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Abstract

Wildfire is a growing global crisis with devastating
consequences. Uncontrolled wildfires take away human lives,
destroy millions of animals and trees, degrade the air quality,
impact the biodiversity of the planet and cause substantial
economic costs. It is incredibly challenging to predict the
spatio-temporal likelihood of wildfires based on historical
data, due to their stochastic nature. Crucially though, the
accurate and reliable prediction of wildfires can help the
stakeholders and decision-makers take timely, strategic and
effective actions to prevent, detect and suppress the wildfires
before they become unmanageable. Unfortunately, most
previous studies developed predictive models that suffer
from some shortcomings: (i) in the evaluation phase, they
do not take the temporal aspects into account precisely
and they assume the independent and identically distributed
random variables; (ii) they do not evaluate their approaches
comprehensively, thus it is not clear if their proposed
predictions and selected models remain reliable across
different locations and years for practical deployment; and
(iii) for the supervised learning models, they use predictor
features and fire observations from the same time step in the
training phase, which makes the inference task infeasible for
future fire prediction. In this paper, we revisit the wildfire
predictive modeling, explore the inherent challenges from
a practical perspective and evaluate our modeling approach
comprehensively via historical burned area, climate and
geospatial data from three vast landscapes in India.

Introduction
A wildfire is an uncontrolled fire affecting areas that
consist of combustible vegetation. Such fires threaten
environmental resources and human lives significantly at a
global scale. They also cause a substantial economic burden
for governments and individuals (Thomas et al. 2017). For
instance, the Australian bushfire and the Amazon rainforest
wildfires in 2019 and 2020 affected nearly 44.5 million (18
million hectares) (Burton 2020) and 2.3 million acres of
area (CBS 2019), respectively. Also, in recent decades, there
has been an increased forest fire activity across the western
United States (Abatzoglou and Williams 2016). For instance
as of September 2020, over 3.1 million acres in California
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has burned (CAL-FIRE 2020). Although the major causes
of wildfire ignitions are dry climate, lightning, and volcanic
eruptions (Bowman et al. 2009), human mistakes also play
an important role in such incidents (Balch et al. 2017).
Besides arson and accidental ignitions, the uncontrolled use
of fire for land-clearing and agricultural purposes by local
communities (e.g., slash-and-burn farming in Southeast
Asia) is also a major source of human-caused fires.

Forest areas are vast and fire management resources are
extremely scarce; thus managing resources strategically is a
challenging task for stakeholders and decision-makers (i.e.,
forest and fire departments) in the field. In this paper, we
study wildfire spatio-temporal risk prediction by exploiting
the power of the artificial intelligence framework along
with historical burned areas, climate, and geospatial data to
assist decision-makers with identifying high-risk regions in
protected areas. Such risk estimations are helpful to plan
regarding where preventative actions and resources should
be applied during high-risk seasons of wildfires.

Although wildfire risk predictive models based on
historical data has been studied extensively in the past
(Cortez and Morais 2007; Zhang, Lim, and Sharples 2016;
Coffield et al. 2019; Catry et al. 2010), we believe it
has to be revisited in terms of modeling details and
extensive evaluation to assess accuracy, reliability, and
practicality for actual deployment and decision-making
in the field. The previous studies suffer from at least
one of the following gaps: (i) the proposed predictive
models are not evaluated comprehensively in terms of

Figure 1: Southern Western Ghats is shown in green and
three landscapes studied in this paper are shown in yellow.
In total these landscapes cover 5306 sq. km.



the train/test sets and modeling approach. To propose a
reliable solution to the domain experts, proposing the best
model for a single scenario/testing set is not sufficient.
As such, we demonstrate the performance of several
different models on several different test sets, created
with temporal considerations, to assess the consistency
of the proposed machine learning models performance to
variations in the experimental setups across three landscapes
in India. (ii) most of the previous studies only focus on
the spatial distribution of fire and not the temporal aspect
of this event when creating data points (O’Connor, Calkin,
and Thompson 2017) and splitting their datasets for the
evaluation step (Rodrigues and de la Riva 2014; Safi and
Bouroumi 2013; Castelli, Vanneschi, and Popovič 2015).
However, we evaluate our models based on a temporal
division of the data as opposed to the random division
of the entire dataset—a less challenging task compared
to our approach. (Cheng and Wang 2008) proposed a
predictive model based on a dynamic recurrent neural
network to address spatio-temporal data mining upon
historical observations in Canada. In this study, the data
was divided temporally, but it suffers from the shortcomings
discussed in item iv. (iii) they have created the data
points such that predictive features and observation labels
correspond to the same time step. However, from a practical
perspective, it is impossible to have access to future
predictive features to forecast future wildfire incidents.
As such we suggest a time lag between the predictor
features and the wildfire observation labels as explained
in the Dataset Transformation and Modeling section, to
evaluate our models more realistically. (iv) some of the
previous studies propose accuracy as their only metric to
evaluate the performance of their models. However, for
highly imbalanced datasets like wildfire, this metric could be
misleading. In this paper, we pose the problem as a binary
classification task and we address all of the above gaps in
the existing literature. We use the historical burned areas,
climate and geospatial data of three vast landscapes in India
to train and evaluate predictive models (see Figure 1).

Related Work
This paper is related to data-driven studies to forecast
wildfires risk using machine learning models (Jain et al.
2020). The major trend in literature is the use of satellite
data, local meteorological sensors and wildfire records
to predict the risk of fire occurrence. While there are
some prior studies proposing unsupervised context-based
models (Salehi et al. 2016), the mainstream of the literature
proposes supervised classification including mostly binary
classification and in a few cases multi-label classification
approaches (Sakr, Elhajj, and Mitri 2011; Özbayoğlu and
Bozer 2012). For example, (Özbayoğlu and Bozer 2012)
proposed an estimation of the burned area based on
historical data from Turkey using a multi-layer perceptron,
radial basis function networks, and support vector machines.

Binary classification methods have been extensively
explored in previous studies. For example, (Cortez and
Morais 2007) used meteorological data detected by local
sensors in weather stations (i.e., Canadian Fire Weather

Table 1: Climate and burned area datasets characteristics.

data sources spatial res. temporal res. time span missing years

IRS satellite 24m yearly

Nilgiris
1996-2016 2003, 2008 (2010, 2011 no fire years)

Sathyamangalam
1997-2016 2008 (2014 no fire years)

Uttara Kannada
1999-2016 2003, 2008 (2010, 2015 no fire years)

TerraClimate ∼ 5000m monthly available for all landscapes
1997-2017 -
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Figure 2: Burned area % across years for all landscapes.

Index and four weather conditions) from the northeast
region of Portugal to predict the burned areas modeled as
a regression task via neural nets, SVM, decision tree and
random forest techniques. In (Zhang, Lim, and Sharples
2016), the authors proposed using Moderate Resolution
Imaging Spectroradiometer (MODIS) data and logistic
regression models to understand the effect of environmental
and socioeconomic variables on predicting the spatial
distribution of wildfire in Australia. (Coffield et al. 2019)
has proposed a decision tree model as the best-performing
model to study the controls and predictability of final fire
size at the time of ignition based on fires in the boreal
forests of Alaska. (Catry et al. 2010) proposes using logistic
regression models to predict the likelihood of ignition
occurrences based on the data from Portugal.

A comparison between the performance of logistic
regression and neural nets to predict the spatial distribution
of wildfires ignition in central Portugal is studied in
(De Vasconcelos et al. 2001). (Stojanova et al. 2006) studied
the predictive performance of logistic regression, random
forests, decision trees, bagging and boosting ensemble
methods on the meteorological data, MODIS data, and
geographic data, along with the historical records of data
from Slovenia. A fire-fighting management tool including
a predictive neural network model is proposed in (Alonso-
Betanzos et al. 2003) based on weather data and historical
fire data from Galicia in northwest Spain. (Jaafari et al.
2019) proposed a binary classification model based on
an adaptive neuro-fuzzy inference system combined with
different metaheuristic optimization algorithms using a
dataset from Iran.

Motivating Domain and Datasets
In this study, we focus on datasets from three landscapes
in the Western Ghats mountain range in India. These
landscapes include Nilgiris, Sathyamangalam and Uttara
Kannada, which cover 1545, 1495 and 2266 sq. km.,
respectively. Sathyamangalam and Uttara Kannada are
referred to as Sathya. and UK. in some of the figures and
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Figure 3: Spatio-temporal distribution of climate features
across all months, Nilgiris.

tables in this paper. In this study, we develop predictive
models based on datasets studied in (Kodandapani,
Cochrane, and Sukumar 2008; Kodandapani 2013) where
further information about the landscapes and delineation of
forest fires from the Indian Remote Sensing (IRS) satellite is
provided. Using IRS satellite imagery, we obtained annual
maps of the landscapes categorized as burned or unburned
with 24m spatial resolution. These maps indicate burned
regions if a wildfire has ever affected that region during the
fire season (i.e., January to March) in a specific year.

A summary of the characteristics of the datasets including
spatial and temporal resolutions, time span and missing
years information for all landscapes is shown in Table
1. Figure 2 demonstrates the percentage of areas burned
across different years for each landscape. According to this
historical data spanning almost two decades, among the
three landscapes studied in this paper, the burned areas have
had the greatest extent in the Uttara Kannada landscape and
the lowest extent in the Sathyamangalam landscape.

To study the relationship between climate variations
and burned areas caused by wildfire incidents, we use
the TerraClimate dataset (Abatzoglou et al. 2018), which
produces monthly climate and water balance data at
about 5km spatial resolution. In particular, we use (i)
climatic water deficit (CWD); (ii) Palmer drought severity
index (PDSI); (iii) soil moisture (SOIL); (iv) maximum
average temperature (TMAX); (v) vapor pressure deficit
(VPD); and (vi) precipitation (PPT), as the climate metrics
with demonstrated links to fire activity (Williams et al.
2015; Abatzoglou and Kolden 2013). The spatio-temporal
distribution of monthly climate data used as predictor
features is shown in Figure 3, as an example for Nilgiris.
From January to May, the monthly average of the maximum
average temperature and the vapor pressure deficit are
higher compared to other months, and the soil moisture
is lower than other months. However, the precipitation

Figure 4: Spatio-temporal data transformation schema;
reshaping data from map to tabular format via discretization.

starts increasing from April. Thus, from January to March
all of these landscapes experience the highest climatic
water deficit and the lowest precipitation. This observation
explains the high likelihood of the wildfire occurrences
and burned areas during those periods captured in the IRS
dataset used in this study. Unlike other features, the spatio-
temporal average of the PDSI values across different months
has the least variation.

Dataset Transformation and Modeling
The major challenge with this study is the coarse temporal
resolution of the datasets and thus the limited number of
burned area maps available to us (i.e., less than 20 maps
(time steps) for each landscape where each map represents
the burned areas for the entire fire season in each year).
As such, we are unable to apply vision and deep learning
methods or traditional time series models to our datasets.
To remedy this issue, we discretize the landscapes into
small grid cells and transform the maps into a tabular
format for a supervised binary classification approach as
illustrated in Figure 4. Each data point (each row in the
data table) represents a pair of time and location. Through
this discretization scheme, wildfires temporal and spatial
aspects are implicitly captured. We denote the dataset for
each landscape area as D = (X,y) where X ∈ RTN×f is
a matrix of f predictor features recorded at each of these T
discrete time steps and N locations. Each time step t ∈ [T ]
is one year and each location n ∈ [N ] is a small region
in the landscape that we define through applying a grid of
size N on the entire area for the discretization of the spatial
dimension. y ∈ {0, 1}TN denotes the observation vector
associated with all data points. Note that we assume the
maps delineated from IRS data showing the burned areas are
indicative of the locations affected by the wildfire incidents.
yt,n for t ∈ [T ], n ∈ [N ] equals 1 if that location is
marked as burned in that time step in the original maps.
The f predictor features consist of monthly and aggregated
climate data along with the geospatial data. The aggregated
climate data is computed on a 3-month and 6-month basis as
demonstrated in Figure 5.

To create the data points for a supervised learning
approach, we associate the fire observations in each year
to the climate data from the previous year, to assure that



our models can be used for the wildfire risk prediction
in future times based on the ”existing climate data (i.e.,
predictor features)”. In other words, for each specific year,
we use the individual and aggregated climate data (i.e.,
CWD, PDSI, PPT, SOIL, TMAX, VPD) from the previous
year as part of the predictor features for the risk of fire
in the following year. As an example, the entire monthly
climate data from January to December of 2015 along
with the aggregated climate data are used as the predictor
features X that corresponds to the binary observations of
fire y during the fire season in 2016. To boost the predictor
feature set and incorporate more spatial information, we
also augment the datasets with geospatial data by including
two distance features, i.e., distance to road (as illustrated
in Figure 4 where darker shades show further distances to
roads within the landscape) and distance to boundaries to
incorporate the human accessibility characteristics of each
location since many of the wildfires are due to human
mistakes (Kodandapani, Cochrane, and Sukumar 2008). The
geospatial data are static and they remain similar across
different years. We include 110 features in total.

We conduct our analysis on 500m x 500m granularity
to define the size of the grid cell n ∈ [N ]. The burned
areas and climate data are smoothly projected from 24m
and 5000m spatial resolutions to 500m resolution. We did
not use a 24m resolution to mitigate the extreme imbalance
between positive and negative classes in the dataset. The
geospatial data are also created based on 500m resolution
from area boundary and roads maps for each landscape to
capture spatial information.

For each landscape and for each testing year, we train and
assess models’ performances, separately. Thus, to train and
test the predictive models, we propose to divide the data
into two parts considering the temporal dimension—this
approach is proposed to overcome the shortcoming of the
previous work where they randomly divide the data without
any temporal considerations. We show the results for two
cases here to examine the reliability and consistency of the
results and we compare it with the approach proposed by
prior studies to highlight the caveats with their assumptions.
For case I, we train all of the machine learning models based
on data from the first available year to 2015 and evaluate
the models on an unseen test dataset, which is the entire
data of 2016. For case II, we train based on data from
the first available year to 2014 and evaluate the models on
an unseen test dataset, which is the entire data of 2015
for the Nilgiris and Sathyamangalam landscapes. Note that
since the data from 2015 is not available for the Uttara
Kannada landscape, we train the model on the data from
1999 to 2013 and evaluate it on an unseen test dataset,
which is the entire data of 2014. Our temporal division
of the data results in significantly imbalanced training and
testing sets and adds another challenge to this study. We
will demonstrate later that this evaluation scheme is a more
difficult problem compared to the random partitioning of
the entire dataset proposed by previous studies due to the
stochastic and spatio-temporal nature of the fires.

Through the above proposal for data transformation, we
aim to take into account the practical and realistic challenges

Figure 5: Data modeling approach: For each cell in each
landscape, predictor features including distance to roads
and boundary and also climate data from previous year t-
1 are used as the covariates corresponding to the binary
observations of burned areas during the fire season in the
current year t. This data point generation scheme holds for
all locations N and all years T in D.

associated with the future wildfire prediction based on the
limited available data to assist the forest and fire departments
to manage their resources in the real fields via exploiting the
power of the historical data. Such practical aspects require
attention from the Artificial Intelligence for Social Impact
community.

Evaluation Results and Discussions
Predictive Models: To train the machine learning models,
we conduct a 10-fold cross-validation on the training set
over a range of possible parameters for each type of
model. According to Figures 7 and 2, the distribution of
the data varies significantly across different years. Thus,
while our test sets consist of the entire data of their
corresponding year (i.e., entire data of that year completely
unseen to the training set), we allow the cross-validation
step to be done based on the random sampling (rather
than creating validation sets on a yearly basis) to minimize
the impact of over-fitting based on a specific year in the
training phase. We present results for both linear models
(i.e., logistic regression denoted as LR) and nonlinear
models, including SVM classifiers (SVC) and the tree-based
techniques. For the tree-based models, we show results
for a single decision tree (DT) as well as methods for
bagging and boosting of decision trees including XGBoost
(XGB), bagging ensemble of decision trees (BDT), gradient
boosting (GRB) and random forest (RF). We also present
the predictive performance of a simple but almost effective
approach, which only uses the burned area observation
labels to provide the predicted likelihood of future fires. We
denote this approach as TA in the tables, which stands for
Temporal Average (the average number of times that each
location has been burned across the years of the study in
the training set). Given that the burned area labels, which
indicate fire observations, are binary, the outcome is between
0 and 1 for this TA approach. In the following equation p(n)
indicates the probability of wildfire observation in location
(or grid cell) n. p(n) =

∑T
t=0,

yt,n

T ∀n ∈ [N ].

Predictive Performance Analysis: To evaluate the pre-
dictive power of the machine learning models, we report
standard metrics including AUC, average precision (denoted



(a) Nilgiris Pred. (b) Nilgiris GT (c) Sathya. Pred. (d) Sathya. GT (e) UK. Pred. (f) UK. GT

Figure 6: Visual comparison between predictions (Pred.) of LR and ground truth (GT) data in 2016 at 500m granularity.

Table 2: Comparing all models’ performances, grid cells
granularity 500m, first test case.

Test Case I- 500m
Landscape Nilgiris-Train 1996-2015, Test 2016
Model TA LR RF XGB DT BDT GRB SVC
AUC 0.57 0.54 0.59 0.52 0.51 0.67 0.52 0.53
A-Prec. 0.033 0.03 0.046 0.039 0.027 0.053 0.027 0.028
F1 0.06 0.07 0.07 0.06 0.05 0.1 0.05 0.07
Landscape Sathyamangalam-Train 1997-2015, Test 2016
Model TA LR RF XGB DT BDT GRB SVC
AUC 0.64 0.77 0.69 0.32 0.6 0.38 0.66 0.7
A-Prec. 0.02 0.022 0.017 0.007 0.014 0.007 0.015 0.027
F1 0.07 0.04 0.03 0.01 0.04 0.01 0.03 0.02
Landscape Uttara Kannada-Train 1999-2015, Test 2016
Model TA LR RF XGB DT BDT GRB SVC
AUC 0.79 0.63 0.55 0.59 0.48 0.45 0.58 0.53
A-Prec. 0.56 0.43 0.34 0.38 0.32 0.27 0.39 0.33
F1 0.61 0.46 0.43 0.45 0.34 0.35 0.44 0.38

Table 3: Comparing all models’ performances, grid cells
granularity 500m, second test case.

Test Case II- 500m
Landscape Nilgiris-Train 1996-2014, Test 2015
Model TA LR RF XGB DT BDT GRB SVC
AUC 0.28 0.74 0.27 0.33 0.28 0.38 0.28 0.12
A-Prec. 0.004 0.007 0.003 0.004 0.003 0.003 0.003 0.002
F1 0 0.02 0 0 0 0 0 0
Landscape Sathyamangalam-Train 1997-2014, Test 2015
Model TA LR RF XGB DT BDT GRB SVC
AUC 0.53 0.54 0.34 0.53 0.53 0.3 0.53 0.51
A-Prec. 0.01 0.013 0.009 0.01 0.01 0.009 0.01 0.01
F1 0.03 0.02 0.01 0.03 0.03 0.01 0.03 0.54
Landscape Uttara Kannada-Train 1999-2013, Test 2014
Model TA LR RF XGB DT BDT GRB SVC
AUC 0.82 0.83 0.77 0.82 0.78 0.8 0.81 0.82
A-Prec. 0.37 0.4 0.32 0.39 0.3 0.32 0.39 0.39
F1 0.42 0.45 0.39 0.43 0.41 0.42 0.43 0.44

Table 4: Comparing all models’ performances based on
random partitioning of the dataset.

Train 75% - Test 25%
Landscape Nilgiris
Model LR RF XGB DT BDT GRB SVC
AUC 0.84 0.95 0.94 0.81 0.95 0.93 0.88
A-Prec. 0.33 0.7 0.65 0.43 0.7 0.61 0.43
F1 0.35 0.55 0.53 0.34 0.57 0.5 0.39
Landscape Sathyamangalam
Model LR RF XGB DT BDT GRB SVC
AUC 0.92 0.94 0.97 0.77 0.95 0.91 0.79
A-Prec. 0.24 0.49 0.44 0.16 0.49 0.3 0.052
F1 0.08 0.15 0.16 0.05 0.15 0.09 0.05
Landscape Uttara Kannada
Model LR RF XGB DT BDT GRB SVC
AUC 0.81 0.91 0.88 0.8 0.91 0.88 0.79
A-Prec. 0.48 0.74 0.66 0.52 0.74 0.64 0.52
F1 0.52 0.66 0.61 0.55 0.66 0.61 0.54
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Figure 7: Imbalance across the observation labels for
different partitioning approaches. Case 1 & 2 are based on
temporal division; random denotes random partitioning with
no temporal consideration.

as A-Prec. in tables) and F1. Table 2 and Table 3 demonstrate
results for the two test case scenarios discussed before,
where each test set is formed based on the future year’s
data and consists of the data points that are temporally
disjointed with the ones in the training set. Table 4 shows
the results for random partitioning of the dataset proposed
by the existing literature highlighted in the Related Work
section. For each landscape, the train and test set information
are shown above the corresponding part of the table. The
train/test set size for Nilgiris, Sathyamangalam and Uttara
Kannada are as follows, respectively. (i) test case 1: (80262,
6174), (95584, 5974) and (108468, 9039); (ii) test case 2:
(74088, 6174), (89610, 5974) and (99429, 9039); and (iii)
for random partitioning of the data: (64827, 21609), (76168,
25390) and (88130, 29377). The training and testing of the
models based on the random partitioning outperforms the
temporal partitioning approach as obviously demonstrated
in Table 4, compared to Tables 2 and 3. However, most
notably, this good performance does not reflect properly
on the forecasting capability of the models if they are
deployed in the real field to improve future decision making
approaches. In real-world scenarios like wildfire prediction,
historical data used as a training sample does not perfectly
represent the entire event subject to modeling, due to the
presence of confounding variables.

Figure 7 shows that when we do splits based on time (i.e.,
leftmost and middle plots), the training set class imbalance
and test set class imbalance are significantly different due
to the stochastic nature of the natural hazards across years.
However, for evaluation based on random division, the class
imbalance remains nearly similar across training and test
sets. This even distribution of data between training and test
sets in the latter case, partly explains the good performance



of the models trained and evaluated based on random
division. Since none of future years data is available to the
model during the training phase, such good performance of
the latter case does not hold in the wild where stakeholders
would use ML models for decision making for future years.
Thus, evaluation based on random division can be unrealistic
and misleading in real-world situations. Moreover, we
observed that for the random division of data, nearly all
of the machine learning models perform well. However,
their performances vary dramatically when data is divided
based on time, which is due to over-fitting of the more
complex models on the training set data and stochastic
nature of the wildfire incidents across both spatial and
temporal dimensions.

Even though some complex nonlinear models outperform
less complex ones in some cases (e.g., see RF for the
Nilgiris landscape, the test set of 2016 in Table 2),
their performance fluctuates dramatically and they do not
demonstrate consistency across different test sets (e.g., RF
performs extremely poorly with AUC of 0.27, which is even
worse than the random prediction with AUC of 0.5 for the
Nilgiris landscape test set of 2015, in Table 3).

In Figure 8, we show the performance of the temporal
averaging model vs. the number of previous years data
available to compute probabilities by TA. For Uttara
Kannada, the performance improves as we increase the
number of years for both test cases. However, for
Sathyamangalam and Nilgiris, the AUC remains mostly
around or below the performance of random guess (i.e.,
AUC of 0.5). Based on AUC values reported in Table 2 and
3, for Nilgiris landscape, LR is the only model, which results
in performance above random guess across both test cases.
TA’s performance is not consistent across both test cases and
it varies significantly based on the extent of the historical
data available (i.e., number of past years as shown in Figure
8). Similarly for the Sathya. landscape, LR outperforms
all other models. TA’s performance is also below LR for
both test cases. Unlike Nilgiris and Sathya. landscapes
where predictor features provide additional benefits for the
UK. landscape, the TA model is outperforming all machine
learning models, thus using predictor features and ML
approaches do not provide additional predictive power. As
shown in Figure 8, as we increase the number of past years
used in TA, the AUC improves consistently as well.

We emphasize the performance consistency in this study
since the main goal of this paper is to develop a practical
and reliable tool for decision-makers and stakeholders to
leverage machine learning prediction to improve prevention,
detection, and suppression of wildfires in an efficient way for
future years. Figure 6 shows the prediction of the LR model
in 2016 along with the ground truth map of the wildfire
that occurred in 2016 for all three landscapes. The visual
inspection of the results demonstrates that even though it is
challenging to pinpoint the location of future fires perfectly,
there exists a significant overlap between the fire locations
in the ground truth maps and machine learning predictions.
Therefore data-driven approaches have the potential to
provide insights for decision-makers to improve their future
actions in the field. Our modeling framework and evaluation
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Figure 8: AUC of the temporal average model vs. length
of the previous-year data is used to compute the temporal
average predictions for all landscapes.

scheme can be used for any landscapes where historical
burned areas or wildfire incidents are available.

Conclusion
Wildfire incidents can result in devastating outcomes. While
predicting this phenomenon is extremely challenging, we
demonstrated that the historical data and machine learning
models provide important insights to the stakeholders and
decision-makers to direct their resources more efficiently.
Such proactive actions can help minimize potential damage
caused by the ignition and the spread of future fires. Notably,
wildfires are stochastic events with a spatio-temporal nature.
The evaluation of predictive models requires meticulous
assessments to assure reliability and consistency for
practical deployment in the field. We demonstrated that
the independent and identically distributed assumption of
random variables in the evaluation phase, proposed by
prior studies, may lead to a misleading and unrealistic
performance analysis. A successful deployment scale-up
in the field depends on the level and extent of active
collaborations between stakeholders (e.g., forest and fire
departments) and the AI community. We believe that
deployment challenges vary across different regions of
the world and depend on resources and constraints that
concern local forest managers. Thus, the AI solutions and
the data preparation pipeline may need modifications in
each new location to incorporate realistic constraints, data,
and resource availabilities into AI solutions to advance
over current practices. We also believe data-driven solutions
should be used intelligently for reliable resource allocations
with the human expert in the loop to monitor, assess and
reiterate to ensure a positive impact in the long run.

Acknowledgments. We gratefully acknowledge the sup-
port of the following organizations: Council of Scientific
and Industrial Research, Government of India, Forest
Departments of Karnataka, Kerala, and Tamil Nadu, and the
Indian Space Research Organisation.

References
Abatzoglou, J. T.; Dobrowski, S. Z.; Parks, S. A.; and
Hegewisch, K. C. 2018. TerraClimate, a high-resolution
global dataset of monthly climate and climatic water balance
from 1958–2015. Scientific data 5: 170191.



Abatzoglou, J. T.; and Kolden, C. A. 2013. Relationships
between climate and macroscale area burned in the western
United States. International Journal of Wildland Fire 22(7):
1003–1020.
Abatzoglou, J. T.; and Williams, A. P. 2016. Impact of
anthropogenic climate change on wildfire across western US
forests. Proceedings of the National Academy of Sciences
113(42): 11770–11775.
Alonso-Betanzos, A.; Fontenla-Romero, O.; Guijarro-
Berdiñas, B.; Hernández-Pereira, E.; Andrade, M. I. P.;
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