldMem.varToLocation do

blockSize←− varEnd − varStart
if var ≠ lastVar ∧ varStart ≠ filledMemory then

migrateList .Insert(varStart, filledMemory, blockSize)

newMem.Allocate(var, (filledMemory, filledMemory + blockSize))
filledMemory += blockSize

return newMem, migrateList

Fragmentation is a well-known problem that any memory management mechanism must address.
For example, suppose we have 96 bytes of available RAM. First, we allocate addresses 0 through 31
for variable 𝑥1, 32 through 63 for variable 𝑥2, and 64 through 95 for variable 𝑥3. Next, suppose 𝑥1
and 𝑥3 become dead and the memory assigned to them is deallocated, Finally, we try to allocate a
variable 𝑥4 that needs 64 bytes. Although, 64-bytes of RAM is free, the memory has been fragmented
by 𝑥2 and we fail to allocate 𝑥4. We propose a memory defragmentation method in Algorithm 17,
which is called on line 19 of Algorithm 16, that helps Shiftry guarantee the absence of allocation
failures due to fragmentation. In particular, defragmentation can migrate 𝑥2 to occupy addresses 0
through 31 that allows 𝑥4 to be allocated at addresses 32 through 95.
The method Defragment in Algorithm 17 takes as input a fragmented memory oldMem and

the variable lastVar allocating which caused the memoryUsage to exceed the memoryLimit (Al-
gorithm 16). It returns two objects: a new Memory (Algorithm 15) object newMem which is the
defragmented memory and a list of 3-tuples called the migrateList. For example, if the state of
the memory before defragmentation was {𝑥1 ↦→ (4 : 7), 𝑥2 ↦→ (16 : 31)}, newMem may have the
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state {𝑥1 ↦→ (0 : 3), 𝑥2 ↦→ (4 : 19)}. Every tuple (𝑎, 𝑏, 𝑐) in the migrateList encodes that the live
variable which was stored at addresses 𝑎 through 𝑎 + 𝑐 before defragmentation in oldMem is stored
at addresses 𝑏 through 𝑏 + 𝑐 in the defragmented memory newMem. The defragmentation process
runs in the following steps:
• Once Algorithm 16 recognizes that allocating a new variable has overflowed the memory
limit, it invokes Algorithm 17 with the current memory object oldMem.
• Algorithm 17 computes the defragmented Memory object newMem by pushing variables
towards lower addresses if possible. This ensures the most compact placement for all variables.
• Algorithm 16 continues further allocation with newMem providing the updated mapping
from variables to their memory locations. Moreover, at the program instruction that required
defragmentation, it injects a call to Library 7’s method ShiftVars in the output code with
the migrateList as argument. At execution time, this method migrates variables from their
locations in oldMem to their locations in newMem.

Althought the first two steps are static, the last step adds a linear pass over the variables as runtime
overhead. However, defragmentation is only seldomly required in practice. In particular, for our
benchmarks, defragmentation is not required at all as our block-based allocation scheme leads to
little fragmentation when compiling the ML models used in our evaluation.

8 EVALUATION
We evaluate on two types of ML models. First, we compare Shiftry with Seedot [Gopinath et al.
2019a,b], the state-of-the-art compiler to generate code for ML models targetting KB-sized devices.
For this comparison, we use two simple yet powerful models, Bonsai [Kumar et al. 2017] and
ProtoNN [Gupta et al. 2017], for which Seedot can generate efficient code. In short, our results
show that Shiftry generates code that is smaller, faster, and more accurate. Second, we consider
Recurrent Neural Networks (RNNs), a powerful class of ML models suited for inference tasks on
sensor data. For these models, no prior work can generate code that can run in devices with few
KBs of memory. Shiftry is the first compiler to automatically generate code for RNN models that
can run on tiny IoT devices. For this evaluation, we use FastGRNN [Kusupati et al. 2018], an RNN
model specifically designed for IoT applications.

Shiftry is implemented in 10K lines of Python and 5K lines of C++. The compilation time of our
benchmarks varies between 1 minute and 20 minutes on an Intel Core i7-6700 machine with 32GB
RAM and 8 cores. We run all our experiments on an Arduino Uno [Banzi and Shiloh 2014]. It has an
8-bit, 16 MHz Atmega328P microcontroller, with 2 KB SRAM and 32 KB of Flash memory. Shiftry

Dataset Float Shiftry Homogenous 8-bit Homogenous 16-bit

Accuracy Accuracy Time Size Accuracy Time Size Accuracy Time Size

DSA-19 77.8 74.5 19 19 18.4 4.6 18 76.7 × 31
INDUSTRIAL-72 90.0 88.9 0.6 14 64.3 0.1 12 89.9 × 19
GOOGLE-12 93.0 92.4 44 20 8.7 6.0 18 92.9 × 32
GOOGLE-30 84.8 84.2 54 23 3.7 7.7 22 85.1 × 39
HAR-2 91.7 91.3 47 21 50.9 8.0 15 91.6 × 25
HAR-6 92.0 89.0 45 16 14.3 8.2 15 91.7 × 26
MNIST-10 98.0 97.0 15 19 11.4 2.2 17 98.0 × 31
WAKEWORD-2 99.0 98.7 10 15 95.7 2.2 13 99.2 26 22

Table 4. Performance of Shiftry on FastGRNN models. The number of classes follows the dataset name.

Accuracy is in percent, time is in seconds, and size is in kilobytes. An × in the time column indicates that

configuration did not fit on the target device.
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outputs C++-code which is compiled by the Arduino IDE [Banzi and Shiloh 2014] to assembly code
that can run on the Uno. Arduino IDE also provides libraries that emulate floating-point arithmetic
in software, thus making it possible to execute floating-point C-code on the Uno.

We evaluate on Bonsai and ProtoNN models on the same datasets as used by Seedot [Gopinath
et al. 2019a]: cifar [Krizhevsky 2009], character recognition (cr) [de Campos et al. 2009], curet [Varma
and Zisserman 2005], letter [Hsu and Lin 2002], mnist [LeCun et al. 1998], usps [Hull 1994], and
ward [Yang et al. 2009]. For the RNN experiments, we use models for the following (more challeng-
ing) datasets used in FastGRNN [Kusupati et al. 2018]: dsa [Altun et al. 2010], google [Warden
2018], har [Anguita et al. 2012], mnist [LeCun et al. 1998], and wakeword. These tasks include
activity recognition with data from motion sensors or smartphones, and detecting wakewords and
commands to voice assistants like Google Assistant and Microsoft’s Cortana. We also evaluate
a benchmark from an industrial partner who has deployed RNNs on the bat of a bat-and-ball
game to provide feedback on the quality of the shots. On these benchmarks, we evaluate Shiftry
using the following metrics: classification accuracy (Section 8.1), latency (Section 8.2), Flash usage
(Section 8.3), and RAM usage (Section 8.4). We also demonstrate the general applicability of Shiftry
by compressing a much larger RNN-based architecture into the memory limits of an ARM Cortex
M4 class device (Section 8.5).

8.1 Classification accuracy
For these experiments, we define the accuracy drop for a particular tool as the difference between
the classification accuracy (on the testing set) of the floating-point code and the code generated
by the tool. Table 4 compares the accuracy of Shiftry to that of the floating-point, only 8-bit and
only 16-bit models on RNN benchmarks. Figures 6 and 7 compare the accuracy drop of Shiftry
with that of Seedot for ProtoNN and Bonsai, respectively.
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Fig. 6. Accuracy Drop for ProtoNN (lower is better)
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Fig. 7. Accuracy Drop for Bonsai (lower is better)
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For all three models, the average (arithmetic mean) accuracy drop of Shiftry is less than 1%,
showing that Shiftry can generate code that has comparable accuracy with floating point models.
For ProtoNN and Bonsai, Shiftry generates code that is typically more accurate than the code
generated by Seedot. Specifically, the average (arithmetic mean) accuracy drop of Shiftry for
ProtoNN/Bonsai is 0.7%/0.8% compared to that of Seedot, 0.8%/2.3%.

8.2 Latency
Since the RNN benchmarks can only be run on an Uno with Shiftry, we do not have a baseline
comparison point. For Shiftry, the RNN inference latency varies between 0.6 seconds and a minute
(Table 4). Although the latency can be further improved by hardware acceleration (e.g., Sno [alorium
[n. d.]] combines Arduino Uno and FPGAs), we focus on memory usage and such approaches are
beyond the scope of this work.
Figures 8 and 9 show the improvement in the inference latency of both Shiftry and Seedot

compared to the floating-point implementation for ProtoNN and Bonsai. The speedup for a tool is
computed as

SpeedUp(tool) = Inference Time(floating-point code)
Inference Time(code generated by tool)

On the ProtoNN dataset, Shiftry performed inference on an average (geometric mean) 3.5×
faster than the floating-point implementation, compared to a speedup of 1.7× for Seedot. Similarly
fot the Bonsai dataset, Shiftry is 3.4× faster than the floating-point code, whereas Seedot is 2.5×
faster. Thus, Shiftry significantly improves upon the state-of-the-art in inference latency.
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Fig. 8. Speedup for ProtoNN (higher is better)
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Fig. 9. Speedup for Bonsai (higher is better)
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Fig. 10. Relative Model Size for ProtoNN (lower is better)
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Fig. 11. Relative Model Size for Bonsai (lower is better)

8.3 Model Size Compression
Tomeasure the Flash usage, we use the sketch size asmeasured by the Arduino IDE, the programming
environment for Uno devices. The sketch size provides the total Flash usage, which includes all
the Arduino boilerplate as well. We use the sketch size here because it directly dictates whether a
program would fit on the device or not. In particular, programs with sketch size that exceed 32 KB
fail to run on the Uno.
For the baseline RNNs, the Arduino IDE gives a compilation error that the sketch size is too

large for the device. Hence, we only report the sketch sizes of Shiftry-generated RNNs in Table 4;
observe that they are all comfortably below 32 KB.
Figures 11 and 10 present the relative model size on Arduino Uno for Bonsai and ProtoNN,

respectively. We define relative model size for a tool as:

Relative Model Size(tool) = Sketch Size(code generated by tool)
Sketch Size(floating-point code)

In addition to giving better accuracy and providing faster latency, Shiftry outputs code that has
smaller sketch size than Seedot, which enables potentially larger models like RNNs to fit on the
device. On an average (geometric mean), the relative size of Shiftry-generated code is 55% for
Bonsai and ProtoNN. In comparison, the relative model size of Seedot is 73% for Bonsai and 75%
for ProtoNN. This extra compression is achieved as Shiftry demotes some model parameters to
8-bits but Seedot must use 16-bits for all variables. When we used Seedot to generate 8-bit code,
the accuracy is close to that of a random classifier.

8.4 RAM usage
On a tiny device like Arduino Uno, in addition to the sketch size, it is also important to optimize the
RAM usage. We must use the limited 2 KB of RAM judiciously as exceeding it leads to undefined
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Fig. 12. RAM usage for FastGRNN (lower is better)

behavior that often manifests as non-termination at runtime. For ProtoNN and Bonsai, the models
are simple enough that the RAM usage is not an issue. However, for RNNs, the complex internal
computations (Appendix A) can overflow the RAM. Figure 12 shows that both floating-point and
Shiftry generated fixed-point code (without memory management) exceed the available RAM.
Because there is no goodway tomeasure the precise RAMusage on an Arduino Uno, we estimate the
RAM usage from the sizes of the major temporary variables (large matrices that store intermediate
results) used in the program, disregarding function call overheads, scalars, etc. Hence, even though
some bars of “Int Without Algorithm 16” (fixed-point code without the memory management
mechanism) appear to be below the 2KB limit, they still exceed the available RAM and fail to run.
In particular, most of the RNNs without Shiftry ’s memory management mechanism fail to fit
within the RAM.

Shiftry’s memory management mechanism dramatically reduces the RAM required for the
computations, and enables the Shiftry-generated programs for all RNNs to run correctly. Figure 12
demonstrates the reduction in RAM usage. Shiftry’s code is able to reduce estimated RAM usage
to 38% of the floating-point code without using its memory management mechanism, and with the
mechanism, the estimated RAM usage fell to 13% of the floating-point RAM usage.

8.5 Generality
Although our evaluation has focused on Arduino Uno and models that can fit on it, Shiftry is a
general compiler that can generate code for richer models as well. To demonstrate this generality, we
implement an RNN-based architecture [Saha et al. 2020] for Face Detection in Shiftry DSL. For this
model, the floating-point implementation’s RAM usage is 6.9MB; Shiftry’s memory management
reduces it to 225KB, a 97% reduction. The floating-point model’s Flash usage is 1.3 MB, which
Shiftry reduced to 405KB, a 69% reduction. This enables us to fit the Face Detection algorithm on
an ARM Cortex M4 class device [STMicroelectronics 2020] with 256 KB of RAM and 512 KB of
Flash.

9 RELATEDWORK
The closest related work to Shiftry is Seedot [Gopinath et al. 2019a] that uses a uniform fixed
bitwidth for all variables and assign scales using static analysis, that are fine tuned using pro-
filing data. Shiftry assigns different bitwidths to different variables and the scales are directly
learned [Mitchell 1997] from profiling data. Seedot fails to meet the Flash or the RAM constraints
required to run RNNs on Uno-class devices. Moreover, on the MLmodels Seedot has been evaluated
on, Shiftry-generated code has better latency and accuracy (Section 8).

Shiftry is closely related to work that aims to run ML on tiny microcontrollers. ProtoNN [Gupta
et al. 2017] is a variant of k-nearest-neighbors and Bonsai [Kumar et al. 2017] is a variant of decision
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trees. These models are designed to provide good accuracy on simple classification tasks with
models of minimal size. For more sophisticated ML tasks, we need more powerful classifiers like
FastGRNN [Kusupati et al. 2018], which provides state-of-the-art gated-RNN accuracies in KB-sized
models. Although the authors claim that FastGRNN is compatible with the Uno, their evaluation
uses microcontrollers that have 16X more memory than the Uno. To run on an Uno-class device,
one needs to address the memory management issues and thus this paper is the first to provide
an evaluation of RNNs running on Uno. In particular, the Arduino sketches written manually
in [Kusupati et al. 2018] fail to run on Uno because they exceed the Flash memory or the RAM.

There are many approximate computing frameworks for floating-point [Baek and Chilimbi 2010;
Rubio-González et al. 2013; Schkufza et al. 2014; Sidiroglou-Douskos et al. 2011; Zhu et al. 2012].
Existing float-to-fixed converters like Darulova and Kuncak [2014, 2017]; Darulova et al. [2013];
Jacob et al. [2017] lack support for multiple bitwidths which is required in our benchmarks to
compress model sizes while maintaining accuracy. Although, float-to-fixed converters for digital
signal processors (DSPs) like [Babb et al. 1999; Banerjee et al. 2003; Bečvář and Štukjunger 2005;
Brooks and Martonosi 1999; Menard et al. 2002; Nayak et al. 2001; WILLEMS 1997] can support
multiple bitwidths, they use high bitwidth operations (natively supported by DSPs) in intermediate
steps that are expensive on tiny microcontrollers. Shiftry-generated code is an order of magnitude
faster than the latency reported for the code generated by float-to-fixed routines of MATLAB
by [Gopinath et al. 2019a].
Shiftry can be considered as a quantization framework: In ML, quantization techniques help

produce models that use low bitwidths. These techniques can be divided into three categories (in the
order of increasing requisites). The first class of techniques work purely statically on a floating-point
ML model [Krishnamoorthi 2018; Meller et al. 2019; Nagel et al. 2019]. Although, such techniques
are attractive because of their minimal requirements, their expressiveness is extremely poor. For
instance, [Nagel et al. 2019] works only for CNNs with ReLU activations and is not applicable to any
of our benchmarks. The second category includes techniques that use a validation set to help with
quantization. Both Shiftry and the “post-training-quantization” routine of Tensorflow-Lite [Jacob
et al. 2017] fall in this category. Although the latter has good support for CNNs, its support for
RNNs is preliminary. In particular, it lacks a quantization technique for the cells that are used by
our RNN benchmarks. Apart from expressiveness, Tensorflow-Lite is not designed to be run on
Uno-class devices; it uses an interpreter that requires over 10KB RAM.
The rest of the quantization literature falls in the third category, i.e., the techniques require

backpropagation and retraining. These works do not propose mechanisms to quantize a floating-
point model. Rather, they use a modified training algorithm that generates binary/integer models at
the time of training (e.g., [Chen et al. 2019; Gong et al. 2019; He and Fan 2019; Hou et al. 2019; Li et al.
2017; Louizos et al. 2019; Martinez et al. 2018; Sakr and Shanbhag 2019; Zhao et al. 2019; Zhou et al.
2018]). This is still an active research area and an overwhelming majority of ML training algorithms
still generate floating-point models. Moreover, these approaches do not generate quantized models
that can fit in a Uno-class device and have only been evaluated on MB/GB-sized models. It is
well-known that models with fewer parameters need larger bitwidths [Fromm et al. 2018]. While
aggressive quantization to small bitwidths like 1-bit or 1.5-bits ([Courbariaux and Bengio 2016;
Hubara et al. 2016; Lin et al. 2015; Rastegari et al. 2016]) can be made to work for large models with
millions of parameters, it has not been shown to be successful for KB-sized models that can only
have hundreds or thousands of parameters.
Finally, Shiftry focuses on targeting low bitwidth integer arithmetic. One can potentially use

custom low-bitwidth floating-point numbers [Chen et al. 2017; Gudovskiy and Rigazio 2017; Johnson
2018; Köster et al. 2017; Miyashita et al. 2016; Zhou et al. 2017] to reduce memory, however their
latency is terrible in the absence of native hardware support. Similarly, works like [Iandola et al.
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2016] that save models as low-bitwidth integers on disk but convert these parameters to floating-
point during computation also suffer from huge slowdowns on tiny microcontrollers that lack
floating-point units.

10 CONCLUSION
We described Shiftry, a compiler that takes an ML model as input and generates code that has
minimal memory footprint, which makes running ML on tiny devices feasible. In particular, we
have demonstrated the first empirical evaluation of RNNs on Arduino Uno. While prior work aims
to reduce inference latency while maintaining accuracy, Shiftry is designed to minimize memory
usage while maintaining good accuracy and latency. To reduce Flash usage, we use low-bitwidth
integers with data-driven scaling that help Shiftry outperform state-of-the-art systems in both
latency and accuracy. Finally, Shiftry provides a memory management mechanism to reduce
RAM usage that enables running RNNs in 2KB of RAM. As future work, we would like to add an
FPGA-backend to Shiftry that would allow running ML models on FPGAs with small form factor.
Such FPGAs have extremely low energy consumption and are desirable for IoT.
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Appendices

A RECURRENT NEURAL NETWORKS

Pseudocode 18: FastGRNN inference
algorithm
𝑋 ← input; ℎ0 ← 0
𝑊,𝑈 ← model parameters
𝑏𝑧, 𝑏ℎ ← model parameters
𝜁 , 𝜈 ← model parameters
FC, timeSteps← model parameters
for 𝑡 ∈ [1 : timeSteps] do

𝑧𝑡 ←
sigmoid(𝑊 × 𝑋 [𝑡] +𝑈 × ℎ𝑡−1 + 𝑏𝑧)
ℎ̃𝑡 ← tanh(𝑊 ×𝑥 [𝑡] +𝑈 ×ℎ𝑡−1 +𝑏ℎ)
ℎ𝑡 ← (𝜁 (1 − 𝑧𝑡 ) + 𝜈) ⊙ ℎ̃𝑡 + 𝑧𝑡 ⊙ ℎ𝑡−1

𝑟𝑒𝑠 ← ℎtimeSteps × 𝐹𝐶
return argmax(res)

Pseudocode 19: FastGRNN in Shiftry
DSL
𝑋 := file(99, 1, 32); 𝐻 := zeros(1, 100)
𝑊 := file(32, 100); 𝑈 := file(100, 100)
Bz := file(1, 100); Bh := file(1, 100)
Zeta := file(); Nu := file()
FC := file(100, 30)
float[1] [100] 𝑎, 𝑏, 𝑐
for 𝑖 ∈ [1 : 99] do

𝑎 = 𝑋 [𝑖] ×𝑊 + 𝐻 ×𝑈
𝑏 = sigmoid(𝑎 + Bz)
𝑐 = tanh(𝑎 + Bh)
𝐻 = (Zeta × (1.0 − 𝑏) + Nu) ⊙ 𝑐 + 𝑏 ⊙ 𝐻

return argmax(𝐻 × FC)
Recurrent neural networks are a popular architecture that perform computations on long chains

of data by reusing parameters. For example, FastGRNN [Kusupati et al. 2018] takes advantage of
sparsity to generate models with relatively few parameters. We show the classification pseudocode
of FastGRNN in Pseudocode 18. Even though the input 𝑋 may be long, the same parameters are
reused in different timesteps to save space. In Pseudocode 18, × represents matrix multiplication, ⊙
represents Hadamard product, + represents matrix addition.

, Vol. 1, No. 1, Article . Publication date: September 2020.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Aayan Kumar, Vivek Seshadri, and Rahul Sharma

This algorithm, when written in Shiftry, results in the code in Pseudocode 19 for the Google-
30 dataset. Note that this code is very similar to its mathematical description in Pseudocode 18.
This code uses an extended syntax compared to the one presented in Section 5. The function call
𝑋 := file(𝑛1, 𝑛2) denotes that the variable 𝑋 will be a matrix of dimensions 𝑛1 × 𝑛2 read from a
file “X.npy”. If the argument list is empty, it denotes the value being read is a scalar. The function
zeros() returns a matrix of zeros of the given dimension. In addition we also allow compound
expressions and multiple declarations (float[1] [100] a, b, c) in the extended syntax. We also allow
broadcasted additions and subtractions (1.0 − 𝑏), scalar to matrix multiplications (Zeta × (1.0 − 𝑏)),
element-wise multiplications (⊙), and pointwise application of sigmoid and tanh to matrices.

B ALL SUPPORTED OPERATORS
In the following, a vector is a 1-D array, a matrix is a 2-D array, and a tensor refers to any N-
D array. The following is a complete list of all operators supported by Shiftry: transposing a
matrix, reshaping a tensor, reading or writing to subtensors, i.e., splices of tensors, maxpool, ReLU,
exponentiation, argmax, signum, hyperbolic tan, sigmoid, convolution, the ternary ? : operator,
“for” loops, tensor addition and subtraction, matrix multiplication, Hadamard product (point-wise
multiplication), and sparse matrix vector multiplication.
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