

1 Shiftry: RNN Inference in 2KB of RAM

2
3 AAYAN KUMAR, Microsoft Research, India
4 VIVEK SESHADEVI, Microsoft Research, India
5 RAHUL SHARMA, Microsoft Research, India

6
7 Traditionally, IoT devices send collected sensor data to an intelligent cloud where machine learning (ML)
8 inference happens. However, this course is rapidly changing and there is a recent trend to run ML on the edge
9 IoT devices themselves. An intelligent edge is attractive because it saves network round trip (efficiency) and
10 keeps user data at the source (privacy). However, the IoT devices are much more resource constrained than
11 the cloud, which makes running ML on them challenging. Specifically, consider Arduino Uno, a commonly
12 used board, that has 2KB of RAM and 32KB of read-only Flash memory. Although recent breakthroughs in ML
13 have created novel recurrent neural network (RNN) models that provide good accuracy with KB-sized models,
14 deploying them on tiny devices with such hard memory requirements has remained elusive.

15 We provide, SHIFTRY, an automatic compiler from high-level floating-point ML models to fixed-point
16 C-programs with 8-bit and 16-bit integers, which have significantly lower memory requirements. For this
17 conversion, SHIFTRY uses a data-driven float-to-fixed procedure and a RAM management mechanism. These
18 techniques enable us to provide first empirical evaluation of RNNs running on tiny edge devices. On simpler
19 ML models that prior work could handle, SHIFTRY-generated code has lower latency and higher accuracy.

20 CCS Concepts: • Software and its engineering → Compilers; Domain specific languages; • Hardware →
21 On-chip resource management.

22 1 INTRODUCTION

23 Machine learning (ML) algorithms are increasingly being deployed to build smart systems that
24 deploy sensor devices (IoT devices) to collect data from the environment and process the data
25 using powerful ML algorithms. Recently, there is a growing number of applications that require
26 the ML inference to be run directly on the IoT device for reasons including energy efficiency and
27 privacy. Examples of such applications are anomaly detection [Chakraborty et al. 2018], accessibility
28 devices [Patil et al. 2018], sports training [Wang et al. 2018], etc. However, today, there is a mismatch
29 between IoT devices and ML algorithms. On one hand, IoT devices have very low compute and
30 memory resources. For example, Arduino Uno, a widely-used board by makers, has a 16 MHz
31 processor with no hardware support for floating-point, 2 KB of read/write RAM, and 32 KB of
32 read-only Flash memory. On the other hand, ML practitioners typically generate models in floating-
33 point arithmetic with the goal of maximizing accuracy, often with no regard for the amount of
34 memory available in the target device.

35 While there are libraries that can emulate floating-point in software, prior works (e.g., See-
36 Dot [Gopinath et al. 2019a], TensorFlow-Lite [Jacob et al. 2017], etc.) have also proposed tools
37 that can automatically convert floating-point models to integer models. These tools eliminate the
38 overhead of software emulation of floating-point, thereby significantly reducing the latency of
39 executing the prediction algorithms. However, these tools assume that the generated integer models
40 will fit in the memory of the target device. Unfortunately, unlike compute constraints wherein a
41 slow micro-controller will just take a long time to run a program, memory constraints are hard. A
42 model that does not fit in the memory resources of the target device cannot be run on the device.

43 Our goal in this work is to build a compiler that compiles floating-point ML models (targeted
44 for IoT devices) to code that can actually *run on the target device* with as high performance and

45
46
47 Authors' addresses: Aayan Kumar, Microsoft Research, India, t-aak@microsoft.com; Vivek Seshadri, Microsoft Research,
48 India, visesha@microsoft.com; Rahul Sharma, Microsoft Research, India, rahsha@microsoft.com.

50 as little loss in accuracy as possible. IoT devices typically have two types of memory: 1) a read-
 51 only Flash that contains static data like the ML model parameters, and 2) a read/write RAM that
 52 contains all mutable states during program execution. Each of these two memories pose a different
 53 challenge. To successfully execute an ML inference algorithm on the target device, first, the ML
 54 model parameters should fit in the Flash memory. While ideally, we would like all variables to be
 55 8-bit integers (the smallest unit of data supported by most IoT devices), we have observed that this
 56 choice is disastrous for accuracy in practice. Second, most IoT devices have limited or no support
 57 for dynamic memory allocation. ML inference algorithms typically maintain many intermediate
 58 variables with overlapping scopes throughout the program. Therefore, when the RAM available in
 59 the target device is not big enough to store all the intermediate variables, the compiler must be
 60 aware of the available RAM and manage memory in target code intelligently.

61 We propose SHIFTRY¹, a compiler that takes a floating-point ML model as input and generates
 62 fixed-point code for a target device with given memory constraints. Along with the model, SHIFTRY
 63 assumes that a small amount of validation set for the model is available to compare the accuracy of
 64 different programs. It handles the Flash constraint and RAM constraint using two techniques. First,
 65 generating fixed-point code requires a compiler to identify the *bitwidth* and *scale* for each variable
 66 in the program (Section 2.2). SHIFTRY starts by assigning 16-bits to each variable. It uses *data-driven*
 67 *scaling* (Section 6.1) to determine the scale for each variable. Then, SHIFTRY iteratively *demotes*
 68 different 16-bit variables to 8-bits by using the validation set to estimate the loss in accuracy for
 69 such demotions. At each iteration, SHIFTRY reassigns the scale of the demoted variable based on
 70 the new bitwidth and the profiled data.

71 Second, today, there are two possible ways to handle the RAM constraint. One is to allocate all
 72 temporary variables on the stack (supported by embedded C compilers). The other approach is to
 73 use dynamic memory allocation. However, both these solutions are insufficient in our scenario.
 74 On one hand, allocating variables on the stack can result in many variables that are no longer in
 75 use consuming unnecessary memory. On the other hand, dynamic memory allocation can result
 76 in severe fragmentation and may run out of contiguous free space to assign to new variables. In
 77 particular, we have observed that allocation based on malloc/free fails to run any of our benchmarks.
 78 SHIFTRY works around this problem by exploiting our observation that all the variable sizes and
 79 shapes are known at compile time. Based on this, SHIFTRY *statically* simulates dynamic memory
 80 allocation of variables and allocates them in blocks to provide contiguous free space for future
 81 variables. Even in the worst case, when free space may get fragmented, SHIFTRY inserts code for
 82 appropriately migrating variables, which will allow it to allocate memory for new variables.

83 With these techniques, the only programs that SHIFTRY cannot compile to a target device are
 84 those in which the model would not fit in the Flash even when using 8-bits for all variables or
 85 programs in which there is at least one program point where the live variables require more memory
 86 than the available RAM. Typical CNNs for computer vision, like AlexNet, ResNet, LeNet, VGGNet,
 87 etc., fall in this category of programs when considering IoT devices and are beyond the scope of
 88 this paper.

89 For our evaluations, we study two types of models. The first is the class of powerful models
 90 called the *Recurrent Neural Network* (RNNs). RNNs are sequence-to-sequence learning models and
 91 are a natural fit for IoT-based applications where the input data is often a time-series. We show
 92 the first evaluation of running state-of-the-art RNNs on an Arduino Uno, a task that has been
 93 out of reach for prior work. Second, we compare the performance of SHIFTRY for state-of-the-art
 94 variants of simpler models like decision trees [Kumar et al. 2017] and nearest neighbors [Gupta

95
 96
 97 ¹Implementation hosted at <https://github.com/aayan636/shiftry>

99 et al. 2017]. For these models, while prior work can generate fixed-point code that can run on Uno,
100 SHIFTRY-generated code is *both faster and has better accuracy*.

101 Because of our focus on tiny IoT devices like the Uno, one might wonder, if using IoT devices
102 with more memory makes SHIFTRY moot. Although IoT devices with more memory are becoming
103 cheaper, the ML models are becoming larger as well. As a result, the problem of compressing
104 ML models to fit into the memory constraints of the target device, the problem which SHIFTRY
105 addresses, is here to stay. We demonstrate that SHIFTRY is applicable in settings that employ more
106 resourceful devices as well by squeezing a complex face detection model on an ARM cortex M4
107 class device. Nonetheless, we mainly focus on the Uno, as more RAM generally implies a higher
108 power consumption. Hence, applications where minimizing power consumption is the top priority
109 prefer devices with lesser RAM.

110 The rest of the paper is organized as follows: After discussing some preliminaries in [Section 2](#),
111 we show the execution of SHIFTRY on a simple example in [Section 3](#). We provide a brief description
112 of the architecture of SHIFTRY compiler in [Section 4](#). Next, we show the input language of SHIFTRY
113 ([Section 5](#)), the use of data-driven scaling to generate precise 16-bit code ([Section 6.1](#)), and demotion
114 of variables to 8-bit ([Section 6.2](#)). We discuss our memory management scheme to improve RAM
115 usage in [Section 7](#). Our evaluation in [Section 8](#) shows that SHIFTRY generated code has better
116 accuracy and latency compared to the code generated by prior work. We also show that SHIFTRY
117 enables the first evaluation of RNNs executing on tiny microcontrollers in [Section 8](#). Finally,
118 [Section 9](#) discusses related work and [Section 10](#) concludes.

120 2 PRELIMINARIES

121 In this section, we discuss the required terminology from machine learning and standard fixed-point
122 arithmetic operations.

125 2.1 ML Preliminaries

126 An ML classifier takes a vector of Real-valued features (X) as input and returns a class label (l).
127 For example, we can design a classifier to take an image as an input and return a label that says
128 if the image contains a cat. To perform the classification task, the ML model consists of a set of
129 parameters (W). The classifier is associated with a training algorithm, a training dataset of inputs,
130 and labels that are used to learn the parameters W using supervised learning. ML models also
131 typically use a validation dataset for hyperparameter tuning. A simple linear classifier is of the form
132 $l = W \times X > 0$. In this paper, we focus our attention on ML models that are specifically targeted to
133 run on IoT devices with small amounts of memory.

134 The standard way to measure the performance of an ML model is its *classification accuracy* on a
135 testing dataset (that is separate from the training dataset). As ML algorithms are expressed over Real
136 numbers, a floating-point implementation of the model is typically considered as the benchmark for
137 accuracy. The effectiveness of any approximation of the ML model (e.g., using fixed-point values
138 instead of floating-point values) is judged by how well it performs compared to the floating-point
139 model. For instance, a fixed-point model that achieves classification accuracy within 1% of the best
140 performing floating-point model may be deemed good enough.

142 2.2 Fixed-Point Preliminaries

143 In fixed-point arithmetic, a real number r is stored as a b -bit integer $\lfloor r \times 2^s \rfloor_b$. This representation
144 is parameterized by two values, s and b . The *bitwidth* b denotes that this value occupies b bits in
145 memory. The parameter s is called the *scale* of the number, and determines the number of mantissa

148 bits. For example, if $r = 5.697$, $b = 16$, and $s = 12$ then

$$149 \quad 5.697 = 5.697 \times 2^{12}/2^{12} \approx \lfloor 5.697 \times 2^{12} \rfloor_{16}/2^{12} = \lfloor 23334.912 \rfloor_{16}/2^{12} = 23334_{16}/2^{12}$$

150 Here, 23334 is the integer stored in a 16 bits wide block of memory with the scale 12. This integer
 151 value is interpreted as $23334/2^{12} \approx 5.6968$ which is a close approximation of the actual value. The
 152 same value when represented using a lower scale, say 6, results in the integer 364.
 153

$$154 \quad 5.697 = 5.697 \times 2^6/2^6 \approx \lfloor 5.697 \times 2^6 \rfloor_{16}/2^6 = \lfloor 364.608 \rfloor_{16}/2^6 = 364_{16}/2^6$$

155 For a given bitwidth and a real number, a higher scale results in a more precise value as long as
 156 there is no overflow. In fact, in the example above, 12 is the best scale for the given value and
 157 bitwidth. Using a scale higher than 12 (say 13) will result in an overflow, as shown below.
 158

$$159 \quad 5.697 = 5.697 \times 2^{13}/2^{13} \approx \lfloor 5.697 \times 2^{13} \rfloor_{16}/2^{13} = \lfloor 46669.824 \rfloor_{16}/2^{13} = -18867_{16}/2^{13}$$

160 Here, due to limited range of 16-bit integers, there is an overflow, due to which the end result,
 161 if parsed in fixed-point arithmetic, gives -2.303 , which is garbage. Hence, we need to determine
 162 the optimum scale for each variable in the program so that we have the best precision and avoid
 163 overflows.
 164

165 In SHIFTRY, we often *demote* variables to reduce the memory footprint, i.e., reduce the bitwidth of
 166 numbers, e.g., from 16-bit to 8-bit. Similarly, increasing the number of bits assigned to a variable is
 167 called *promotion*. Note that if a variable is demoted, its scale would need to be altered too. Consider
 168 the same number as above: 5.697. If we use the same scale as in the 16-bit case, 12, the resulting
 169 integer, 23334, would overflow an 8-bit integer. It turns out the best scale for an 8-bit integer, so
 170 that the resulting integer doesn't cross 127 (*INT_MAX* for 8-bit integers) is 4:
 171

$$172 \quad 5.697 = 5.697 \times 2^4/2^4 \approx \lfloor 5.697 \times 2^4 \rfloor_8/2^4 = \lfloor 91.152 \rfloor_8/2^4 = 91_8/2^4$$

173 The resulting integer representation, 91 with scale 4, evaluates in fixed-point arithmetic to 5.6875,
 174 a slightly worse approximation than the 16-bit representation.
 175

176 3 WORKING EXAMPLE

177 In this section, we use a toy example of a linear model to both motivate the problem we address in
 178 the paper and the end-to-end working of our proposed solution, SHIFTRY. Non-linear activation
 179 functions are also supported by SHIFTRY and will be described in Section 5. **Pseudocode 1** shows
 180 the example program in SHIFTRY DSL. The program consists of 5 read-only parameters $W_1 \in \mathbb{R}^{2 \times 2}$,
 181 $B_1 \in \mathbb{R}^{2 \times 1}$, $W_2 \in \mathbb{R}^{2 \times 1}$, $B_2 \in \mathbb{R}$, and $X \in \mathbb{R}^{2 \times 1}$ and returns a real number. For this example, our goal
 182 is to run this program on a target device with 14 bytes of Flash memory available for parameters
 183 and 8 bytes of RAM for intermediate computations.
 184

185 **Pseudocode 1:** Example in SHIFTRY DSL

$$186 \quad W_1 := \begin{pmatrix} 0.0421 & 0.1948 \\ 1.021 & -0.827 \end{pmatrix} \quad B_1 := \begin{pmatrix} -0.032 \\ 0.619 \end{pmatrix} \quad X := \begin{pmatrix} 2.391 \\ -3.583 \end{pmatrix}$$

$$187 \quad W_2 := (-0.402 \quad -1.013) \quad B_2 := (0.737)$$

$$188 \quad \text{return } W_2 \times (W_1 \times X + B_1) + B_2$$

189 In the following discussion, we will use numerical accuracy as a metric to compare different
 190 programs. We will measure numerical accuracy of a program as the difference in output of the
 191 program and the output of the floating-point implementation of the model. We refer to this difference
 192 as *precision loss*.
 193

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217	Pseudocode 2: Homogenous fixed-point code generated by SHIFTRY.	
	$\text{int}_{16}[2][2]W_1 := \begin{pmatrix} 689_{16} & 3191_{16} \\ 16728_{16} & -13549_{16} \end{pmatrix}$	
	$\text{int}_{16}[2][1]B_1 := \begin{pmatrix} -1048_{16} \\ 20283_{16} \end{pmatrix}$	
	$\text{int}_{16}[2][1]X := \begin{pmatrix} 19587_{16} \\ -29351_{16} \end{pmatrix}$	
	$\text{int}_{16}[1][2]W_2 := (-6586_{16} \quad -16596_{16})$	
	$\text{int}_{16}[1][1]B_2 := (24150_{16})$	
	$\text{int}_{16}[2][1]t_1; \text{int}_{16}[2][1]t_2;$ $\text{int}_{16}[1][1]t_3; \text{int}_{16}[1][1]t_4;$	
	$t_1 = (W_1 \times_{\text{int}_{32}} X) / 2^{15}$ $t_2 = t_1 + \text{int}_{16}(B_1 / 2^3)$	
	$t_3 = (W_2 \times_{\text{int}_{32}} t_2) / 2^{14}$ $t_4 = t_3 + \text{int}_{16}(B_2 / 2^3)$	
	return t_4	

220 In our example, the result of the floating-point code is -5.11167404 . The floating-point model
221 consumes 44 bytes of Flash. A naive program implementing the model in floating-point requires 24
222 bytes of working memory. Both of these requirements exceed the constraints of our target device.

223 Prior work [Gopinath et al. 2019a] has proposed a compiler that can automatically convert
224 floating-point code to fixed-point code with a given bitwidth. Even this solution does not work for
225 this example. On one hand, 16-bit fixed-point code (shown in **Pseudocode 2**) has a low precision loss
226 (When run, it outputs -20935 , which when translated to a floating-point number gives -5.11108398 ,
227 an error of 0.0006). However, it still consumes 22 bytes of Flash and 12 bytes of RAM which does
228 not fit our target device. On the other hand, although the 8-bit fixed point code meets the Flash
229 constraint, it has high precision loss (0.2366, refer to **Table 2**). Our goal is to generate the code that
230 has the least precision loss while meeting the memory constraints.

231 To reduce the memory usage, SHIFTRY demotes a subset of variables to use 8-bit integers instead
232 of 16-bits. SHIFTRY supports two strategies. In the first strategy, it demotes the minimum number of
233 variables that are required to fit the model on the device, thus maximizing accuracy. In the second
234 strategy, SHIFTRY demotes the maximum number of variables while ensuring that the precision
235 loss stays below a user-provided threshold (say 0.1). The latter usually leads to better latency as
236 operations on demoted variables are cheaper. SHIFTRY identifies these demote-able variables as
237 follows. First, for each variable, SHIFTRY generates a program with that variable demoted. For
238 example, for the variable B_1 , SHIFTRY generates the code in **Pseudocode 3** which uses 8-bits for B_1 .
239 When demoting a variable, SHIFTRY automatically identifies both the initialization for the variable
240 and the scale for the variable under the new bitwidth.

241 SHIFTRY records the precision loss of demoting each variable in the program. **Table 1** shows
242 this data for our example program. SHIFTRY then orders the variables in the increasing order
243 of the corresponding precision loss. In our example, the order is $B_2, B_1, X, W_1, W_2, t_3, t_4, t_1, t_2$.

Var	t_4	Precision Loss
W_1	-5.0456	0.0660
W_2	-5.0402	0.0713
B_1	-5.1022	0.0093
B_2	-5.1171	0.0055
X	-5.0788	0.0328
t_1	-5.0012	0.1104
t_2	-5.0012	0.1104
t_3	-5.1875	0.0758
t_4	-5.1875	0.0758

Table 1. Partial Demote

Var	t_4	Precision Loss
B_2	-5.1171	0.0055
B_2, B_1	-5.1093	0.0022
B_2, B_1, X	-5.0781	0.0335
B_2, B_1, X, W_1	-5.0156	0.0960
B_2, B_1, X, W_1, W_2	-4.9453	0.1663
$B_2, B_1, X, W_1, W_2, t_3$	-5.0000	0.1116
$B_2, B_1, X, W_1, W_2, t_3, t_4$	-5.0000	0.1116
$B_2, B_1, X, W_1, W_2, t_3, t_4, t_1$	-4.8750	0.2366
$B_2, B_1, X, W_1, W_2, t_3, t_4, t_1, t_2$	-4.8750	0.2366

Table 2. Cumulative Demote

Finally, SHIFTRY demotes variables cumulatively in the order computed above. Specifically, SHIFTRY generates a program where B_2 is demoted, then a program where both B_2 and B_1 are demoted, and so on. SHIFTRY stops demoting variables when the precision loss exceeds the user-specified limit. Table 2 shows the precision loss of cumulatively demoting variables in our example. In this example, for the user-specified loss of 0.1, SHIFTRY chooses the program that demotes the variables B_2 , B_1 , X , and W_1 . Pseudocode 4 shows the corresponding program. It meets the Flash constraint as the read-only parameters W_1 , W_2 , B_1 , B_2 , and X fit within 14 bytes.

A naive implementation of the chosen program consumes 12 bytes of working memory (for t_1, t_2, t_3, t_4), which still does not fit in the RAM of the target device. Unfortunately, currently available

Pseudocode 4: Heterogenous Fixed-point code: only B_2, B_1, X, W_1 use 8 bits, rest use 16 bits

$\text{int}_8[2][2]W_1 := \begin{pmatrix} 2_8 & 12_8 \\ 65_8 & -52_8 \end{pmatrix}$
 $\text{int}_8[2][1]B_1 := \begin{pmatrix} -4_8 \\ 79_8 \end{pmatrix}$
 $\text{int}_8[2][1]X := \begin{pmatrix} 76_8 \\ -114_8 \end{pmatrix}$
 $\text{int}_{16}[1][2]W_2 := (-6586_{16} \quad -16596_{16})$
 $\text{int}_8[1][1]B_2 := (94_8)$

$\text{int}_{16}[2][1] t_1; \text{ int}_{16}[2][1] t_2;$
 $\text{int}_{16}[1][1] t_3; \text{ int}_{16}[1][1] t_4;$

$t_1 = (W_1 \times_{\text{int}_{16}} X)$
 $t_2 = (t_1/2^4) +_{\text{int}_{16}} B_1$
 $t_3 = (W_2 \times_{\text{int}_{32}} t_2)/2^9$
 $t_4 = (t_3/2^5) +_{\text{int}_{16}} B_2$
return t_4

Pseudocode 5: Heterogenous fixed-point code generated by SHIFTTRY

$\text{int}_8[2][2]W_1 := \begin{pmatrix} 2_8 & 12_8 \\ 65_8 & -52_8 \end{pmatrix}$
 $\text{int}_8[2][1]B_1 := \begin{pmatrix} -4_8 \\ 79_8 \end{pmatrix}$
 $\text{int}_8[2][1]X := \begin{pmatrix} 76_8 \\ -114_8 \end{pmatrix}$
 $\text{int}_{16}[1][2]W_2 := (-6586_{16} \quad -16596_{16})$
 $\text{int}_8[1][1]B_2 := (94_8)$
 $\text{int}_8 \text{ mem}_{0:8};$

$\begin{pmatrix} \text{mem}_{0:2} \\ \text{mem}_{2:4} \end{pmatrix} = (W_1 \times_{\text{int}_{16}} X)$
 $\begin{pmatrix} \text{mem}_{4:6} \\ \text{mem}_{6:8} \end{pmatrix} = ((\begin{pmatrix} \text{mem}_{0:2} \\ \text{mem}_{2:4} \end{pmatrix} / 2^4) +_{\text{int}_{16}} B_1)$
 $(\text{mem}_{0:2}) = (W_2 \times_{\text{int}_{32}} \begin{pmatrix} \text{mem}_{4:6} \\ \text{mem}_{6:8} \end{pmatrix}) / 2^9$
 $(\text{mem}_{2:4}) = ((\text{mem}_{0:2}) / 2^5) +_{\text{int}_{16}} B_2$
return $(\text{mem}_{1:2})$

295 embedded compilers fall in this category. As mentioned in the introduction, dynamic memory
 296 management is both costly and results in fragmentation of free space.

297 SHIFTRY exploits two observations to mitigate this problem. First, as is the case with many
 298 programs, variables in the program are live only for a subset of instructions in the program with
 299 some variables having overlapping lifetimes. Second, for a program in SHIFTRY DSL, both the live
 300 range *and* the size of each variable is statically known at compile time. [Table 3](#) shows the size and
 301 live range of each of the variables in working memory.

303 Var	304 Size	305 Live Range	303 Var	304 Size	305 Live Range
t_1	$(2 \times 1) \times 16 \text{ bits} = 4 \text{ bytes}$	1-2	t_3	$(1 \times 1) \times 16 \text{ bits} = 2 \text{ bytes}$	3-4
t_2	$(2 \times 1) \times 16 \text{ bits} = 4 \text{ bytes}$	2-3	t_4	$(1 \times 1) \times 16 \text{ bits} = 2 \text{ bytes}$	4-5

306 Table 3. Temporary Variable Details

307 From the live ranges in [Table 3](#), SHIFTRY recognizes that variables t_3 and t_4 can fit into the memory
 308 block originally reserved for variable t_1 . SHIFTRY views available memory as an array of values and
 309 determines the appropriate offsets into the array for each variable such that no two variables with
 310 overlapping live ranges conflict in memory. [Pseudocode 5](#) shows this memory-optimized code for
 311 our example. This program consumes 8 bytes of RAM that fits in the target device.

312 4 OVERVIEW

313 In this section, we provide an overview of SHIFTRY and provide details in the subsequent sections.
 314 The input code to SHIFTRY is a program written using the source language, SHIFTRY-DSL ([Figure 1](#)),
 315 a high level language that provides compact syntax for operations that are commonly used in ML
 316 models ([Appendix B](#)). These include arithmetic operations over matrices of Reals. The SHIFTRY
 317 compiler first typechecks this program ([Figure 3](#)) and bugs like multiplying or adding matrices
 318 with incompatible dimensions are caught at compile time. The SHIFTRY compiler then compiles the
 319 input program, using the rules described in [Figure 5](#), to a program in the target language ([Figure 2](#)).
 320 As opposed to the source language, the target language of SHIFTRY only supports integers and
 321 arrays over integers. A program in the target language is essentially a main procedure that makes
 322 calls to SHIFTRY’s library functions ([Library 7, 8 and 9](#)) with the appropriate arguments. To reduce
 323 the RAM usage, SHIFTRY employs a memory management mechanism ([Section 7](#)) that replaces all
 324 intermediate variables with accesses to a single global array. This AST is then converted to C++ using
 325 a codegen pass [[Aho et al. 2006](#)]. Finally, the C++ program is compiled by the Arduino IDE [[Banzai](#)
 326 and [Shiloh 2014](#)] to assembly that can be run on an Arduino Uno for latency measurements.

327 For compiling a floating-point source program to a fixed-point target program, SHIFTRY crucially
 328 relies on two environments: σ , a map from variables to their scales, and β , a map from variables to
 329 their bitwidths. SHIFTRY determines these maps via exploration ([Section 6](#)). SHIFTRY assigns scales
 330 using runtime data ([Section 6.1](#)) and these scales are fine tuned to accommodate demotions in
 331 bitwidth ([Section 6.2](#)). In this process, SHIFTRY generates many fixed-point programs, evaluates their
 332 accuracy, and outputs (if possible) a program that meets the user-provided memory constraints.
 333 For measuring accuracy, SHIFTRY uses an x86-codegen and runs the fixed-point programs on
 334 commodity hardware. Although the exploration is embarrassingly parallel, it still constitutes the
 335 bulk of the compilation time. Moreover, the compilation time grows with the size of datasets and
 336 for very large datasets subsampling might be needed to keep the compilation times tractable.

337 For a simple example, consider the following source program and environments:

338 $x := 2.25; y := 1.50; \mathbb{R} z; z = x \times y, \sigma = [x \mapsto 2, y \mapsto 1, z \mapsto 3], \beta = [x \mapsto 8, y \mapsto 8, z \mapsto 16]$

344 Here, SHIFTRY outputs the following (simplified) C++ fragment as fixed-point code:

345 `int8_t x = 9; // 9 = 2.25 * 4`
 346 `int8_t y = 3; // 3 = 1.50 * 2`
 347 `int16_t z = int16_t(x)*int16_t(y);`

348 In the subsequent sections, we describe this compilation process formally (Section 5), inference of
 349 σ and β (Section 6), and our memory management mechanism (Section 7).
 350

351 5 FORMAL DEVELOPMENT

352 The SHIFTRY compiler takes an ML model expressed in the SHIFTRY DSL as input. To keep the
 353 presentation simple, we focus only on the core constructs of the SHIFTRY DSL in Figure 1. We
 354 provide a complete list of operators supported by SHIFTRY in Appendix B. The SHIFTRY DSL,
 355 \mathcal{L} , is a high level imperative language that helps represent ML models compactly by providing
 356 arithmetic operators over matrices. See Pseudocode 19 for the implementation of an RNN in only
 357 12 lines of SHIFTRY DSL code. The target language of the SHIFTRY compiler, \mathcal{T} in Figure 2, has been
 358 designed to simplify code-generation for embedded devices. We present the type system for \mathcal{L} in
 359 Figure 4 and the rules to compile programs in \mathcal{L} to \mathcal{T} in Figure 5. While a program in \mathcal{L} expresses
 360 a mathematical computation over Reals, a program in \mathcal{T} is a computation over fixed-point integers
 361 with finite bitwidths. We also describe our approaches to compute the transcendental functions
 362 occurring in ML models by fixed-point integers in Section 5.4.
 363

364 5.1 Syntax

365 Figure 1 describes the syntax of the source language \mathcal{L} of SHIFTRY. The input program is a sequence
 366 of declarations (τx) and initializations with values v ($x := v$), followed by a sequence of statements
 367 s , and ending with a return of a binary classification label. A statement can be either an assignment
 368 with a computational expression e (e.g., matrix multiplication, scalar exponentiation, etc.) or a
 369 for-loop. We disallow compound expressions for brevity of presentation.
 370

371 $P' ::= \tau' x := v'; P' | \tau' x; P' | S'; \text{return } x > 0$
 372 $P ::= x := v; P | \tau x; P | s; \text{return } x > 0$
 373 $s ::= s_1; s_2 | x = e | \text{for } i = [0 : n] \text{ do } s$
 374 $e ::= v | x | y[z] | y \times z | y + z | f(y)$
 375 $v ::= n | r | [v_1, v_2, \dots, v_n]$
 376 $f ::= \text{exp} | \tanh | \text{sigmoid}$
 377 $\tau' ::= \text{int}_b | \text{int}_b[n] | \text{int}_b[n_1][n_2]$

378 Fig. 1. Syntax of the core source language \mathcal{L}

379 Fig. 2. Syntax of the target language \mathcal{T}

380 5.2 Type system

383 $\tau ::= \mathbb{R} | \mathbb{Z} | \mathbb{R}[n] | \mathbb{R}[n_1][n_2]$

386 Fig. 3. Possible types in the source language of SHIFTRY

388 Figure 3 describes the possible types in \mathcal{L} . A variable can be a mathematical Integer (\mathbb{Z}), or a Real
 389 (\mathbb{R}), or a 1- or 2- dimensional matrix of Reals ($\mathbb{R}[n]$ or $\mathbb{R}[n_1][n_2]$). The type system is described in
 390 Figure 4. Here, we have two types of judgments, for statements and for expressions. The statement
 391 judgment $\Gamma_1 \vdash_s s : \tau$, Γ_2 is read as: “under the typing environment Γ_1 , the statement s is well typed
 392

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\frac{x \notin \text{domain}(\Gamma)}{\Gamma \vdash_s \tau x : \tau, \Gamma[x \mapsto \tau]} T - Decl \quad \frac{\Gamma \vdash_e x : \mathbb{R}}{\Gamma \vdash_s \text{return } x > 0 : \mathbb{Z}, \Gamma} T - Return
\end{array}
\\
\begin{array}{c}
\frac{\Gamma \vdash_e v : \tau \quad x \notin \text{domain}(\Gamma)}{\Gamma \vdash_s x := v : \tau, \Gamma[x \mapsto \tau]} T - Init \quad \frac{\Gamma \vdash_e e : \tau \quad \Gamma \vdash_e x : \tau}{\Gamma \vdash_s x = e : \tau, \Gamma} T - Assn
\end{array}
\end{array}
\\
\begin{array}{c}
\begin{array}{c}
\frac{i \notin \Gamma_1 \quad \Gamma_1[i \mapsto \mathbb{Z}] \vdash_s s : \tau, \Gamma_2}{\Gamma_1 \vdash_s \text{for } i = [0, n] \text{ do } s : \tau, \Gamma_2 \setminus \{i\}} T - Loop \quad \frac{\Gamma \vdash_s s_1 : \tau_1, \Gamma_1 \quad \Gamma_1 \vdash_s s_2 : \tau_2, \Gamma_2}{\Gamma \vdash_s s_1; s_2 : \tau_2, \Gamma_2} T - Seq
\end{array}
\\
\begin{array}{c}
\frac{}{\vdash_e r : \mathbb{R}} T - Real \quad \frac{}{\vdash_e n : \mathbb{Z}} T - Int \quad \frac{x \in \Gamma}{\Gamma \vdash_e x : \Gamma(x)} T - Var \quad \frac{\Gamma \vdash_e x : \mathbb{R}}{\Gamma \vdash_e f(x) : \mathbb{R}} T - Exp
\end{array}
\end{array}
\\
\begin{array}{c}
\frac{\Gamma \vdash_e v_1 : \mathbb{R} \dots \Gamma \vdash_e v_{n_1} : \mathbb{R}}{\Gamma \vdash_e [v_1, \dots, v_{n_1}] : \mathbb{R}[n_1]} T - Arr1D \quad \frac{\Gamma \vdash_e v_1 : \mathbb{R}[n_2] \dots \Gamma \vdash_e v_{n_1} : \mathbb{R}[n_2]}{\Gamma \vdash_e [v_1, \dots, v_{n_1}] : \mathbb{R}[n_1][n_2]} T - Arr2D
\end{array}
\\
\begin{array}{c}
\frac{\Gamma \vdash_e x : \mathbb{R}[n_1][n_2] \quad \Gamma \vdash_e y : \mathbb{R}[n_1][n_2]}{\Gamma \vdash_e x + y : \mathbb{R}[n_1][n_2]} T - Add
\end{array}
\\
\begin{array}{c}
\frac{\Gamma \vdash_e x : \mathbb{R}[n_1][n_2] \quad \Gamma \vdash_e y : \mathbb{R}[n_2][n_3]}{\Gamma \vdash_e x \times y : \mathbb{R}[n_1][n_3]} T - Mult
\end{array}
\\
\begin{array}{c}
\frac{\Gamma \vdash_e x : \mathbb{R}[n] \quad \Gamma \vdash_e y : \mathbb{Z}}{\Gamma \vdash_e x[y] : \mathbb{R}} T - Idx1D \quad \frac{\Gamma \vdash_e x : \mathbb{R}[n_1][n_2] \quad \Gamma \vdash_e y : \mathbb{Z}}{\Gamma \vdash_e x[y] : \mathbb{R}[n_2]} T - Idx2D
\end{array}
\\
\begin{array}{c}
\frac{\Gamma \vdash_e e : \tau[1]}{\Gamma \vdash_e e : \tau} T - Squeeze \quad \frac{\Gamma \vdash_e e : \tau}{\Gamma \vdash_e e : \tau[1]} T - Unsqueeze
\end{array}
\end{array}$$

Fig. 4. Type system

and has a type τ , and results in a new environment Γ_2 . The expression judgment $\Gamma \vdash_e e : \tau$ is read as “under the typing environment Γ , the expression e is well typed and has a type τ ”. \mathcal{L} is statically typed and the compiler checks that the arithmetic operators are applied to matrices of compatible dimensions. For example, when adding matrices, we check that the both the matrices have the same dimensions. The static information about dimensions is used to generate accurate fixed-point code expressed in the syntax of the target language \mathcal{T} (Figure 2).

5.3 Compilation

Figure 5 describes the rules used by SHIFTRY to compile input code in \mathcal{L} (Figure 1) to the target language \mathcal{T} (Figure 2). We omit the operational semantics of \mathcal{T} as they are standard and only present the semantics of the operators of \mathcal{T} in Library 7, 8 and 9, and helper methods (used during the compilation process) in Library 6.

The main difference between \mathcal{L} and \mathcal{T} is that of explicit type-based parametrization of operators. For example, $\times_{\tau'}$ multiplies two matrices and generates an output matrix whose entries have a type τ' (Library 7). In the types τ' of \mathcal{T} (Figure 2), int_b denotes a b -bit integer. Since different variables in \mathcal{T} can have different bitwidths, these annotations are required to ensure that the computations are performed with the right bitwidths. The function dim returns the dimensions of the matrices; this information is used in compiling arithmetic operators in Figure 5.

The compilation process requires two environments σ and β . The environment β maps variables to their bitwidths and σ maps variables to scales. The judgement $\sigma, \beta \vdash s \rightarrow s'$ is read as: “Under scales σ and bitwidths β , the statement $s \in \mathcal{L}$ is compiled to $s' \in \mathcal{T}$ ”.

Apart from σ and β , the compilation process requires the following parameters: $\sigma_{e_8^{in}}$, $\sigma_{e_8^{out}}$, $\sigma_{e_{16}^{in}}$, $\sigma_{e_{16}^{out}}$, T_8 , T_{16}^1 , T_{16}^2 and ψ . These parameters are used to evaluate transcendental functions and we discuss them in [Section 5.4](#). We show how σ and β are set in [Section 6. Library 7](#)'s method `ShiftVars` is required for memory management and we discuss it in [Section 7.1](#).

$$\frac{\tau'_y = \text{int}_{\beta(y)} \quad \sigma_{xy} = \sigma(x) - \sigma(y)}{\sigma, \beta \vdash y = x \rightarrow y = \Psi_{\tau'_y}(x, \sigma_{xy})} \quad C - Var$$

$$\frac{v^Q = \lfloor v \times 2^{\sigma(x)} \rfloor_{\beta(x)} \quad C - Assn2D}{\sigma, \beta \vdash x = v \rightarrow x = v^Q} \quad \frac{}{\sigma, \beta \vdash \text{return } x > 0 \rightarrow \text{return } x > 0} \quad C - Ret$$

$$\frac{(n_1, n_2) = \dim(x) \quad \tau' = \text{int}_{\beta(x)}[n_1][n_2] \quad v^Q = \lfloor v \times 2^{\sigma(x)} \rfloor_{\beta(x)} \quad (n_1, n_2) = \dim(x) \quad \tau' = \text{int}_{\beta(x)}[n_1][n_2]}{\sigma, \beta \vdash x := v \rightarrow \tau' x := v^Q} \quad C - Init2D \quad \frac{}{\sigma, \beta \vdash \tau x \rightarrow \tau' x} \quad C - Decl2D$$

$$\frac{\sigma, \beta \vdash s \rightarrow s'}{\sigma, \beta \vdash \text{for } i = [0 : n] \text{ do } s \rightarrow \text{for } i = [0 : n] \text{ do } s'} \quad C - Loop$$

$$\frac{\sigma, \beta \vdash x = y[z] \rightarrow x = y[z]}{\sigma, \beta \vdash s_1 \rightarrow s'_1 \quad \sigma, \beta \vdash s_2 \rightarrow s'_2} \quad C - Index \quad \frac{}{\sigma, \beta \vdash s_1; s_2 \rightarrow s'_1; s'_2} \quad C - Seq$$

$$\frac{\tau'_x = \text{int}_{\beta(x)} \quad \tau'_y = \text{int}_{\beta(y)} \quad \tau'_z = \text{int}_{\beta(z)} \quad \tau'_{temp} = \text{int}_{\max(\beta(x), \beta(y))} \quad \dim(x) = \dim(y) = \dim(z) = (n_1, n_2) \quad \sigma_{min} = \min(\sigma(x), \sigma(y)) \quad \sigma'_x = \sigma(x) - \sigma_{min} \quad \sigma'_y = \sigma(y) - \sigma_{min} \quad \sigma'_z = \sigma_{min} - \sigma(z)}{\sigma, \beta \vdash z = x + y \rightarrow z = \Psi_{\tau'_z}(\Psi_{\tau'_{temp}}(x, \sigma'_x) + \tau'_{temp} \Psi_{\tau'_{temp}}(y, \sigma'_y), \sigma'_z)} \quad C - MatAdd$$

$$\frac{\tau'_x = \text{int}_{\beta(x)} \quad \tau'_y = \text{int}_{\beta(y)} \quad \tau'_z = \text{int}_{\beta(z)} \quad \dim(x) = (n_1, n_2) \quad \dim(y) = (n_2, n_3) \quad \dim(z) = (n_1, n_3) \quad \tau'_{temp} = \text{int}_{2^{\lceil \log_2(\beta(x) + \beta(y) + \lceil \log_2(n_2) \rceil - 1) \rceil}}}{\sigma, \beta \vdash z = x \times y \rightarrow z = \Psi_{\tau'_z}(x \times_{\tau'_{temp}} y, \sigma(x) + \sigma(y) - \sigma(z) - \lceil \log_2(n_2) \rceil)} \quad C - MatMul$$

$$\frac{\beta(y) = \beta(x) = 8 \quad \sigma(y) = \sigma_{e_8^{out}} \quad \sigma'_x = \sigma(x) - \sigma_{e_8^{in}} \quad T_8 = \text{getTable}_8(\sigma_{e_8^{in}}, \sigma_{e_8^{out}})}{\sigma, \beta \vdash y = \exp(x) \rightarrow y = \text{Exp}^0_8(T_8, \Psi_{int_8}(x, \sigma'_x))} \quad C - Exp8$$

$$\frac{\beta(y) = \beta(x) = 16 \quad \sigma(y) = \sigma_{e_{16}^{out}} \quad \sigma'_x = \sigma(x) - \sigma_{e_{16}^{in}} \quad (T_{16}^1, T_{16}^2) = \text{getTables}_{16}(\sigma_{e_{16}^{in}}, \sigma_{e_{16}^{out}}, \psi)}{\sigma, \beta \vdash y = \exp(x) \rightarrow y = \text{Exp}^0_{16}(T_{16}^1, T_{16}^2, \Psi_{int_{16}}(x, \sigma'_x), \psi, \sigma_{e_{16}^{out}})} \quad C - Exp16$$

$$\frac{\beta(y) = \beta(x) = 8 \quad \sigma(y) = \sigma_{e_8^{out}} \quad \sigma'_x = \sigma(x) - \sigma_{e_8^{in}} \quad T_8 = \text{getTable}_8(\sigma_{e_8^{in}}, \sigma_{e_8^{out}})}{\sigma, \beta \vdash y = \text{sigmoid}(x) \rightarrow y = \text{Sigmoid}^0_8(T_8, \Psi_{int_8}(x, \sigma'_x), \sigma_{e_8^{out}})} \quad C - Sgmd8$$

Fig. 5. Compilation rules

Consider the compilation rules for matrix multiplication (operator \times) and matrix addition (operator $+$) in [Figure 5](#). Here, the scales of the arguments are first adjusted using the *scale shifting* function Ψ and then the relevant operator of [Library 7](#), [8](#) or [9](#) is called with these adjusted arguments. These operators first convert arguments to a common bitwidth, say b , and then perform a standard matrix

491 addition (MatAdd) or matrix multiplication (MatMul) over b -bit integers. Entire copies of typecasted
 492 input matrices are not made in the actual implementation, the type conversions are done on the
 493 fly while carrying out the operation. In the actual implementation, calls to Ψ are inlined with
 494 other operators like MatAdd, MatMul, etc., and Ψ is shown as a separate function call for ease of
 495 presentation.

496 The scale shifting function, Ψ divides an integral fixed-point value by a power-of-two to alter its
 497 scale. In Ψ_{int_b} , b denotes the bitwidth of the result. For example, consider the 16-bit fixed-point
 498 representation of 5.697, as discussed in [Section 2](#). In 16-bit fixed-point arithmetic, for a scale of
 499 12, 5.697 is represented by the integer 23334. The transformation: $\Psi(23334, 8) = 23334 / 2^8 = 91$
 500 produces 91, which is 5.697 in 16-bit fixed-point arithmetic with a scale of 4. Thus, applying the
 501 $\Psi(v, n)$ function to a value v of scale s reduces its scale to $s - n$. The Ψ operations incur a runtime
 502 overhead proportional to the complexity of the primary operation, e.g., while multiplying an $i \times j$
 503 matrix with a $j \times k$ matrix, the Ψ operations incur $O(ijk)$ shift operations.

504 5.4 Computing Exponentials

505 The source language \mathcal{L} provides three transcendental functions f that depend on the irrational e .
 506 We show how to compute tanh and sigmoid using a procedure to compute e^x in [Section 5.4.1](#). We
 507 start by describing the techniques used by SHIFTRY for computing $f(x) = \exp(x)$ when the input x
 508 is a 16-bit/8-bit fixed-point number.

509 For 16-bit integers, SHIFTRY uses the exponentiation method of SEEDOT [[Gopinath et al. 2019a](#)]
 510 that approximates exponentiation as a product of two values looked up from two different tables:

$$511 e^x = e^{2^\psi a + b} = e^{2^\psi a} \times e^b \approx T_{16}^1[a] \times T_{16}^2[b]$$

512 Here, a is a $15 - \psi$ -bit number and b is a ψ bit number. Our procedure differs from SEEDOT [[Gopinath](#)
 513 et al. 2019a] in the choice of ψ . We set $\psi = 7$ in our evaluation which leads to a slightly higher
 514 Flash usage but better precision. Specifically, we need to store the table T_{16}^1 with 2^8 entries and the
 515 table T_{16}^2 with 2^7 entries of 16-bits each which brings the total Flash usage to 0.75KB for positive x .
 516 For negative x , we need another 0.75KB.

517 For 8-bit integers, instead of breaking x into 2 parts, we simply perform a single table lookup
 518 from a table T_8 , which occupies only 128 bytes (a table with 2^7 entries, each occupying 8 bits).

522	523 Library 6: Auxillary functions	523 Library 7: Functions for codegen
524	Function <code>getTable8</code> ($\sigma_{in}, \sigma_{out}$): $525 \quad Table : \text{int}_8[]$ $526 \quad \text{for } i \in [0 : 2^7] \text{ do}$ $527 \quad \quad \quad Table[i] \leftarrow \lfloor e^{\frac{i}{2^{\sigma_{in}}}} \times 2^{\sigma_{out}} \rfloor$ $528 \quad \text{return } Table$ Function <code>getTables16</code> ($\sigma_{in}, \sigma_{out}, \psi$): $529 \quad Table_1, Table_2 : \text{int}_{16}[]$ $530 \quad \text{for } i \in [0 : 2^{15-\psi}] \text{ do}$ $531 \quad \quad \quad Table_1[i] \leftarrow \lfloor e^{\frac{i}{2^{(\sigma_{in}-\psi)}}} \times 2^{\sigma_{out}} \rfloor$ $532 \quad \text{for } i \in [0 : 2^\psi] \text{ do}$ $533 \quad \quad \quad Table_2[i] \leftarrow \lfloor e^{\frac{i}{2^{\sigma_{in}}}} \times 2^{\sigma_{out}} \rfloor$ $534 \quad \text{return } (Table_1, Table_2)$	Operator $+_{\tau'}(A, B)$: $535 \quad \quad \quad \text{return } \text{MatAdd}((\tau')A, (\tau')B)$ Operator $-_{\tau'}(A, B)$: $536 \quad \quad \quad \text{return } \text{MatSub}((\tau')A, (\tau')B)$ Operator $\times_{\tau'}(A, B)$: $537 \quad \quad \quad \text{return } \text{MatMul}((\tau')A, (\tau')B)$ Function $\Psi_{\tau'}(A, n)$: $538 \quad \quad \quad \text{return } (\tau')(\frac{A}{2^n})$ Function <code>ShiftVars</code> (<code>migrateList</code>): $539 \quad \text{for } (a, b, c) \in \text{migrateList} \text{ do}$ $540 \quad \quad \quad \text{mem}_{[b:b+c]} \leftarrow \text{mem}_{[a:a+c]}$ $541 \quad \text{return }$

540 Although the table-based approach suffices to compute one exponentiation, if there are multiple
 541 calls to `exp` with arguments of distinct scales then we need different tables for each such call. To
 542 save memory, we use the following observation that enable us to compute all calls to `exp` in under
 543 1KB of Flash.

544 The ML algorithms in our benchmarks can be rewritten to ensure that we need to compute e^x
 545 only for negative x (Section 5.4.1). Hence, we need the table(s) only for negative values of x . For
 546 $x \leq 0$, e^x lies in the range $(0, 1]$. For 8-bit integers, to avoid overflows, the maximum possible scale
 547 of the output is 6 (the scale of 7 would overflow for e^0). Recall, that higher scales lead to more
 548 precise results and we set the output scale of 8-bit exponentiation, $\sigma_{e_8^{out}}$, as 6. With an output scale
 549 of 6, the smallest non-zero output of fixed-point exponentiation is $2^{-6} \approx e^{-4.15}$. Hence, for any
 550 input below -4.15 , the fixed-point output of exponentiation must be zero. Therefore, we can set
 551 the input scale $\sigma_{e_8^{in}}$ to 4 and map the output of all negative numbers with magnitude more than
 552 4.15 to zero. Similarly for 16 bit exponentiation, $\sigma_{e_{16}^{in}}$ is set to 11, and $\sigma_{e_{16}^{out}}$ is set to 14. By fixing
 553 these values, we only need one instance each of T_8 , T_{16}^1 , and T_{16}^2 , and the scales of arguments are
 554 adjusted to match the input scales $\sigma_{e^{in}}$ using Ψ .
 555

556 **Library 8:** Functions for codegen

558 **Function** $\text{Exp}^0_8(x, T)$:
 559 **return** $T[x]$
 560 **Function** $\text{Sigmoid}^0_8(x, T, n)$:
 561 **if** $x \leq 0$ **then**
 562 $a \leftarrow \text{Exp}^0_8(x, T)$
 563 **return** $(2^n \times a) / (2^n + a)$
 564 **else**
 565 $a \leftarrow \text{Exp}^0_8(-x, T)$
 566 **return** $(2^n \times 2^n) / (2^n + a)$
 567

556 **Library 9:** Functions for codegen

558 **Function** $\text{Exp}^0_{16}(x, T_1, T_2, \psi, n)$:
 559 **return** $\Psi_{\text{int}_{16}}(T_1[x/2^\psi] \times T_2[x/2^\psi], n)$
 560 **Function** $\text{Tanh}^0_{16}(x, T_1, T_2, \psi, n_1, n_2)$:
 561 **if** $x \leq 0$ **then**
 562 $a \leftarrow \text{Exp}^0_{16}(2x, T_1, T_2, \psi, n_1)$
 563 **return** $(2^{n_2} \times (a - 2^{n_2})) / (a + 2^{n_2})$
 564 **else**
 565 $a \leftarrow \text{Exp}^0_{16}(-2x, T_1, T_2, \psi, n_1)$
 566 **return** $(2^{n_2} \times (2^{n_2} - a)) / (a + 2^{n_2})$
 567

570 5.4.1 Computing sigmoid and tanh.

571 We use $e_Q(x)$ to denote e^x with $x < 0$. Here, we show how to express sigmoid and tanh using e_Q .
 572 Consider the sigmoid function $\text{sigmoid}(x) = \frac{1}{1+e^{-x}}$. For $x \geq 0$, $\text{sigmoid}(x) = \frac{1}{1+e_Q(-x)}$. For $x < 0$,
 573 $\text{sigmoid}(x) = \frac{e_Q(x)}{1+e_Q(x)}$. Similarly, for $x < 0$, $\text{tanh}(x) = \frac{e_Q(2x)-1}{e_Q(2x)+1}$ and for $x \geq 0$, $\text{tanh}(x) = \frac{1-e_Q(-2x)}{1+e_Q(-2x)}$.
 574 The 8-bit fixed-point implementation for sigmoid is provided in Library 8. It performs an integer
 575 division between a 16-bit number and an 8-bit number to output an 8-bit result. Similarly the 16-bit
 576 fixed-point implementation for tanh is provided in Library 9, which divides a 32-bit number and a
 577 16-bit number to output a 16-bit result.
 578

579 6 SCALE AND BITWIDTH ASSIGNMENT

580 The compilation process described in the previous section outputs a fixed-point code given mappings
 581 from variables to their bitwidths and their scales. We discuss how SHIFTRY infers scales assuming a
 582 bitwidth assignment (Section 6.1) and then SHIFTRY’s mechanism to assign bitwidths (Section 6.2).

583 In this section, we use the reciprocal of *disagreement ratio* as our precision metric to measure the
 584 deviation between the floating-point model and fixed-point code. The disagreement ratio between
 585 two models A and B is a measure of the fraction of points in the validation set where the predictions
 586 of A and B do not match. In particular, disagreement ratio between model A and A is 0. Although
 587

589 classification accuracy appears to be a reasonable candidate for a precision metric, empirically, we
 590 have observed that the best code (good classification accuracy, better speed, smaller model size) is
 591 obtained when we used disagreement ratio, rather than classification accuracy, as the precision
 592 metric.

593

594 6.1 Data-Driven Scaling

595

596 **Algorithm 10:** Data-Driven scale computation

597

```

 1 Function GetScale(value : float, bitwidth : Int):
 2   return (bitwidth - 1) -  $\lfloor \log_2(\text{value}) + 1 \rfloor$ 
 3 Function Profile(var : Var, value : float, varToMinMax : Var  $\mapsto$  (Float, Float)):
 4   (m, M)  $\leftarrow$  varToMinMax[var]
 5   varToMinMax[var]  $\leftarrow$  (Min(m, value), Max(M, value))
 6   return
 7 Function ComputeVarScales(varToMinMax : Var  $\mapsto$  (Float, Float),
 8   varToBitwidth : Var  $\mapsto$  Int):
 9   varToScale : Var  $\mapsto$  Int
10   for var  $\mapsto$  (m, M)  $\in$  varToMinMax do
11     varToScale[var]  $\leftarrow$  GetScale(Max(|m|, |M|), varToBitwidth[var])
12   return varToScale
```

612

613 SHIFTRY computes the scale of all the variables in the program by profiling the floating-point
 614 version of the code on the given validation set of inputs. It runs the floating-point code for available
 615 inputs, and records the maximum and minimum values taken by the variables, using the **Profile**
 616 procedure of [Algorithm 10](#). Once these extrema are stored in *varToMinMax*, [Algorithm 10](#)'s method
 617 **ComputeVarScales** computes the scales for the variables using their bitwidths *varToBitwidth*.

618 This technique results in a good scale assignment for most variables. However, it produces
 619 unsatisfactory results in two cases:

620

- For the input *X* to the classifier, outliers result in a poor scale assignment. For example,
 621 consider a bitwidth of 16 and 100,000 samples, where 99,998 samples lie in the range (-2, 2),
 622 but the remaining two are 9 and 17. Thus, for most inputs, a scale of 14 ensures that there are
 623 no overflows. However, to ensure that the outliers do not overflow, the scale would have to
 624 be reduced from 14 to 10, resulting in a loss of 4 bits of precision, which degrades precision
 625 for most inputs.
- Similarly, for 8-bit integers, the scale computed by this method can be too coarse; To fit the
 626 extrema within an 8-bit integer, we end up losing too much precision.

627 We discuss our techniques to address these challenges in [Section 6.2](#). Finally, the scales of inputs to
 628 exponentiation are set using $\sigma_{e^{in}}$ ([Section 5.4](#)).

629

630 6.2 Setting Bitwidths

631

632 [Algorithm 11](#) is the driver method that returns *varToBitwidth* (β) and *varToScale* (σ). The function
 633 *Evaluate* takes β and σ as inputs, generates a fixed-point code using [Figure 5](#), runs this code
 634 on the validation set, and returns the precision ([Algorithm 12](#) and [13](#)) or classification accuracy
 635 ([Algorithm 14](#)). [Algorithm 11](#) uses a 4-stage process and we describe these stages next:

638 **Algorithm 11:** Lowering bitwidths of variables

639 1 **Function** PerformSearch($varToMinMax : Var \mapsto (\text{Float}, \text{Float})$):

640 2 $allVars \leftarrow$ list of all variables used in the code

641 3 $varToBitwidth \leftarrow \{ var \mapsto defaultBitwidth \} \forall var \in allVars$

642 4 $varToScale \leftarrow \text{ComputeVarScales}(varToMinMax, varToBitwidth)$

643 5 ExploreScaleForX($varToScale, varToBitwidth$)

644 6 $varToDemotedScalePrecision \leftarrow \text{PartialDemote}(varToScale, varToBitwidth, allVars)$

645 7 $varToDemote \leftarrow \text{CumulativeDemoteVariables}(floatAccuracy, dropPermitted,$

646 $varToDemotedScalePrecision, varToScale, varToBitwidth)$

647 8 **for** $var \in varToDemote$ **do**

648 9 $varToBitwidth[var] \leftarrow defaultBitwidth/2$

649 10 $varToScale[var] \leftarrow varToDemotedScalePrecision[var][0]$

650 11 **return** $varToBitwidth, varToScale$

653

654

655 • **Stage I** Assigning data-driven scales. SHIFTRY sets the bitwidth of all variables to $defaultBitwidth$ (set to 16) in [Algorithm 11](#) line 3. Using this, SHIFTRY computes the scales for all variables using data-driven scaling ([Algorithm 10](#)) in [Algorithm 11](#) line 4.

656 • **Stage II** Computing Scale of input X. SHIFTRY computes the scale for the classifier input X in [Algorithm 11](#) line 5. SHIFTRY iterates over all possible scales in the range $[0, defaultBitwidth]$, compiles the code for each scale, and picks the one with the best precision, as described in [Algorithm 12](#).

657

658

659

660

661

662

663 **Algorithm 12:** Subroutine for assigning scale for X

664 **Function** ExploreScaleForX($varToScale : Var \mapsto \text{Int}, varToBitwidth : Var \mapsto \text{Int}$):

665 1 $scaleToPrecisionLoss : \text{Int} \mapsto \text{Precision}$

666 2 **for** $scaleX \in 0 : defaultBitwidth$ **do**

667 3 $modifiedScales \leftarrow varToScale[X \mapsto scaleX]$

668 4 $scaleToPrecisionLoss[scaleX] \leftarrow \text{Evaluate}(varToBitwidth, modifiedScales)$

669 5 $varToScale[X] \leftarrow \text{ArgMax}(scaleToPrecisionLoss)$

670 6 **return**

673

674

675 • **Stage III** Demoting one variable at a time and finding its best scale. For each variable v in the program, SHIFTRY generates a new output code P_v where v is demoted to a lower bitwidth. Since [Algorithm 10](#) does not provide good scale assignments for 8-bits variables ([Section 6.1](#)), SHIFTRY explores multiple possible scales for the demoted variables. For each variable, SHIFTRY chooses the scale which gives the best precision. [Algorithm 13](#) defines this function and [Algorithm 11](#) line 6 invokes it.

676 • **Stage IV** Demoting variables cumulatively maintaining reasonable accuracy. SHIFTRY proceeds to demote the variables cumulatively, ensuring that the classification accuracy does not dip below a user-provided threshold. The variables v_i are arranged in decreasing precision of P_{v_i} , in an attempt to first demote the variables that decrease the classification accuracy the least. The relevant function is defined in [Algorithm 14](#) and called in [Algorithm 11](#) line 7.

677

678

679

680

681

682

683

684

685

686

687 **Algorithm 13:** Computing scale and evaluating precision for one demoted variable

```

688 Function PartialDemote(varToScale : Var  $\mapsto$  Int, varToBitwidth : Var  $\mapsto$  Int,
689   allVars : Var[]):
690   1   varToDemotedScalePrecision : Var  $\mapsto$  (Int, Precision)
691   2   for var  $\in$  allVars do
692   3     scaleToPrecisionLoss : Int  $\mapsto$  Precision
693   4     newBitwidths  $\leftarrow$  varToBitwidth[var  $\mapsto$  defaultBitwidth/2]
694   5     demoteScale  $\leftarrow$  varToScale[var] – defaultBitwidth/2
695   6     for scale  $\in$  demoteScale : demoteScale + 3 do
696   7       newScales  $\leftarrow$  varToScale[var  $\mapsto$  scale]
697   8       scaleToPrecisionLoss[scale]  $\leftarrow$  Evaluate(newBitwidths, newScales)
698   9     varToDemotedScalePrecision[var]  $\leftarrow$ 
700   10    (ArgMax(scaleToPrecisionLoss), Max(scaleToPrecisionLoss))
701
702   return varToDemotedScalePrecision
703

```

704 **Algorithm 14:** Cumulatively demoting variables while maintaining accuracy

```

705 Function CumulativeDemoteVariables(floatAccuracy : float, dropPermitted : float,
706   varToDemotedScalePrecision : Var  $\mapsto$  (scale : Int, precision : Precision),
707   varToScale : Var  $\mapsto$  Int, varToBitwidth : Var  $\mapsto$  Int):
708   1   Sort(varToDemotedScalePrecision, descending=True, key=precision)
709   2   newBitwidths  $\leftarrow$  Copy(varToBitwidth)
710   3   newScales  $\leftarrow$  Copy(varToScale)
711   4   varToDemote : Var[]
712   5   for var  $\mapsto$  (scale, precision)  $\in$  varToDemotedScalePrecision do
713   6     newBitwidths  $\leftarrow$  newBitwidths[var  $\mapsto$  defaultBitwidth/2]
714   7     newScales  $\leftarrow$  newScales[var  $\mapsto$  varToDemotedScalePrecision[var]]
715   8     accuracy  $\leftarrow$  Evaluate(newBitwidths, newScales)
716   9     if accuracy  $\leq$  floatAccuracy – dropPermitted then
717   10    break
718   11    varToDemote.Insert(varName)
719
720   return varToDemote
721
722
723

```

724 The output of these stages is a fixed-point code with 16-bit and 8-bit variables that has significantly
725 less memory footprint compared to 32-bit floating-point code (Section 8). Next, we discuss our
726 memory management mechanism to further reduce the RAM usage.

727 **7 MEMORY MANAGEMENT**

728 We describe the memory management mechanism of SHIFTRY that minimizes the RAM usage of
729 a program by reusing the memory locations for temporally disjoint variables. In particular, the
730 fixed-point code generated by SHIFTRY has temporary variables that have short but overlapping
731 live ranges (e.g., Table 3); the variables with disjoint live ranges can use the same RAM locations.

732 **Algorithm 16** is the top level algorithm. It takes as input the size of the available RAM, *memoryLimit*, and returns a mapping *varToBlockList*, which maps instructions to maps from variables

Algorithm 15: Data structure used for memory management

```

736
737 Class Memory:
738   var varToLocation : Var  $\mapsto$  (start : Addr, end : Addr)
739   var memoryUsage  $\leftarrow$  0
740
741   Function Collide((start1, end1) : (Addr, Addr), (start2, end2) : (Addr, Addr)):
742     return end1 < start2  $\vee$  end2 < start1
743
744   Function IsFree(start : Addr, end : Addr):
745     for var  $\mapsto$  (varStart, varEnd)  $\in$  varToLocation do
746       if Collide((varStart, varEnd), (start, end)) then
747         return false
748
749   Function FreeDead(varToLiveRange : Var  $\mapsto$  (start : Int, end : Int), inst : Int):
750     for var  $\mapsto$  (, end)  $\in$  varToLiveRange do
751       if end < inst then
752         delete varToLocation[var]
753
754   return
755
756   Function Allocate(var : Var, (start, end) : (Addr, Addr)):
757     varToLocation  $\leftarrow$  varToLocation[var  $\mapsto$  (start, end)]
758     memoryUsage  $\leftarrow$  Max(memoryUsage, end)
759
760   return
761
762   Function MemoryUsage():
763     return memoryUsage
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
  
```

to their memory locations (i.e., the starting memory address and the ending memory address). Because of defragmentation (Algorithm 17), the same variable might be placed at different memory addresses at different instructions (Section Section 7.1). Although computing $varToBlockList$ statically is impossible for arbitrary programs, here SHIFTRY knows the size of all the parameters at compile time (line 11 of Algorithm 16) that makes computing this mapping feasible. In Section 3, such a mapping is used to generate Pseudocode 5 from Pseudocode 4. If there is an instruction i where the sum of sizes of all live variables, $SumSize_i$, exceeds the $memoryLimit$ then Algorithm 16 fails at line 21. By default, SHIFTRY sets $memoryLimit$ as $\max_i SumSize_i$.

Algorithm 16 uses the Memory class described in Algorithm 15. This class maintains a map from variables to their start and ending memory addresses. It also records the maximum ending address of the allocated variables in $memoryUsage$. It encapsulates the following procedures:

- IsFree: Checks whether the given contiguous memory block is occupied by some other currently live variable.
- FreeDead: Deallocation of all dead variables using the information about live ranges.
- Allocate: Allocates the given memory block to the given variable. Assumes that IsFree returns *true* for the given memory block.

Algorithm 16: Reusing memory for temporary variables

```

785 Function VarToMemoryLocation(memoryLimit : Int):
786   varToBlockList : Int  $\mapsto$  Var  $\mapsto$  (start : Addr, end : Addr)
787   varToBlock : Var  $\mapsto$  (start : Addr, end : Addr)
788   varToLiveRange : Var  $\mapsto$  (start : Int, end : Int)
789
790   for var  $\in$  allVars do
791     varToLiveRange[var].start  $\leftarrow$  instruction number where var is first used
792     varToLiveRange[var].end  $\leftarrow$  instruction number where var is last used
793
794   Sort (varToLiveRange, key=(start, end))
795   currentInstruction  $\leftarrow$  0
796   mem  $\leftarrow$  Memory()
797
798   for var  $\mapsto$  (startInstruction, _)  $\in$  varToLiveRange do
799     blockSize  $\leftarrow$  ComputeBlockSize(Size(var))
800     currentInstruction  $\leftarrow$  startInstruction
801     mem.FreeDead(currentInstruction, varToLiveRange)
802     i  $\leftarrow$   $\min_{n \geq 0}(n : \text{mem.IsFree}(n * \text{blockSize}, (n + 1) * \text{blockSize}))$ 
803     block  $\leftarrow$  (i * blockSize, (i + 1) * blockSize)
804     mem.Allocate(var, block)
805     if mem.MemoryUsage()  $>$  memoryLimit then
806       varToBlockList[currentInstruction]  $\leftarrow$  varToBlock
807       mem, migrateList  $\leftarrow$  Defragment(mem, var)
808       if mem.MemoryUsage()  $>$  memoryLimit then
809         throw Unable to fit in memory limit
810       varToBlock  $\leftarrow$  Copy(mem.varToLocation)
811
812     varToBlock[var]  $\leftarrow$  mem.GetBlockForVar(var)
813
814   varToBlockList[currentInstruction]  $\leftarrow$  varToBlock
815   return varToBlockList
816

```

817 At a high level, [Algorithm 16](#) works as follows. First, it determines the live ranges [Aho et al. 2006]
 818 and then sorts the variables based on the first² instruction they are live ([line 7](#)). Then, [Algorithm 16](#)
 819 assigns memory blocks to the variables. It iterates through the sorted list of variables and for each
 820 variable, it computes a *blockSize*, by rounding the size of the variable to the next multiple of the
 821 most frequently occurring variable size in the program. For example, a variable which needs 25
 822 bytes is assigned a block size of 32 if most variables have a size of 16. Next, we perform the following
 823 steps:

- 824 • Since the variables are arranged in ascending order of the starting instruction, if we arrive
 825 at a variable, say *x*, all variables that are live before *x* have some memory assigned to them.
 826 Specifically, variables whose ending instruction is less than *x*'s starting instruction are dead
 827 and we do not need to store their values anymore. [Algorithm 16](#) deallocates the memory
 828 blocks of these dead variables on [line 13](#).
- 829 • We look for a contiguous block of memory ([line 14](#)) of *x*'s *blockSize* which is not assigned
 830 to another live variable. We only look for empty blocks aligned to an integral multiple of

832 ²We do not consider declarations ([Section 5.1](#)) while computing the live ranges.

834 *blockSize*. For example, for a variable with block size 32, we only check if addresses 0 to 32,
 835 or 32 to 64, or 64 to 96 etc. are free. This heuristic ensures that small variables are assigned
 836 memory blocks close by and once freed, create a large contiguous chunk of memory to
 837 accommodate the larger variables.

- 838 • We assign the first available block found in the previous step to x , and continue the loop
 839 (lines 10 to 23) until all variables are handled. We also check whether the allocation overflows
 840 the specified $memoryLimit$. If an overflow occurs, we run a defragmentation procedure
 841 (Section 7.1) that arranges the variables more compactly and makes space for x . If we fail to
 842 allocate x , even after defragmentation, then SHIFTRY raises an exception.

843 Once Algorithm 16 has computed the map $varToBlockList$, SHIFTRY uses it to replace variable names
 844 with the memory addresses. For example, in Section 3, Pseudocode 5, variable names have been
 845 replaced by memory blocks (for example t_1 is replaced by the 4-byte access $mem_{0:4}$). Note that this
 846 memory management mechanism is only applied to the (mutable) temporaries and is not applied
 847 to (read-only) model parameters as the parameters reside in the Flash.

849 7.1 Defragmentation

851 Algorithm 17: Defragmentation

```
853 Function Defragment(oldMem : Memory, lastVar : Var):
854   newMem  $\leftarrow$  Memory()
855   Sort(oldMem.varToLocation, key=start, order=ascending)
856   filledMemory  $\leftarrow$  0
857   migrateList : (Addr, Addr, Int)[]
858   for var  $\mapsto$  (varStart, varEnd)  $\in$  oldMem.varToLocation do
859     blockSize  $\leftarrow$  varEnd – varStart
860     if var  $\neq$  lastVar  $\wedge$  varStart  $\neq$  filledMemory then
861       migrateList.Insert(varStart, filledMemory, blockSize)
862       newMem.Allocate(var, (filledMemory, filledMemory + blockSize))
863       filledMemory  $\leftarrow$  blockSize
864   return newMem, migrateList
```

867 Fragmentation is a well-known problem that any memory management mechanism must address.
 868 For example, suppose we have 96 bytes of available RAM. First, we allocate addresses 0 through 31
 869 for variable x_1 , 32 through 63 for variable x_2 , and 64 through 95 for variable x_3 . Next, suppose x_1
 870 and x_3 become dead and the memory assigned to them is deallocated. Finally, we try to allocate a
 871 variable x_4 that needs 64 bytes. Although, 64-bytes of RAM is free, the memory has been *fragmented*
 872 by x_2 and we fail to allocate x_4 . We propose a memory *defragmentation* method in Algorithm 17,
 873 which is called on line 19 of Algorithm 16, that helps SHIFTRY guarantee the absence of allocation
 874 failures due to fragmentation. In particular, defragmentation can *migrate* x_2 to occupy addresses 0
 875 through 31 that allows x_4 to be allocated at addresses 32 through 95.

877 The method Defragment in Algorithm 17 takes as input a fragmented memory $oldMem$ and
 878 the variable $lastVar$ allocating which caused the $memoryUsage$ to exceed the $memoryLimit$ (Al-
 879 gorithm 16). It returns two objects: a new Memory (Algorithm 15) object $newMem$ which is the
 880 defragmented memory and a list of 3-tuples called the $migrateList$. For example, if the state of
 881 the memory before defragmentation was $\{x_1 \mapsto (4 : 7), x_2 \mapsto (16 : 31)\}$, $newMem$ may have the

883 state $\{x_1 \mapsto (0 : 3), x_2 \mapsto (4 : 19)\}$. Every tuple (a, b, c) in the *migrateList* encodes that the live
 884 variable which was stored at addresses a through $a + c$ before defragmentation in *oldMem* is stored
 885 at addresses b through $b + c$ in the defragmented memory *newMem*. The defragmentation process
 886 runs in the following steps:

- 887 • Once [Algorithm 16](#) recognizes that allocating a new variable has overflowed the memory
 888 limit, it invokes [Algorithm 17](#) with the current memory object *oldMem*.
- 889 • [Algorithm 17](#) computes the defragmented Memory object *newMem* by pushing variables
 890 towards lower addresses if possible. This ensures the most compact placement for all variables.
- 891 • [Algorithm 16](#) continues further allocation with *newMem* providing the updated mapping
 892 from variables to their memory locations. Moreover, at the program instruction that required
 893 defragmentation, it injects a call to [Library 7](#)'s method [ShiftVars](#) in the output code with
 894 the *migrateList* as argument. At execution time, this method migrates variables from their
 895 locations in *oldMem* to their locations in *newMem*.

896 Although the first two steps are static, the last step adds a linear pass over the variables as runtime
 897 overhead. However, defragmentation is only seldomly required in practice. In particular, for our
 898 benchmarks, defragmentation is not required at all as our block-based allocation scheme leads to
 899 little fragmentation when compiling the ML models used in our evaluation.

901 8 EVALUATION

902 We evaluate on two types of ML models. First, we compare SHIFTRY with SEEDOT [Gopinath et al.
 903 2019a,b], the state-of-the-art compiler to generate code for ML models targetting KB-sized devices.
 904 For this comparison, we use two simple yet powerful models, BONSAI [Kumar et al. 2017] and
 905 PROTONN [Gupta et al. 2017], for which SEEDOT can generate efficient code. In short, our results
 906 show that SHIFTRY generates code that is smaller, faster, and more accurate. Second, we consider
 907 Recurrent Neural Networks (RNNs), a powerful class of ML models suited for inference tasks on
 908 sensor data. For these models, no prior work can generate code that can run in devices with few
 909 KBs of memory. SHIFTRY is the first compiler to automatically generate code for RNN models that
 910 can run on tiny IoT devices. For this evaluation, we use FastGRNN [Kusupati et al. 2018], an RNN
 911 model specifically designed for IoT applications.

912 SHIFTRY is implemented in 10K lines of Python and 5K lines of C++. The compilation time of our
 913 benchmarks varies between 1 minute and 20 minutes on an Intel Core i7-6700 machine with 32GB
 914 RAM and 8 cores. We run all our experiments on an Arduino Uno [Banzi and Shiloh 2014]. It has an
 915 8-bit, 16 MHz Atmega328P microcontroller, with 2 KB SRAM and 32 KB of Flash memory. SHIFTRY

918 Dataset	919	SHIFTRY			Homogenous 8-bit			Homogenous 16-bit			
		920 Float Accuracy	921 Accuracy	922 Time	923 Size	924 Accuracy	925 Time	926 Size	927 Accuracy	928 Time	929 Size
920 DSA-19	921	77.8	922 74.5	923 19	924 19	925 18.4	926 4.6	927 18	928 76.7	929 ×	31
921 INDUSTRIAL-72	922	90.0	923 88.9	924 0.6	925 14	926 64.3	927 0.1	928 12	929 89.9	920 ×	19
922 GOOGLE-12	923	93.0	924 92.4	925 44	926 20	927 8.7	928 6.0	929 18	920 92.9	921 ×	32
923 GOOGLE-30	924	84.8	925 84.2	926 54	927 23	928 3.7	929 7.7	920 22	921 85.1	922 ×	39
924 HAR-2	925	91.7	926 91.3	927 47	928 21	929 50.9	920 8.0	921 15	922 91.6	923 ×	25
925 HAR-6	926	92.0	927 89.0	928 45	929 16	920 14.3	921 8.2	922 15	923 91.7	924 ×	26
926 MNIST-10	927	98.0	928 97.0	929 15	920 19	921 11.4	922 2.2	923 17	924 98.0	925 ×	31
927 WAKEWORD-2	928	99.0	929 98.7	920 10	921 15	922 95.7	923 2.2	924 13	925 99.2	926 26	22

927 Table 4. Performance of SHIFTRY on FastGRNN models. The number of classes follows the dataset name.
 928 Accuracy is in percent, time is in seconds, and size is in kilobytes. An × in the time column indicates that
 929 configuration did not fit on the target device.

outputs C++-code which is compiled by the Arduino IDE [Banzi and Shiloh 2014] to assembly code that can run on the Uno. Arduino IDE also provides libraries that emulate floating-point arithmetic in software, thus making it possible to execute floating-point C-code on the Uno.

We evaluate on BONSAI and PROTONN models on the same datasets as used by SEEDOT [Gopinath et al. 2019a]: cifar [Krizhevsky 2009], character recognition (cr) [de Campos et al. 2009], curet [Varma and Zisserman 2005], letter [Hsu and Lin 2002], mnist [LeCun et al. 1998], usps [Hull 1994], and ward [Yang et al. 2009]. For the RNN experiments, we use models for the following (more challenging) datasets used in FASTGRNN [Kusupati et al. 2018]: dsa [Altun et al. 2010], google [Warden 2018], har [Anguita et al. 2012], mnist [LeCun et al. 1998], and wakeword. These tasks include activity recognition with data from motion sensors or smartphones, and detecting wakewords and commands to voice assistants like Google Assistant and Microsoft’s Cortana. We also evaluate a benchmark from an industrial partner who has deployed RNNs on the bat of a bat-and-ball game to provide feedback on the quality of the shots. On these benchmarks, we evaluate SHIFTRY using the following metrics: classification accuracy (Section 8.1), latency (Section 8.2), Flash usage (Section 8.3), and RAM usage (Section 8.4). We also demonstrate the general applicability of SHIFTRY by compressing a much larger RNN-based architecture into the memory limits of an ARM Cortex M4 class device (Section 8.5).

8.1 Classification accuracy

For these experiments, we define the *accuracy drop* for a particular tool as the difference between the classification accuracy (on the testing set) of the floating-point code and the code generated by the tool. Table 4 compares the accuracy of SHIFTRY to that of the floating-point, only 8-bit and only 16-bit models on RNN benchmarks. Figures 6 and 7 compare the accuracy drop of SHIFTRY with that of SEEDOT for PROTONN and BONSAI, respectively.

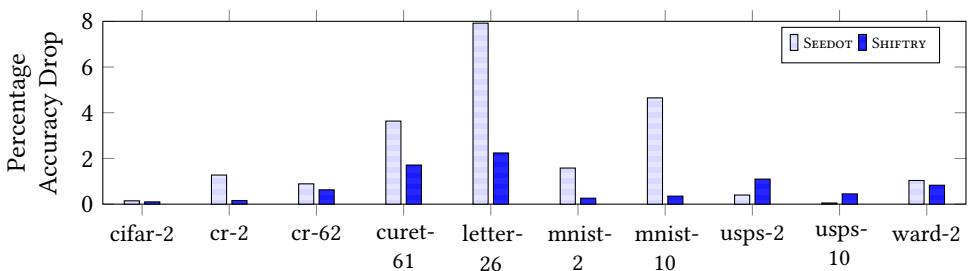


Fig. 6. Accuracy Drop for ProtoNN (lower is better)

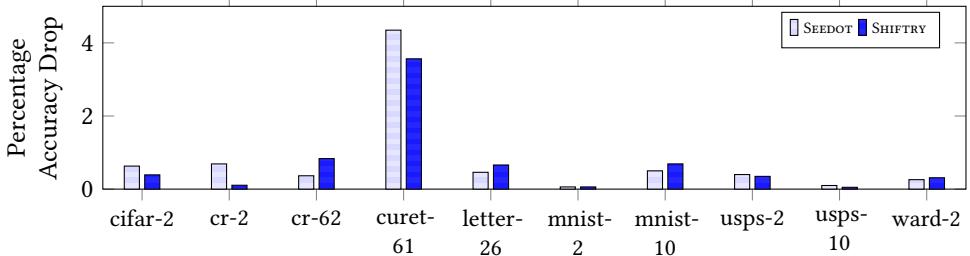


Fig. 7. Accuracy Drop for Bonsai (lower is better)

981 For all three models, the average (arithmetic mean) accuracy drop of SHIFTRY is less than 1%,
 982 showing that SHIFTRY can generate code that has comparable accuracy with floating point models.
 983 For PROTONN and BONSAI, SHIFTRY generates code that is typically more accurate than the code
 984 generated by SEEDOT. Specifically, the average (arithmetic mean) accuracy drop of SHIFTRY for
 985 PROTONN/BONSAI is 0.7%/0.8% compared to that of SEEDOT, 0.8%/2.3%.

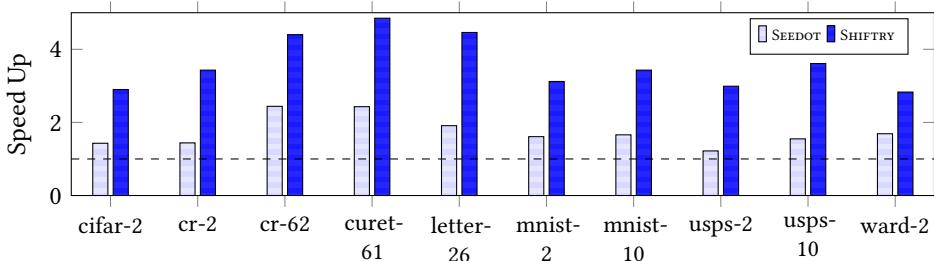
987 8.2 Latency

988 Since the RNN benchmarks can only be run on an Uno with SHIFTRY, we do not have a baseline
 989 comparison point. For SHIFTRY, the RNN inference latency varies between 0.6 seconds and a minute
 990 ([Table 4](#)). Although the latency can be further improved by hardware acceleration (e.g., Sno [[alorium](#)
 991 [n. d.](#)]) combines Arduino Uno and FPGAs), we focus on memory usage and such approaches are
 992 beyond the scope of this work.

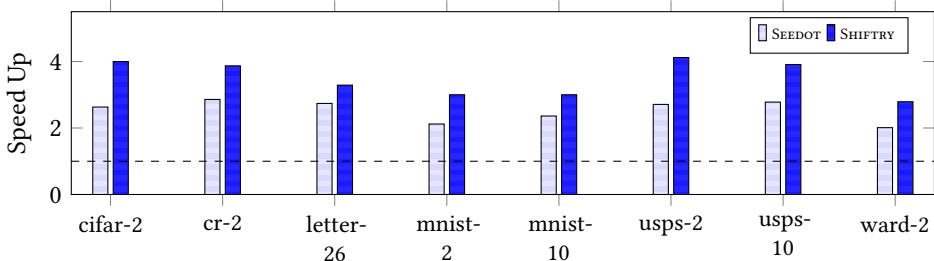
993 Figures 8 and 9 show the improvement in the inference latency of both SHIFTRY and SEEDOT
 994 compared to the floating-point implementation for PROTONN and BONSAI. The *speedup* for a tool is
 995 computed as

$$997 \text{SpeedUp(tool)} = \frac{\text{Inference Time(floating-point code)}}{\text{Inference Time(code generated by tool)}}$$

999 On the PROTONN dataset, SHIFTRY performed inference on an average (geometric mean) $3.5\times$
 1000 faster than the floating-point implementation, compared to a speedup of $1.7\times$ for SEEDOT. Similarly
 1001 for the BONSAI dataset, SHIFTRY is $3.4\times$ faster than the floating-point code, whereas SEEDOT is $2.5\times$
 1002 faster. Thus, SHIFTRY significantly improves upon the state-of-the-art in inference latency.



1015 Fig. 8. Speedup for ProtoNN (higher is better)



1027 Fig. 9. Speedup for Bonsai (higher is better)

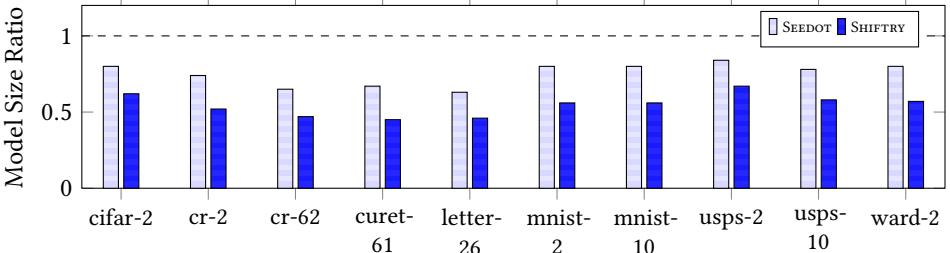


Fig. 10. Relative Model Size for ProtoNN (lower is better)

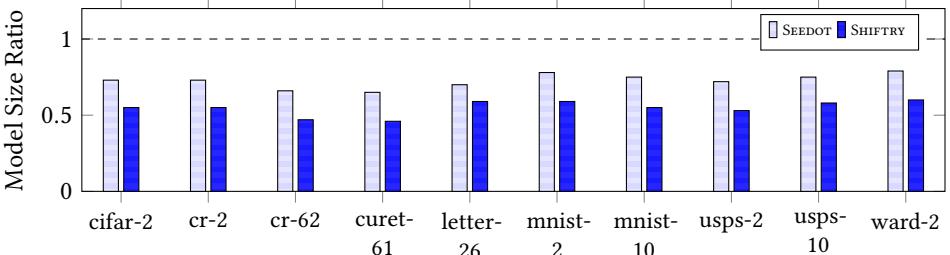


Fig. 11. Relative Model Size for Bonsai (lower is better)

8.3 Model Size Compression

To measure the Flash usage, we use the *sketch size* as measured by the Arduino IDE, the programming environment for Uno devices. The sketch size provides the total Flash usage, which includes all the Arduino boilerplate as well. We use the sketch size here because it directly dictates whether a program would fit on the device or not. In particular, programs with sketch size that exceed 32 KB fail to run on the Uno.

For the baseline RNNs, the Arduino IDE gives a compilation error that the sketch size is too large for the device. Hence, we only report the sketch sizes of SHIFTRY-generated RNNs in Table 4; observe that they are all comfortably below 32 KB.

Figures 11 and 10 present the *relative model size* on Arduino Uno for BONSAI and PROTONN, respectively. We define *relative model size* for a tool as:

$$\text{Relative Model Size(tool)} = \frac{\text{Sketch Size(code generated by tool)}}{\text{Sketch Size(floating-point code)}}$$

In addition to giving better accuracy and providing faster latency, SHIFTRY outputs code that has smaller sketch size than SEEDOT, which enables potentially larger models like RNNs to fit on the device. On an average (geometric mean), the relative size of SHIFTRY-generated code is 55% for BONSAI and PROTONN. In comparison, the relative model size of SEEDOT is 73% for BONSAI and 75% for PROTONN. This extra compression is achieved as SHIFTRY demotes some model parameters to 8-bits but SEEDOT must use 16-bits for all variables. When we used SEEDOT to generate 8-bit code, the accuracy is close to that of a random classifier.

8.4 RAM usage

On a tiny device like Arduino Uno, in addition to the sketch size, it is also important to optimize the RAM usage. We must use the limited 2 KB of RAM judiciously as exceeding it leads to undefined

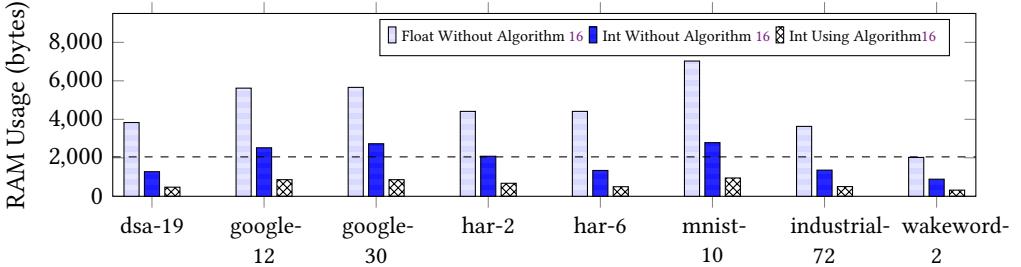


Fig. 12. RAM usage for FastGRNN (lower is better)

behavior that often manifests as non-termination at runtime. For PROTONN and BONSAI, the models are simple enough that the RAM usage is not an issue. However, for RNNs, the complex internal computations (Appendix A) can overflow the RAM. Figure 12 shows that both floating-point and SHIFTRY generated fixed-point code (without memory management) exceed the available RAM. Because there is no good way to measure the precise RAM usage on an Arduino Uno, we estimate the RAM usage from the sizes of the major temporary variables (large matrices that store intermediate results) used in the program, disregarding function call overheads, scalars, etc. Hence, even though some bars of “Int Without Algorithm 16” (fixed-point code without the memory management mechanism) appear to be below the 2KB limit, they still exceed the available RAM and fail to run. In particular, most of the RNNs without SHIFTRY’s memory management mechanism fail to fit within the RAM.

SHIFTRY’s memory management mechanism dramatically reduces the RAM required for the computations, and enables the SHIFTRY-generated programs for all RNNs to run correctly. Figure 12 demonstrates the reduction in RAM usage. SHIFTRY’s code is able to reduce estimated RAM usage to 38% of the floating-point code without using its memory management mechanism, and with the mechanism, the estimated RAM usage fell to 13% of the floating-point RAM usage.

8.5 Generality

Although our evaluation has focused on Arduino Uno and models that can fit on it, SHIFTRY is a general compiler that can generate code for richer models as well. To demonstrate this generality, we implement an RNN-based architecture [Saha et al. 2020] for Face Detection in SHIFTRY DSL. For this model, the floating-point implementation’s RAM usage is 6.9MB; SHIFTRY’s memory management reduces it to 225KB, a 97% reduction. The floating-point model’s Flash usage is 1.3 MB, which SHIFTRY reduced to 405KB, a 69% reduction. This enables us to fit the Face Detection algorithm on an ARM Cortex M4 class device [STMicroelectronics 2020] with 256 KB of RAM and 512 KB of Flash.

9 RELATED WORK

The closest related work to SHIFTRY is SEEDOT [Gopinath et al. 2019a] that uses a uniform fixed bitwidth for all variables and assign scales using static analysis, that are fine tuned using profiling data. SHIFTRY assigns different bitwidths to different variables and the scales are directly learned [Mitchell 1997] from profiling data. SEEDOT fails to meet the Flash or the RAM constraints required to run RNNs on Uno-class devices. Moreover, on the ML models SEEDOT has been evaluated on, SHIFTRY-generated code has better latency and accuracy (Section 8).

SHIFTRY is closely related to work that aims to run ML on tiny microcontrollers. ProtoNN [Gupta et al. 2017] is a variant of k-nearest-neighbors and Bonsai [Kumar et al. 2017] is a variant of decision

1128 trees. These models are designed to provide good accuracy on simple classification tasks with
 1129 models of minimal size. For more sophisticated ML tasks, we need more powerful classifiers like
 1130 FastGRNN [Kusupati et al. 2018], which provides state-of-the-art gated-RNN accuracies in KB-sized
 1131 models. Although the authors claim that FastGRNN is compatible with the Uno, their evaluation
 1132 uses microcontrollers that have 16X more memory than the Uno. To run on an Uno-class device,
 1133 one needs to address the memory management issues and thus this paper is the first to provide
 1134 an evaluation of RNNs running on Uno. In particular, the Arduino sketches written manually
 1135 in [Kusupati et al. 2018] fail to run on Uno because they exceed the Flash memory or the RAM.

1136 There are many approximate computing frameworks for floating-point [Baek and Chilimbi 2010;
 1137 Rubio-González et al. 2013; Schkufza et al. 2014; Sidiropoulos-Douskos et al. 2011; Zhu et al. 2012].
 1138 Existing float-to-fixed converters like Darulova and Kuncak [2014, 2017]; Darulova et al. [2013];
 1139 Jacob et al. [2017] lack support for multiple bitwidths which is required in our benchmarks to
 1140 compress model sizes while maintaining accuracy. Although, float-to-fixed converters for digital
 1141 signal processors (DSPs) like [Babb et al. 1999; Banerjee et al. 2003; Bečvář and Štukjuner 2005;
 1142 Brooks and Martonosi 1999; Menard et al. 2002; Nayak et al. 2001; WILLEMS 1997] can support
 1143 multiple bitwidths, they use high bitwidth operations (natively supported by DSPs) in intermediate
 1144 steps that are expensive on tiny microcontrollers. SHIFTRY-generated code is an order of magnitude
 1145 faster than the latency reported for the code generated by float-to-fixed routines of MATLAB
 1146 by [Gopinath et al. 2019a].

1147 SHIFTRY can be considered as a *quantization* framework: In ML, quantization techniques help
 1148 produce models that use low bitwidths. These techniques can be divided into three categories (in the
 1149 order of increasing requisites). The first class of techniques work purely statically on a floating-point
 1150 ML model [Krishnamoorthi 2018; Meller et al. 2019; Nagel et al. 2019]. Although, such techniques
 1151 are attractive because of their minimal requirements, their expressiveness is extremely poor. For
 1152 instance, [Nagel et al. 2019] works only for CNNs with ReLU activations and is not applicable to any
 1153 of our benchmarks. The second category includes techniques that use a validation set to help with
 1154 quantization. Both SHIFTRY and the “post-training-quantization” routine of Tensorflow-Lite [Jacob
 1155 et al. 2017] fall in this category. Although the latter has good support for CNNs, its support for
 1156 RNNs is preliminary. In particular, it lacks a quantization technique for the cells that are used by
 1157 our RNN benchmarks. Apart from expressiveness, Tensorflow-Lite is not designed to be run on
 1158 Uno-class devices; it uses an interpreter that requires over 10KB RAM.

1159 The rest of the quantization literature falls in the third category, i.e., the techniques require
 1160 backpropagation and retraining. These works do not propose mechanisms to quantize a floating-
 1161 point model. Rather, they use a modified training algorithm that generates binary/integer models at
 1162 the time of training (e.g., [Chen et al. 2019; Gong et al. 2019; He and Fan 2019; Hou et al. 2019; Li et al.
 1163 2017; Louizos et al. 2019; Martinez et al. 2018; Sakr and Shanbhag 2019; Zhao et al. 2019; Zhou et al.
 1164 2018]). This is still an active research area and an overwhelming majority of ML training algorithms
 1165 still generate floating-point models. Moreover, these approaches do not generate quantized models
 1166 that can fit in a Uno-class device and have only been evaluated on MB/GB-sized models. It is
 1167 well-known that models with fewer parameters need larger bitwidths [Fromm et al. 2018]. While
 1168 aggressive quantization to small bitwidths like 1-bit or 1.5-bits ([Courbariaux and Bengio 2016;
 1169 Hubara et al. 2016; Lin et al. 2015; Rastegari et al. 2016]) can be made to work for large models with
 1170 millions of parameters, it has not been shown to be successful for KB-sized models that can only
 1171 have hundreds or thousands of parameters.

1172 Finally, SHIFTRY focuses on targeting low bitwidth integer arithmetic. One can potentially use
 1173 custom low-bitwidth floating-point numbers [Chen et al. 2017; Gudovskiy and Rigazio 2017; Johnson
 1174 2018; Köster et al. 2017; Miyashita et al. 2016; Zhou et al. 2017] to reduce memory, however their
 1175 latency is terrible in the absence of native hardware support. Similarly, works like [Iandola et al.
 1176

1177 2016] that save models as low-bitwidth integers on disk but convert these parameters to floating-
 1178 point during computation also suffer from huge slowdowns on tiny microcontrollers that lack
 1179 floating-point units.

1180

1181 10 CONCLUSION

1182 We described SHIFTRY, a compiler that takes an ML model as input and generates code that has
 1183 minimal memory footprint, which makes running ML on tiny devices feasible. In particular, we
 1184 have demonstrated the first empirical evaluation of RNNs on Arduino Uno. While prior work aims
 1185 to reduce inference latency while maintaining accuracy, SHIFTRY is designed to minimize memory
 1186 usage while maintaining good accuracy and latency. To reduce Flash usage, we use low-bitwidth
 1187 integers with data-driven scaling that help SHIFTRY outperform state-of-the-art systems in both
 1188 latency and accuracy. Finally, SHIFTRY provides a memory management mechanism to reduce
 1189 RAM usage that enables running RNNs in 2KB of RAM. As future work, we would like to add an
 1190 FPGA-backend to SHIFTRY that would allow running ML models on FPGAs with small form factor.
 1191 Such FPGAs have extremely low energy consumption and are desirable for IoT.
 1192

1193

1194 ACKNOWLEDGMENTS

1195 We would like to thank the anonymous reviewers for their feedback on the paper. We also thank
 1196 Sridhar Gopinath, Prateek Jain, Shikhar Jaiswal, Praneeth Netrapalli, Oindrila Saha, Harsha Vardhan
 1197 Simhadri and Shubham Ugare for their helpful feedback and discussions.

1198

1199

1200 Appendices

1201

1202 A RECURRENT NEURAL NETWORKS

1203

Pseudocode 18: FastGRNN inference
 1204 algorithm

```

1205    $X \leftarrow \text{input}; h_0 \leftarrow 0$ 
1206    $W, U \leftarrow \text{model parameters}$ 
1207    $b_z, b_h \leftarrow \text{model parameters}$ 
1208    $\zeta, v \leftarrow \text{model parameters}$ 
1209    $FC, timeSteps \leftarrow \text{model parameters}$ 
1210   for  $t \in [1 : timeSteps]$  do
1211      $z_t \leftarrow$ 
1212     
$$\begin{cases} \text{sigmoid}(W \times X[t] + U \times h_{t-1} + b_z) \\ \tilde{h}_t \leftarrow \tanh(W \times X[t] + U \times h_{t-1} + b_h) \\ h_t \leftarrow (\zeta(1 - z_t) + v) \odot \tilde{h}_t + z_t \odot h_{t-1} \end{cases}$$

1213      $res \leftarrow h_{timeSteps} \times FC$ 
1214     return  $\text{argmax}(res)$ 
  
```

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Pseudocode 19: FastGRNN in SHIFTRY
 1205 DSL

```

  X := file(99, 1, 32); H := zeros(1, 100)
  W := file(32, 100); U := file(100, 100)
  Bz := file(1, 100); Bh := file(1, 100)
  Zeta := file(); Nu := file()
  FC := file(100, 30)
  float[1][100] a, b, c
  for  $i \in [1 : 99]$  do
     $a = X[i] \times W + H \times U$ 
     $b = \text{sigmoid}(a + Bz)$ 
     $c = \tanh(a + Bh)$ 
     $H = (Zeta \times (1.0 - b) + Nu) \odot c + b \odot H$ 
  return  $\text{argmax}(H \times FC)$ 
  
```

Recurrent neural networks are a popular architecture that perform computations on long chains of data by reusing parameters. For example, FastGRNN [Kusupati et al. 2018] takes advantage of sparsity to generate models with relatively few parameters. We show the classification pseudocode of FastGRNN in **Pseudocode 18**. Even though the input X may be long, the same parameters are reused in different timesteps to save space. In **Pseudocode 18**, \times represents matrix multiplication, \odot represents Hadamard product, $+$ represents matrix addition.

This algorithm, when written in SHIFTRY, results in the code in [Pseudocode 19](#) for the Google-30 dataset. Note that this code is very similar to its mathematical description in [Pseudocode 18](#). This code uses an extended syntax compared to the one presented in [Section 5](#). The function call $X := \text{file}(n_1, n_2)$ denotes that the variable X will be a matrix of dimensions $n_1 \times n_2$ read from a file “ $X.npy$ ”. If the argument list is empty, it denotes the value being read is a scalar. The function `zeros()` returns a matrix of zeros of the given dimension. In addition we also allow compound expressions and multiple declarations (`float [1][100] a, b, c`) in the extended syntax. We also allow broadcasted additions and subtractions ($1.0 - b$), scalar to matrix multiplications ($Zeta \times (1.0 - b)$), element-wise multiplications (\odot), and pointwise application of `sigmoid` and `tanh` to matrices.

B ALL SUPPORTED OPERATORS

In the following, a vector is a 1-D array, a matrix is a 2-D array, and a tensor refers to any N-D array. The following is a complete list of all operators supported by SHIFTRY: transposing a matrix, reshaping a tensor, reading or writing to subtensors, i.e., splices of tensors, maxpool, ReLU, exponentiation, argmax, signum, hyperbolic tan, sigmoid, convolution, the ternary `? : operator`, “for” loops, tensor addition and subtraction, matrix multiplication, Hadamard product (point-wise multiplication), and sparse matrix vector multiplication.

REFERENCES

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. *Compilers: Principles, Techniques, and Tools* (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

alorium. [n. d.]. Sno FPGA Module Arduino-Compatible, FPGA Based. <https://www.aloriumtech.com/sno/>.

Kerem Altun, Billur Barshan, and Orkun Tunçel. 2010. Comparative study on classifying human activities with miniature inertial and magnetic sensors. *Pattern Recognition* 43, 10 (2010), 3605–3620. <https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities>

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz. 2012. Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. In *Proceedings of the 4th International Conference on Ambient Assisted Living and Home Care (IWAAL '12)*. Springer-Verlag, Berlin, Heidelberg, 216–223. <https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones>

Jonathan Babb, Martin C. Rinard, Csaba Andras Moritz, Walter Lee, Matthew I. Frank, Rajeev Barua, and Saman P. Amarasinghe. 1999. Parallelizing Applications into Silicon. In *7th IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM '99), 21-23 April 1999, Napa, CA, USA*. IEEE, Napa, CA, USA, 70.

Woongki Baek and Trishul M. Chilimbi. 2010. Green: a framework for supporting energy-conscious programming using controlled approximation. In *Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010*. Association for Computing Machinery, New York, NY, USA, 198–209.

P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R. Uribe. 2003. Automatic conversion of floating point MATLAB programs into fixed point FPGA based hardware design. In *11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM 2003*. IEEE Computer Society, Los Alamitos, CA, USA, 263–264. <https://doi.org/10.1109/FPGA.2003.1227262>

Massimo Banzi and Michael Shiloh. 2014. *Getting started with Arduino: the open source electronics prototyping platform*. Maker Media, Inc.

M Bečvář and P Štukjunger. 2005. Fixed-point arithmetic in FPGA. *Acta Polytechnica* 45, 2 (2005).

David M. Brooks and Margaret Martonosi. 1999. Dynamically Exploiting Narrow Width Operands to Improve Processor Power and Performance. In *Proceedings of the Fifth International Symposium on High-Performance Computer Architecture, Orlando, FL, USA, January 9-12, 1999*. Association for Computing Machinery, New York, NY, USA, 13–22.

T. Chakraborty, S.N. Akshay Uttama Nambi, R. Chandra, R. Sharma, Z. Kapetanovic, M. Swaminathan, and J. Appavoo. 2018. Fall-curve: A novel primitive for IoT Fault Detection and Isolation. In *Proceedings of the Eleventh ACM International Conference on Embedded Software (SenSys '18)*.

Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. 2019. MetaQuant: Learning to Quantize by Learning to Penetrate Non-differentiable Quantization. In *Advances in Neural Information Processing Systems 32*, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 3916–3926. <http://papers.nips.cc/paper/8647-metaquant-learning-to-quantize-by-learning-to-penetrate-non-differentiable-quantization.pdf>

1275 Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu. 2017. FxpNet: Training a deep convolutional neural network in
 1276 fixed-point representation. In *2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA,*
 1277 *May 14-19, 2017*. IEEE, 2494–2501.

1278 Matthieu Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep Neural Networks with Weights and Activations
 1279 Constrained to +1 or -1. *CoRR* abs/1602.02830 (2016). arXiv:1602.02830 <http://arxiv.org/abs/1602.02830>

1280 Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals. In *The 41st Annual ACM SIGPLAN-SIGACT Symposium*
 1281 *on Principles of Programming Languages, POPL '14, San Diego, CA, USA, January 20-21, 2014*. Association for Computing
 1282 Machinery, New York, NY, USA, 235–248.

1283 Eva Darulova and Viktor Kuncak. 2017. Towards a Compiler for Reals. *ACM Trans. Program. Lang. Syst.* 39, 2, Article 8
 1284 (March 2017), 28 pages. <https://doi.org/10.1145/3014426>

1285 Eva Darulova, Viktor Kuncak, Rupak Majumdar, and Indranil Saha. 2013. Synthesis of Fixed-point Programs. In *Proceedings*
 1286 *of the Eleventh ACM International Conference on Embedded Software (EMSOFT '13)*. IEEE Press, Piscataway, NJ, USA,
 1287 Article 22, 10 pages. <http://dl.acm.org/citation.cfm?id=2555754.2555776>

1288 Teófilo Emídio de Campos, Bodla Rakesh Babu, and Manik Varma. 2009. Character Recognition in Natural Images. In
 1289 *VISAPP 2009 - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, Lisboa,*
 1290 *Portugal, February 5-8, 2009 - Volume 2*. INSTICC Press, Portugal, 273–280.

1291 Josh Fromm, Shwetak Patel, and Matthai Philipose. 2018. Heterogeneous Bitwidth Binarization in Convolutional Neural
 1292 Networks. *CoRR* abs/1805.10368 (2018). arXiv:1805.10368 <http://arxiv.org/abs/1805.10368>

1293 Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. 2019.
 1294 Differentiable Soft Quantization: Bridging Full-Precision and Low-Bit Neural Networks. In *The IEEE International*
 1295 *Conference on Computer Vision (ICCV)*.

1296 Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. 2019a. Compiling KB-Sized Machine Learning
 1297 Models to Tiny IoT Devices. In *Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and*
 1298 *Implementation (PLDI)*. Association for Computing Machinery, New York, NY, USA, 79–95. <https://www.microsoft.com/en-us/research/uploads/prod/2018/10/pldi19-SeeDot.pdf>

1299 Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. 2019b. Microsoft EdgeML Repository. <https://github.com/microsoft/EdgeML/tree/51c5ae0b81ab259f3bcab12741d7b489b7fe49de>

1300 Denis A. Gudovskiy and Luca Rigazio. 2017. ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional
 1301 Neural Networks. *CoRR* abs/1706.02393 (2017).

1302 Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal,
 1303 Raghavendra Udupa, Manik Varma, and Prateek Jain. 2017. ProtoNN: compressed and accurate kNN for resource-scarce
 1304 devices. In *International Conference on Machine Learning*. PMLR, International Convention Centre, Sydney, Australia,
 1305 1331–1340.

1306 Zhezhi He and Deliang Fan. 2019. Simultaneously Optimizing Weight and Quantizer of Ternary Neural Network Using
 1307 Truncated Gaussian Approximation. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

1308 Lu Hou, Jinhua Zhu, James Kwok, Fei Gao, Tao Qin, and Tie-Yan Liu. 2019. Normalization Helps Training of Quantized
 1309 LSTM. In *Advances in Neural Information Processing Systems 32*, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
 1310 E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 7346–7356. <http://papers.nips.cc/paper/8954-normalization-helps-training-of-quantized-lstm.pdf>

1311 Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass support vector machines. *IEEE transactions*
 1312 *on Neural Networks* 13, 2 (2002), 415–425.

1313 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized Neural Networks. In
 1314 *Advances in Neural Information Processing Systems 29*, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett
 1315 (Eds.). Curran Associates, Inc., 4107–4115. <http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf>

1316 Jonathan J. Hull. 1994. A database for handwritten text recognition research. *IEEE Transactions on pattern analysis and*
 1317 *machine intelligence* 16, 5 (1994), 550–554.

1318 Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet:
 1319 AlexNet-level accuracy with 50x fewer parameters and <1MB model size. *CoRR* abs/1602.07360 (2016).

1320 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig Adam, and Dmitry
 1321 Kalenichenko. 2017. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.
 1322 *CoRR* abs/1712.05877 (2017). arXiv:1712.05877 <http://arxiv.org/abs/1712.05877>

1323 Jeff Johnson. 2018. Rethinking floating point for deep learning. *CoRR* abs/1811.01721 (2018).

1324 Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William Constable, Oguz Elibol, Stewart Hall, Luke
 1325 Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J. Pai, and Naveen Rao. 2017. Flexpoint: An Adaptive Numerical Format
 1326 for Efficient Training of Deep Neural Networks. *CoRR* abs/1711.02213 (2017).

1327 Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for efficient inference: A whitepaper. *CoRR*
 1328 abs/1806.08342 (2018).

1324 Alex Krizhevsky. 2009. *Learning multiple layers of features from tiny images*. Technical Report. Citeseer.

1325 Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient Machine Learning in 2 KB RAM for the Internet
1326 of Things. In *International Conference on Machine Learning*. PMLR, International Convention Centre, Sydney, Australia,
1327 1935–1944.

1328 Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma. 2018. FastGRNN: A Fast,
1329 Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. In *Proceedings of the Thirty-first Annual
1330 Conference on Neural Information Processing Systems (NeurIPS)*. 9031–9042.

1331 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
1332 recognition. *Proc. IEEE* 86, 11 (1998), 2278–2324.

1333 Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. 2017. Training Quantized Nets: A Deeper
1334 Understanding. In *Advances in Neural Information Processing Systems 30*, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
1335 R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 5811–5821. <http://papers.nips.cc/paper/7163-training-quantized-nets-a-deeper-understanding.pdf>

1336 Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. 2015. Neural Networks with Few Multiplications.
1337 *CoRR* abs/1510.03009 (2015). arXiv:1510.03009 <http://arxiv.org/abs/1510.03009>

1338 Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. 2019. Relaxed Quantization
1339 for Discretized Neural Networks. In *International Conference on Learning Representations*. <https://openreview.net/forum?id=HkxjYoCqKX>

1340 Julieta Martinez, Shobhit Zakhmi, Holger H. Hoos, and James J. Little. 2018. LSQ++: Lower running time and higher recall
1341 in multi-codebook quantization. In *The European Conference on Computer Vision (ECCV)*.

1342 Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. 2019. Same, Same But Different - Recovering Neural
1343 Network Quantization Error Through Weight Factorization. *CoRR* abs/1902.01917 (2019).

1344 Daniel Menard, Daniel Chillet, François Charot, and Olivier Senteiyes. 2002. Automatic Floating-point to Fixed-point
1345 Conversion for DSP Code Generation. In *Proceedings of the 2002 International Conference on Compilers, Architecture,
1346 and Synthesis for Embedded Systems (CASES '02)*. Association for Computing Machinery, New York, NY, USA, 270–276.
<https://doi.org/10.1145/581630.581674>

1347 Tom M. Mitchell. 1997. *Machine Learning*. McGraw-Hill, New York. <http://www.cs.cmu.edu/~tom/mlbook.html>

1348 Daisuke Miyashita, Edward H. Lee, and Boris Murmann. 2016. Convolutional Neural Networks using Logarithmic Data
1349 Representation. *CoRR* abs/1603.01025 (2016).

1350 Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. 2019. Data-Free Quantization Through Weight
1351 Equalization and Bias Correction. In *2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea
1352 (South), October 27 - November 2, 2019*. IEEE, 1325–1334.

1353 Anshuman Nayak, Malay Haldar, Alok N. Choudhary, and Prithviraj Banerjee. 2001. Precision and error analysis of MATLAB
1354 applications during automated hardware synthesis for FPGAs. In *Proceedings of the Conference on Design, Automation
1355 and Test in Europe, DATE 2001, Munich, Germany, March 12-16, 2001*. 722–728.

1356 Shishir Patil, Don Kurian Dennis, Chirag Pabbaraju, Rajanikant Deshmukh, Harsha Simhadri, Manik Varma, and Pra-
1357 teek Jain. 2018. *GesturePod: Programmable Gesture Recognition for Augmenting Assistive Devices*. Technical Report.
1358 Microsoft. <https://www.microsoft.com/en-us/research/publication/gesturepod-programmable-gesture-recognition-augmenting-assistive-devices/>

1359 Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet Classification Using
1360 Binary Convolutional Neural Networks. *CoRR* abs/1603.05279 (2016). arXiv:1603.05279 <http://arxiv.org/abs/1603.05279>

1361 Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan, Koushik Sen, David H. Bailey,
1362 Costin Iancu, and David Hough. 2013. Precimonious: Tuning Assistant for Floating-point Precision. In *Proceedings of
1363 the International Conference on High Performance Computing, Networking, Storage and Analysis (SC '13)*. Association for
1364 Computing Machinery, New York, NY, USA, Article 27, 12 pages. <https://doi.org/10.1145/2503210.2503296>

1365 Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri, Manik Varma, and Prateek Jain. 2020. RNNSPool: Efficient
1366 Non-linear Pooling for RAM Constrained Inference. arXiv:cs.CV/2002.11921

1367 Charbel Sakr and Naresh Shanbhag. 2019. Per-Tensor Fixed-Point Quantization of the Back-Propagation Algorithm. In
1368 *International Conference on Learning Representations*. <https://openreview.net/forum?id=rkxaNjA9Ym>

1369 Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic optimization of floating-point programs with tunable
1370 precision. In *ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '14, Edinburgh,
United Kingdom - June 09 - 11, 2014*. 53–64.

1371 Stelios Sidiropoulos-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing Performance vs. Accuracy
1372 Trade-offs with Loop Perforation. In *Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
1373 on Foundations of Software Engineering (ESEC/FSE '11)*. Association for Computing Machinery, New York, NY, USA,
1374 124–134. <https://doi.org/10.1145/2025113.2025133>

1373 STMicroelectronics. 2020. STM32 Nucleo-144 development board with STM32F439ZI MCU, supports Arduino, ST Zio and
1374 morpho connectivity. <https://www.st.com/en/evaluation-tools/nucleo-f439zi.html>

1375 Manik Varma and Andrew Zisserman. 2005. A statistical approach to texture classification from single images. *International
1376 journal of computer vision* 62, 1-2 (2005), 61–81.

1377 Y. Wang, M. Chen, X. Wang, R. H. M. Chan, and W. J. Li. 2018. IoT for Next-Generation Racket Sports Training. *IEEE Internet
1378 of Things Journal* 5, 6 (2018), 4558–4566.

1379 Pete Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. arXiv:cs.CL/1804.03209

1380 M. WILLEMS. 1997. FRIDGE : Floating-point programming of fixed-point digital signal processors. *Proc. International
1381 Conference on Signal Processing Applications and Technology 1997 (ICSPAT-97), Sept.* (1997). <https://ci.nii.ac.jp/naid/10018558547/en/>

1382 Jingjing Yang, Yuanning Li, Yonghong Tian, Lingyu Duan, and Wen Gao. 2009. Group-sensitive multiple kernel learning for
1383 object categorization. In *Computer Vision, 2009 IEEE 12th International Conference on*. IEEE, Kyoto, Japan, 436–443.

1384 Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, and Cheng-Zhong Xu. 2019. Focused Quantization for Sparse CNNs.
1385 In *Advances in Neural Information Processing Systems 32*, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
1386 and R. Garnett (Eds.). Curran Associates, Inc., 5584–5593. <http://papers.nips.cc/paper/8796-focused-quantization-for-sparse-cnns.pdf>

1387 Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incremental Network Quantization: Towards Lossless
1388 CNNs with Low-precision Weights. In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
1389 April 24-26, 2017, Conference Track Proceedings*. OpenReview.net.

1390 Aojun Zhou, Anbang Yao, Kuan Wang, and Yurong Chen. 2018. Explicit Loss-Error-Aware Quantization for Low-Bit Deep
1391 Neural Networks. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

1392 Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. 2012. Randomized Accuracy-aware Program
1393 Transformations for Efficient Approximate Computations. In *Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
1394 Symposium on Principles of Programming Languages (POPL ’12)*. Association for Computing Machinery, New York, NY,
1395 USA, 441–454.

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421