
Online Influence Maximization under Linear
Threshold Model

Shuai Li1∗ Fang Kong1 Kejie Tang1 Qizhi Li1 Wei Chen2

1Shanghai Jiao Tong University 2Microsoft Research
{shuaili8,fangkong,tangkj00,qizhili}@sjtu.edu.cn weic@microsoft.com

Abstract

Online influence maximization (OIM) is a popular problem in social networks to
learn influence propagation model parameters and maximize the influence spread at
the same time. Most previous studies focus on the independent cascade (IC) model
under the edge-level feedback. In this paper, we address OIM in the linear threshold
(LT) model. Because node activations in the LT model are due to the aggregated
effect of all active neighbors, it is more natural to model OIM with the node-level
feedback. And this brings new challenge in online learning since we only observe
aggregated effect from groups of nodes and the groups are also random. Based on
the linear structure in node activations, we incorporate ideas from linear bandits
and design an algorithm LT-LinUCB that is consistent with the observed feedback.
By proving group observation modulated (GOM) bounded smoothness property, a
novel result of the influence difference in terms of the random observations, we
provide a regret of order Õ(poly(m)

√
T), where m is the number of edges and

T is the number of rounds. This is the first theoretical result in such order for
OIM under the LT model. In the end, we also provide an algorithm OIM-ETC with
regret bound O(poly(m) T 2/3), which is model-independent, simple and has less
requirement on online feedback and offline computation.

1 Introduction

Social networks play an important role in spreading information in people’s life. In viral marketing,
companies wish to broadcast their products by making use of the network structure and characteristics
of influence propagation. Specifically, they want to provide free products to the selected users (seed
nodes), let them advertise through the network and maximize the purchase. There is a budget of the
free products and the goal of the companies is to select the optimal seed set to maximize the influence
spread. This problem is called influence maximization (IM) [19] and has a wide range of applications
including recommendation systems, link prediction and information diffusion.

In the IM problem, the social network is usually modeled as a directed graph with nodes representing
users and directed edges representing influence relationship between users. IM studies how to select
a seed set under a given influence propagation model to maximize the influence spread when the
weights are known. Independent cascade (IC) model and linear threshold (LT) model [19] are two
most widely used models to characterize the influence propagation in a social network, and both
models use weights on edges as model parameters.

In many real applications, however, the weights are usually unknown in advance. For example, in
viral marketing, it is unrealistic to assume that the companies know the influence abilities beforehand.
A possible solution is to learn those parameters from the diffusion data collected in the past [6, 36].
But this method lacks the ability of adaptive learning based on the need of influence maximization.
∗Corresponding author

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

This motivates the studies on the online influence maximization (OIM) problem [28, 10, 11, 47,
49, 50, 45, 44], where the learner tries to estimate model parameters and maximize influence in an
iterative manner.

The studies on OIM are based on the multi-armed bandit (MAB) problem, which is a classical online
learning framework and has been well studied in the literature [27]. MAB problem is formulated as a
T -round game between a learner and the environment. In each round, the learner needs to decide
which action to play and the environment will then reveal a reward according to the chosen action.
The objective of the learner is to accumulate as many rewards as possible. An MAB algorithm needs
to deal with the tradeoff between exploration and exploitation: whether the learner should try actions
that has not been explored well yet (exploration) or focus on the action with the best performance so
far (exploitation). Two algorithms, the explore-then-commit (ETC) [15] and the upper confidence
bound (UCB) [4], are widely followed in the stochastic MAB setting, where the reward of each action
follows an unknown but fixed distribution.

Most existing works in OIM focus on IC model under edge-level feedback [10, 11, 47, 49, 50], where
the information propagates independently between pairs of users and the learner can observe the live-
ness of individual edges as long as its source node is influenced. The independence assumption makes
the formulation simple but a bit unrealistic. Often in the real scenarios, the influence propagations are
correlated with each other. The LT model is usually used to model the herd behavior that a person is
more likely to be influenced if many of her friends are influenced [7, 17, 20]. Thus for the LT model,
it is more natural to use the node-level feedback where we only observe the node activations, since it
is hard to pinpoint which neighbor or neighbors actually contribute to an activation in a herd behavior.

In this paper, we first formulate the OIM problem under the LT model with the node-level feedback
and distill effective information based on the feedback. The main challenge is that only the aggregated
group effect on node activations can be observed and the aggregated groups are also random. Based
on the linear structure of the LT model, we incorporate the idea of linear bandits and propose the
LT-LinUCB algorithm, whose update mechanism is consistent with the distilled information. By
proving group observation modulated (GOM) bounded smoothness, a key property on the influence
spread under two different weight vectors, we can bound the regret. Such a property is similar to
the triggering probability modulated (TPM) bounded smoothness condition under the IC model with
edge-level feedback [47], but the derivation in our case under the node-level feedback is more difficult.
The regret is of order O(poly(m)

√
T log T), where m is the number of edges and T is the number

of rounds. Our LT-LinUCB is the first OIM algorithm under the LT model that achieves the regret in
this order. Finally we give OIM-ETC algorithm, applying to both IC and LT with node-level feedback.
Though simple, it has less requirement on the observed feedback and the offline computation, and it
achieves the regret bound O(poly(m)T 2/3), O(poly(m) log(T)/∆2).

Related Work The problem of IM was first proposed as a discrete optimization problem by Kempe
et al. [19]. Since then, various aspects of IM have been extensively studied (see [9, 31] for surveys in
this area). Two most popular models in this field are the IC and LT models. The former assumes that
the influence between pairs of users are independent and the latter characterizes the herd behavior.
Some works [46, 18, 19, 42] study the IC model and some [12, 16, 19, 42] study the LT model. They
all assume the weights on the edges are known and focus on the model properties and approximated
solutions. We treat them as the offline setting.

When the weight vectors are unknown, Chen et al. [11, 47] study the problem in the online setting,
selecting seed sets as well as learning the parameters. They study the IC model with edge-level
feedback, propose CUCB algorithm and show that CUCB achieves the distribution-dependent and
distribution-independent regret bounds of O(poly(m) log(T)) and O(poly(m)

√
T) respectively.

Later Wen et al. [49] consider the large-scale setting and assume the edge probability is a linear func-
tion of the edge’s feature vector. They provide a LinUCB-based algorithm with O(dmn

√
T ln(T))

worst-case regret, where d is the feature dimension and n is the number of nodes. Wu et al. [50]
assume that each edge probability can be decomposed as the product of the influence probability of
the start node and the susceptibility probability of the end node motivated by network assortativity.
All these works study the IC model with edge-level feedback.

Vaswani et al. [44] uses a heuristic objective function for OIM and brings up a model-independent
algorithm under the pairwise feedback, where a node is influenced by a seed node or not. This applies
to both IC and LT and the feedback scheme is relaxed than the edge-level feedback. Unfortunately,

2

however, the heuristic objective has no theoretical approximation guarantee. Also, Vaswani et al. [45]
study the IC model with node-level feedback about the estimation gap to that under the edge-level
feedback but has no regret analysis. A report [43] studies the LT model with node-level feedback by
optimization approaches but without theoretical guarantees. There is another work [26] studying the
problem of linear multi-resource allocation, which can be formulated as a bipartite LT model. But
they assume every node in the left partition (resources) is selected and the algorithm needs to assign
allocations for each pair of left node and right node (tasks) representing the corresponding allocation
of resources on tasks. Thus the problem is different from our OIM. The OIM problem under LT has
been open for several years. We are the first to provide a reasonable formulation with an algorithm of
regret Õ(

√
T).

OIM is a variant of combinatorial MAB (CMAB) [10, 22], where in each round the learner selects a
combination of (base) arms. Most works [25, 24] study stochastic setting with the linear objective and
semi-bandit feedback where the learner can observe the selected base arm’s reward and the reward of
the action is a linear function of these base arms’ rewards. CMAB in the stochastic setting with the
linear objective and bandit feedback, where only the linear reward of the selected combination can be
observed, is a special case of linear bandits. In the linear bandit setting, the learner selects a vector
each round and the reward is a linear function of the selected vector action [3]. The most popular
method to solve it is to construct confidence ellipsoids [14, 1, 38]. There are also works [8, 13] for
CMAB in the adversarial setting and bandit feedback. But OIM is different: its objective function is
non-linear and is dependent on unchosen and probabilistically triggered base arms.

OIM is related to the problem of online learning with graph feedback [2] where the learner can
observe the feedback of unchosen arms based on the graph structure. Though some of them study
random graphs [33, 29, 21] where the set of observed arms is random, the settings are different.
Under the graph feedback, the observations of unchosen arms are additional and the reward only
depends on the chosen arms, while under the OIM, the additional observations also contribute to
the reward. Cascading bandits [23, 30] also consider triggering on any selected list of arms and the
triggering is in the order of the lists. Compared with graph feedback and OIM setting, its triggering
graph is determined by the learning agent, not the adversary.

As a generalization of graph feedback, partial monitoring [5] is also related to OIM. Most works in
this direction, if applied directly to the OIM setting, are inefficient due to the exponentially large
action space. Lin et al. [32] study a combinatorial version of partial monitoring and their algorithm
provides a regret of order O(poly(m)T 2/3 log T) for OIM with LT. Our OIM-ETC, however, has
regret bounds of O(poly(m)T 2/3) (better in the order of T) as well as a problem-dependent bound
O(poly(m) log T).

2 Setting

This section describes the setting of online influence maximization (OIM) under linear threshold (LT)
model. The IM problem characterizes how to choose the seed nodes to maximize the influence spread
on a social network. The network is usually represented by a directed graph G = (V,E) where V
is the set of users and E is the set of relationships between users. Each edge e is associated with a
weight w(e) ∈ [0, 1]. For example, an edge e = (u, v) =: eu,v could represent user v follows user u
on Twitter and w(e) represents the ‘influence ability’ of user u on user v. Denote w = (w(e))e∈E to
be the weight vector and n = |V | ,m = |E| , D to be node number, edge number and the propagation
diameter respectively, where the propagation diameter is defined as the length of the longest simple
path in the graph. Let N(v) = N in(v) be the set of all incoming neighbors of v, shortened as
in-neighbors.

Recall that under IC model, each edge is alive with probability equal to the associated weight
independently and a node is influenced if there is a directed path connecting from a seed node in the
realized graph. Compared to the IC model, the LT model does not require the strong assumption of
independence and describes the joint influence of the active in-neighbors on a user, reflecting the herd
behavior that often occurs in real life [7, 17, 20].

Now we describe in detail the diffusion process under the LT model. Suppose the seed set is S. In the
beginning, each node is assigned with a threshold θv , which is independently uniformly drawn from
[0, 1] and characterizes the susceptibility level of node v. Denote θ = (θv)v∈V to be the threshold
vector. Let Sτ be the set of activated nodes by the end of time τ . At time τ = 0, only nodes in

3

the seed set are activated: S0 = S. At time τ + 1 with τ ≥ 0, for any node v /∈ Sτ that has not
been activated yet, it will be activated if the aggregated influence of its active in-neighbors exceeds
its threshold:

∑
u∈N(v)∩Sτ

w(eu,v) ≥ θv. Such diffusion process will last at most D time steps. The

size of the influenced nodes is denoted as r(S,w, θ) = |SD|. Let r(S,w) = E [r(S,w, θ)] be the
influence spread of seed set S where the expectation is taken over all random variables θv’s. The
IM problem is to find the seed set S with the size at most K under weight vector w to maximize
the influence spread, maxS∈A r(S,w), where A = {S ⊂ V : |S| ≤ K} is the action set for the
seed nodes. We also adopt the usual assumption that

∑
u∈N(v) w(eu,v) ≤ 1 for any v ∈ V . This

assumption makes LT have an equivalent live-edge graph formulation like IC model [19, 9]. The
term of graph G and seed size K will be omitted when the context is clear. Here we emphasize that
the model parameters are the weights w while the threshold vector θ is not model parameter (which
follows uniform distribution).

The (offline) IM is NP-hard under the LT model but it can be approximately solved [19, 42]. For
a fixed weight vector w, let SOpt

w be an optimal seed set and Optw be its corresponding influence
spread: SOpt

w ∈ argmaxS∈Ar(S,w) and Optw = r(SOpt
w , w). Let Oracle be an (offline) oracle

that outputs a solution given the weight vector as input. Then for α, β ∈ [0, 1], the Oracle is an
(α, β)-approximation if P (r(S′, w) ≥ α ·Optw) ≥ β where S′ = Oracle(w) is a solution returned
by the Oracle for the weight vector w. Note when α = β = 1 the oracle is exact.

The online version is to maximize the influence spread when the weight vector (or the model
parameter) w = (w(e))e∈E is unknown. In each round t, the learner selects a seed set St, receives
the observations and then updates itself accordingly. For the type of observations, previous works on
IC mostly assume the edge-level feedback: the learner can observe the outgoing edges of each active
node [11, 49, 50]. But for the LT model, it is not very realistic to assume the learner can observe
which in-neighbor influences the target user since the LT model characterizes the aggregate influence
of a crowd. So we consider a more realistic node-level feedback2 in this paper: the learner can only
observe the influence diffusion process on node sets as St,0, . . . , St,τ , . . . in round t.

The objective of the OIM is to minimize the cumulative η-scaled regret [10, 49] over total T rounds:

R(T) = E

[
T∑
t=1

Rt

]
= E

[
η · T ·Optw −

T∑
t=1

r(St, w)

]
, (1)

where the expectation is over the randomness on the threshold vector and the output of the adopted
offline oracle in each round .

Throughout this paper, we will use ‘round’ t to denote a step in online learning and use ‘time’ τ of
round t to denote an influence diffusion step of seed set St in round t.

3 LT-LinUCB Algorithm

In this section, we show how to distill effective information based on the feedback and propose
a LinUCB-type algorithm, LT-LinUCB, for OIM under LT. For each node v ∈ V , denote wv =

(w(eu,v))u∈N(v) to be the weight vector of its incoming edges. Let χ(eu,v) ∈ {0, 1}|N(v)| be the
one-hot representation of the edge eu,v over all of v’s incoming edges {eu,v : u ∈ N(v)}, that is
its e′-entry is 1 if and only if e′ = eu,v. Then w(eu,v) = χ(eu,v)

>wv. For a subset of edges
E′ ⊆ {eu,v : u ∈ N(v)}, we define χ(E′) :=

∑
e∈E′ χ(e) ∈ {0, 1}|N(v)| to be the vector whose

e-entry is 1 if and only if e ∈ E′. Here we abuse the notation that χ({e}) = χ(e). By this notation,
the weight sum of the edges in E′ is simply written as χ(E′)>wv. A subset V ′ ⊂ N(v) of v’s
in-neighbors can activate v if the weight sum of associated edges exceeds the threshold, that is
χ(E′)>wv ≥ θv with E′ = {eu,v : u ∈ V ′}.
Fix a diffusion process S0, S1, . . . , Sτ , . . ., where the seed set is S0. For each node v, define

τ1(v) := min
τ
{τ = 0, . . . , D : N(v) ∩ Sτ 6= ∅} (2)

2One may think of the node-level feedback as knowing only the set of nodes activated by the end of the
diffusion process. We refer to this as (partial) node-level feedback and ours as (full) node-level feedback. This
naming comes from [35].

4

as the earliest time step when node v has active in-neighbors. Particularly we set τ1(v) = D + 1 if
node v has no active in-neighbor until the diffusion ends. For any τ ≥ τ1(v), further define

Eτ (v) := {eu,v : u ∈ N(v) ∩ Sτ} (3)

as the set of incoming edges associated with active in-neighbors of v at time step τ .

Recall that the learner can only observe the aggregated influence ability of a node’s active in-neighbors.
Let τ2(v) represent the time step that node v is influenced (τ2(v) > τ1(v)), which is equivalent to
mean that v’s active in-neighbors of time τ2(v)− 1 succeed to influence it but those in time τ2(v)− 2
fail (E−1 = ∅). Thus the defintion of τ2(v) can be written as

τ2(v) :=
{
τ = 0, . . . , D : χ(Eτ−2(v))>wv < θv ≤ χ(Eτ−1(v))>wv

}
. (4)

For consistency, we set τ2(v) = D + 1 if node v is finally not influenced after the information
diffusion ends. Then based on the definition of τ1(v) and τ2(v), we can obtain that node v is not
influenced at time τ ∈ (τ1(v), τ2(v)), which means that the set of active in-neighbors of v at time
step τ − 1 fails to activate it.

According to the rule of information diffusion under the LT model, an event that E′ ⊆
{eu,v : u ∈ N(v)} fails to activate v is equivalent to χ(E′)>wv < θv, which happens with
probability 1 − χ(E′)>wv since θv is uniformly drawn from [0, 1]. Similarly an event that
E′ ⊆ {eu,v : u ∈ N(v)} succeeds to activate v is equivalent to χ(E′)>wv ≥ θv, which happens
with probability χ(E′)>wv. So for node v who has active in-neighbors, v is not influenced at time
step τ (τ1(v) < τ < τ2(v)) means that the set of v’s active in-neighbors by τ − 1 fails to activate
it, thus we can use (χ(Eτ−1(v)), 0) to update our belief on the unknown weight vector wv; v is
influenced at time step τ2(v) means that the set of v’s active in-neighbors by τ2(v)− 1 succeeds to
activate it, we can thus use (χ(Eτ2(v)−1(v)), 1) to update our belief on the unknown weight vector
wv; v is finally not influenced means that all of its active in-neighbors (by time step D) fail to activate
it, we can use (χ(Eτ2(v)−1(v)), 0) to update wv since τ2(v) is defined as D+ 1 in this case. Note all
of these events are correlated (based on a same θv), thus we can only choose at most one of them
to update wv for node v who has active in-neighbors. If v has no active in-neighbors, we have no
observation on wv and could update nothing.

s v2

v1

v3

v4

v5

v6

v7

τ = 0

s v2

v1

v3

v4

v5

v6

v7

τ = 1

s v2

v1

v3

v4

v5

v6

v7

τ = 2

s v2

v1

v3

v4

v5

v6

v7

τ = 3

Eτ1

Eτ2−1

v1, v2, v3

s v2

v1

v3

v4

v5

v6

v7

s v2

v1

v3

v4

v5

v6

v7

v4

s v2

v1

v3

v4

v5

v6

v7

s v2

v1

v3

v4

v5

v6

v7

v5

s v2

v1

v3

v4

v5

v6

v7

s v2

v1

v3

v4

v5

v6

v7

v6

s v2

v1

v3

v4

v5

v6

v7

s v2

v1

v3

v4

v5

v6

v7

v7

s v2

v1

v3

v4

v5

v6

v7

s v2

v1

v3

v4

v5

v6

v7

Figure 1: An example of diffusion process starting from S = {s} under LT. The upper part describes
an influence diffusion process where yellow nodes represent influenced nodes by the current time.
The lower part describes what Eτ1 , Eτ2−1 are where we use blue (red) color to represent the edges
and the associated active in-neighbors in Eτ1 (Eτ2−1, respectively) for the objective black node.

5

Figure 1 gives an example of diffusion process and the definitions of edge-sets Eτ1 and Eτ2−1.
The diffusion process is illustrated by the upper four figures, where the set Sτ of influenced nodes
by time τ is yellow colored. The lower five columns represent the sets Eτ1 , Eτ2−1 for different
nodes. For example, node v7 has active in-neighbors starting from τ = 1, thus τ1(v7) = 1 and
Eτ1(v7)(v7) = {eu,v7 : u ∈ N(v7) ∩ S1} = {ev1,v7 , ev2,v7}. And v7 is influenced at τ = 3 thus
τ2(v7) = 3 and Eτ2(v7)−1(v7) = {eu,v7 : u ∈ N(v7) ∩ S2} = {ev1,v7 , ev2,v7 , ev5,v7}. Node v6 has
no active in-neighbors, thus τ1(v6) = τ2(v6) = D + 1, both its Eτ1(v6)(v6) and Eτ2(v6)−1(v6) are
empty sets.

The above describes how to distill key observations for a diffusion under the LT model and also
explains the update rule in the design of the algorithm. Denote τ1, τ2, Eτ at round t as τt,1, τt,2, Et,τ
and the diffusion process at round t as St,0, . . . , St,τ , Here we abuse a bit the notation S to
represent both the seed set and the spread set in a round when the context is clear.

Our algorithm LT-LinUCB is given in Algorithm 1. It maintains the Gramian matrix Mv and the
moment vector bv of regressand by regressors to store the information for wv. At each round t, the
learner first computes the confidence ellipsoid for wv based on the current information (line 4) (see
the following lemma).

Lemma 1. Given {(At, yt)}∞t=1 with At ∈ {0, 1}N and yt ∈ {0, 1} as a Bernoulli random
variable with E [yt | A1, y1, . . . , At−1, yt−1, At] = A>t wv, let Mt = I +

∑t
s=1AsA

>
s and

ŵt = M−1
t

(∑t
s=1Asys

)
be the linear regression estimator. Then with probability at least 1− δ,

for all t ≥ 1, it holds that wv lies in the confidence set

C̃t :=

{
w′ ∈ [0, 1]N : ‖w′ − ŵt‖Mt

≤
√
N log(1 + tN) + 2 log

1

δ
+
√
N

}
.

Algorithm 1 LT-LinUCB

1: Input: Graph G = (V,E); seed set cardinality K; exploration parameter ρt,v > 0 for any t, v;
offline oracle PairOracle

2: Initialize: M0,v ← I ∈ R|N(v)|×|N(v)|, b0,v ← 0 ∈ R|N(v)|×1, ŵ0,v ← 0 ∈ R|N(v)|×1 for any
node v ∈ V

3: for t = 1, 2, 3, . . . do
4: Compute the confidence ellipsoid Ct,v =

{
w′v ∈ [0, 1]|N(v)|×1 : ‖w′v − ŵt−1,v‖Mt−1,v

≤ ρt,v
}

for any node v ∈ V
5: Compute the pair (St, wt) by PairOracle with confidence set Ct = {Ct,v}v∈V and seed set

cardinality K
6: Select the seed set St and observe the feedback
7: // Update
8: for node v ∈ V do
9: Initialize At,v ← 0 ∈ R|N(v)|×1, yt,v ← 0 ∈ R

10: Uniformly randomly choose τ ∈ {τ ′ : τt,1(v) ≤ τ ′ ≤ τt,2(v)− 1}
11: if v is influenced and τ = τt,2(v)− 1 then
12: At,v = χ (Et,τ (v)), yt,v = 1
13: else if τ = τ1(v), . . . , τ2(v)− 2 or τ = τ2(v)− 1 but v is not influenced then
14: At,v = χ (Et,τ (v)), yt,v = 0
15: end if
16: Mt,v ←Mt−1,v +At,vA

>
t,v, bt,v ← bt−1,v + yt,vAt,v, ŵt,v = M−1

t,v bt,v
17: end for
18: end for

This lemma is a direct corollary of [1, Theorem 2] for the concentration property of the weight vector

wv . Thus when ρt,v ≥
√
|N(v)| log(1 + t|N(v)|) + 2 log 1

δ +
√
|N(v)|, the true weight vector wv

lies in the confidence set Ct,v (line 4) for any t with probability at least 1− δ.

Given the confidence set Cv for wv, the algorithm expects to select the seed set by solving the
weight-constrained influence maximization (WCIM) problem

argmax(S,w′):S∈A,w′∈C r(S,w
′) . (5)

6

This (offline) optimization problem turns out to be highly nontrivial. Since we want to focus more on
the online learning solution, we defer the full discussion on the offline optimization, including its
general difficulty and our proposed approximate algorithms for certain graph classes such as directed
acyclic graphs to Appendix B.

Suppose its best solution is (SPOpt
C , wPOpt

C) where ‘P’ stands for ‘pair’. Let PairOracle be an
offline oracle to solve the optimization problem. We say PairOracle is an (α, β)-approximation
oracle if P

(
r(S′, w′) ≥ α · r(SPOpt

C , wPOpt
C)

)
≥ β where (S′, w′) is an output by the oracle when

the confidence set is C. Then the algorithm runs with the seed set output by the PairOracle and the
confidence set Ct = {Ct,v}v∈V (line 5).

After observing the diffusion process (line 6), For each node v who has active in-neighbors, we
randomly choose its active in-neighbors at time step τ1(v), . . . , τ2(v)− 1 to update (line 10). Specifi-
cally, if v is influenced and τ = τ2(v)−1, then it means that the set of active in-neighbors at time step
τ succeeds to activate v, thus we use (χ(Et,τ (v)), 1) to update (line 12); if τ = τ1(v), . . . , τ2(v)− 2
or τ = τ2(v) − 1 but node v is not influenced, it means that the set of active in-neighbors at τ
fail to activate node v, thus we use (χ(Et,τ (v)), 0) to update (line 14). These updates are consis-
tent with the distilled observations we get for nodes who have active in-neighbors. For node v
who has no active in-neighbors, we have no obervation on wv and not update on it since the set
{τ ′ : τ1(v) ≤ τ ′ ≤ τ2(v)− 1} is an empty set in this case.

For example in Figure 1, node v7 has active in-neighbors from τ1(v7) = 1 and is influenced at
τ2(v7) = 3. The LT-LinUCB will uniformly randomly choose τ ∈ {1, 2} (line 10). It updates
(Av7 = χ(E1(v7)), yv7 = 0) if τ = 1 (line 14) and (Av7 = χ(E2(v7)), yv7 = 1) otherwise
(line 12). For nodes v1, v2, v3, they all have τ1 = 0 and τ2 = 1. Thus for these three nodes, the
algorithm chooses τ = 0 (line 10) and updates (Av = χ(E0(v)), yv = 1) (line 12). Node v4

has active in-neighbors from τ1(v4) = 1 but is not influenced finally, the algorithm will randomly
choose τ ∈ {1, 2 . . . , D} and update (Av4 = χ(Eτ (v4)), yv4 = 0) (line 14). Node v6 has no active
in-neighbors, so we have no observation for its weight vector and will not update on it.

3.1 Regret Analysis

We now provide the group observation modulated (GOM) bounded smoothness property for LT
model, an important relationship of the influence spreads under two weight vectors. It plays a crucial
role in the regret analysis and states that the difference of the influence spread r(S,w) under two
weight vectors can be bounded in terms of the weight differences of the distilled observed edge sets
under one weight vector. It is conceptually similar to the triggering probability modulate (TPM)
bounded smoothness condition under the IC model with edge-level feedback [47], but its derivation
and usage are quite different. For the seed set S, define the set of all nodes related to a node v, VS,v ,
to be the set of nodes that are on any path from S to v in graph G.
Theorem 1. (GOM bounded smoothness) For any two weight vectors w,w′ ∈ [0, 1]m with∑

u∈N(v) w(eu,v) ≤ 1, the difference of their influence spread for any seed set S can be bounded as

|r(S,w′)− r(S,w)| ≤ E

[∑
v∈V \S

∑
u∈VS,v

τ2(u)−1∑
τ=τ1(u)

∣∣∣∣∣∣
∑

e∈Eτ (u)

(w′(e)− w(e))

∣∣∣∣∣∣
]
, (6)

where the definitions of τ1(u), τ2(u) and Eτ (u) are all under weight vector w, and the expectation is
taken over the randomness of the thresholds on nodes.

This theorem connects the reward difference with weight differences on the distilled observations,
which are also the information used to update the algorithm (line 7-17). It links the effective
observations, updates of the algorithm and the regret analysis. The proof needs to deal with intricate
dependency among activation events, and is put in Appendix A.1. due to the space constraint.

For seed set S ∈ A and node u ∈ V \ S, define NS,u :=
∑
v∈V \S 1{u ∈ VS,v} ≤ n−K to be the

number of nodes that u is relevant to. Then for the vector NS = (NS,u)u∈V , define the upper bound
of its L2-norm over all feasible seed sets

γ(G) := max
S∈A

√∑
u∈V

N2
S,u ≤ (n−K)

√
n = O(n3/2) ,

7

Algorithm 2 OIM-ETC

1: Input: G = (V,E), seed size K, exploration budget k, time horizon T , offline oracle Oracle
2: for s ∈ [k], u ∈ V do
3: Choose {u} as the seed set
4: Xs(eu,v) := 1{v is activated} for any v ∈ Nout(u)
5: end for
6: Compute ŵ(e) := 1

k

∑k
s=1Xs(e) for any e ∈ E

7: Ŝ = Oracle(ŵ)
8: for the remaining T − nk rounds do
9: Choose Ŝ as the seed set

10: end for

which is a constant related to the graph. Then we have the following regret bound.
Theorem 2. Suppose the LT-LinUCB runs with an (α, β)-approximation PairOracle and parameter

ρt,v = ρt =
√
n log(1 + tn) + 2 log 1

δ +
√
n for any node v ∈ V . Then the αβ-scaled regret satisfies

R(T) ≤ 2ρT γ(G)D
√
mnT log(1 + T)/ log(1 + n) + nδ · T (n− k) . (7)

When δ = 1/(n
√
T), R(T) ≤ C · γ(G) Dn

√
mT log(T) for some universal constant C.

Due to space limits, the proof and the detailed discussions, as well as the values of γ(G), are put in
Appendix A.

4 The Explore-then-Commit Algorithm

This section presents the explore-then-commit (ETC) algorithm for OIM. Though simple, it is efficient
and model independent, applying to both LT and IC model with less requirement on feedback and
offline computation.

Recall that under LT model, a node v is activated if the sum of weights from active in-neighbors
exceeds the threshold θv, which is uniformly drawn from [0, 1]. Since the feedback is node-level,
if the activated node v has more than one active in-neighbors, then we can only observe the group
influence effect of her active in-neighbors instead of each single in-neighbor. A simple way to
overcome this limitation and manage to observe directly the single weight w(eu,v) is to select a single
seed {u} and take only the first step influence as feedback, which formulates our OIM-ETC algorithm
(Algorithm 2), representing the ETC algorithm of the OIM problem.

Our OIM-ETC takes the exploration budget k as input parameter such that each node u is selected
as the (single) seed for k rounds (line 3). For each round in which u is the seed, each outgoing
neighbor (shortened as out-neighbor) v ∈ Nout(u) will be activated in the first step with probability
P (w(eu,v) > θv) = w(eu,v) since the threshold θv is independently uniformly drawn from [0, 1].
Thus the first-step node-level feedback is actually edge-level feedback and we can observe the
independent edges from the first-step feedback (line 4). Since each node is selected k times, we have
k observations of Bernoulli random variables with expectation w(eu,v) in this exploration phase.
Then we take the empirical estimate ŵ(e) for each w(e) (line 6) after the exploration and run with
the seed set output by the offline Oracle (line 7) for the remaining T − nk exploitation rounds (line
9). We assume the offline Oracle is (α, β)-approximation.

Since it only needs the first step of the diffusion process and calls only once of the usual IM oracle, it
is efficient and has less requirement. By selecting reasonable k, we can derive good regret bounds.
Before that we need two definitions.
Definition 1. (Bad seed set) A seed set S is bad if r(S,w) < α ·Optw. The set of bad seed sets is
SB := {S | r(S,w) < α ·Optw}.
Definition 2. (Gaps of bad seed sets) For a bad seed set S ∈ SB , its gap is defined as ∆S :=
α ·Optw − r(S,w). The maximum and minimum gap are defined as

∆max := α ·Optw −min {r(S,w) | S ∈ SB} , (8)
∆min := α ·Optw −max {r(S,w) | S ∈ SB} . (9)

8

Theorem 3. When k = max
{

1, 2m2n2

∆2
min

ln
(
T∆2

min

mn3

)}
, the αβ-scaled regret bound of our OIM-ETC

algorithm over T rounds satisfies

R(T) ≤ min

{
T∆max, n∆max +

2m2n3∆max

∆2
min

(
1 + max

{
0, ln

(
T∆2

min

mn3

)})}
= O

(
m2n3∆max

∆2
min

ln(T)

)
. (10)

When k = 3.9(m2T/n)2/3, the αβ-scaled regret bound of OIM-ETC algorithm over T rounds satisfies

R(T) ≤ 3.9(mn)4/3T 2/3 + 1 = O
(

(mn)4/3T 2/3
)
. (11)

The proof of the problem-dependent bound follows routine ideas of ETC algorithms but the proof of
the problem-independent bound is new. The proofs and discussions are put in Appendix C.

5 Conclusion

In this paper, we formulate the problem of OIM under LT model with node-level feedback and design
how to distill effective information from observations. We prove a novel GOM bounded smoothness
property for the spread function, which relates the limited observations, algorithm updates and the
regret analysis. We propose LT-LinUCB algorithm, provide rigorous theoretical analysis and show
a competitive regret bound of O(poly(m)

√
T ln(T)). Our LT-LinUCB is the first algorithm for LT

model with such regret order. Besides, we design OIM-ETC algorithm with theoretical analysis on its
distribution-dependent and distribution-independent regret bounds. The algorithm is efficient, applies
to both LT and IC models, and has less requirements on feedback and offline computation.

In studying the OIM with LT model, we encounter an optimization problem of weight-constrained
influence maximization (WCIM). Reconsidering an (offline) optimization problem by relaxing some
fixed parameter to elements of a convex set is expected to be common in online learning. So we
believe this problem could have independent interest. Also the OIM problem under IC model with
node-level feedback is an interesting future work. Our regret analysis goes through thanks to the
linearity of the LT model. But the local triggering is nonlinear for IC model, and thus we expect more
challenges in the design and analysis of IC model with node-level feedback. Applying Thompson
sampling to influence maximization is also an interesting future direction, but it could also be
challenging, since it may not work well with offline approximation oracles as pointed out in [48].

9

Acknowledgement

We thank Chihao Zhang for valuable discussions.

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320,
2011.

[2] Noga Alon, Nicolo Cesa-Bianchi, Ofer Dekel, and Tomer Koren. Online learning with feedback
graphs: Beyond bandits. In Annual Conference on Learning Theory, volume 40. Microtome
Publishing, 2015.

[3] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3:397–422, 2002.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-armed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[5] Gábor Bartók, Dean P Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial
monitoring—classification, regret bounds, and algorithms. Mathematics of Operations Research,
39(4):967–997, 2014.

[6] Simon Bourigault, Sylvain Lamprier, and Patrick Gallinari. Representation learning for infor-
mation diffusion through social networks: An embedded cascade model. In Proceedings of the
9th ACM international conference on Web Search and Data Mining, pages 573–582, 2016.

[7] Damon Centola and Michael Macy. Complex contagions and the weakness of long ties.
American journal of Sociology, 113(3):702–734, 2007.

[8] Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and
System Sciences, 78(5):1404–1422, 2012.

[9] Wei Chen, Laks V. S. Lakshmanan, and Carlos Castillo. Information and Influence Propagation
in Social Networks. Morgan & Claypool Publishers, 2013.

[10] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework,
results and applications. In Proceedings of the 30th International Conference on Machine
Learning, pages 151–159, 2013.

[11] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and
its extension to probabilistically triggered arms. The Journal of Machine Learning Research,
17(1):1746–1778, 2016.

[12] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social networks under
the linear threshold model. In Proceedings of the 2010 IEEE International Conference on Data
Mining, pages 88–97, 2010.

[13] Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, et al. Com-
binatorial bandits revisited. In Advances in Neural Information Processing Systems, pages
2116–2124, 2015.

[14] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic Linear Optimization under
Bandit Feedback. Citeseer, 2008.

[15] Aurélien Garivier, Tor Lattimore, and Emilie Kaufmann. On explore-then-commit strategies. In
Advances in Neural Information Processing Systems, pages 784–792, 2016.

[16] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. SIMPATH: An efficient algorithm for
influence maximization under the linear threshold model. In Proceedings of the 2011 IEEE
11th International Conference on Data Mining, pages 211–220, 2011.

10

[17] Mark Granovetter. Threshold models of collective behavior. American journal of sociology,
83(6):1420–1443, 1978.

[18] Kyomin Jung, Wooram Heo, and Wei Chen. IRIE: Scalable and robust influence maximization
in social networks. In Proceedings of the 2012 IEEE 12th International Conference on Data
Mining, pages 918–923, 2012.

[19] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 137–146, 2003.

[20] Elias Boutros Khalil, Bistra Dilkina, and Le Song. Scalable diffusion-aware optimization of
network topology. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1226–1235, 2014.

[21] Tomáš Kocák, Gergely Neu, and Michal Valko. Online learning with erdős-rényi side-
observation graphs. In Proceedings of the 32nd Conference on Uncertainty in Artificial
Intelligence, pages 339–346, 2016.

[22] Fang Kong, Qizhi Li, and Shuai Li. Survey on online influence maximization. Computer
Science, 47(5):7–13, 2020.

[23] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits:
Learning to rank in the cascade model. In Proceedings of the 32nd International Conference on
Machine Learning, pages 767–776, 2015.

[24] Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid
bandits: Fast combinatorial optimization with learning. In Proceedings of the 30th Conference
on Uncertainty in Artificial Intelligence, pages 420–429, 2014.

[25] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight Regret Bounds for
Stochastic Combinatorial Semi-Bandits. In Proceedings of the 18th International Conference
on Artificial Intelligence and Statistics, pages 535–543, 2015.

[26] Tor Lattimore, Koby Crammer, and Csaba Szepesvári. Linear multi-resource allocation with
semi-bandit feedback. In Advances in Neural Information Processing Systems, pages 964–972,
2015.

[27] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[28] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart. Online influence maxi-
mization. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 645–654, 2015.

[29] Shuai Li, Wei Chen, Zheng Wen, and Kwong-Sak Leung. Stochastic online learning with prob-
abilistic graph feedback. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
2020.

[30] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
bandits. In Proceedings of the 33rd International Conference on Machine Learning, pages
1245–1253, 2016.

[31] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on social graphs:
A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10):1852–1872, 2018.

[32] Tian Lin, Bruno Abrahao, Robert Kleinberg, John Lui, and Wei Chen. Combinatorial par-
tial monitoring game with linear feedback and its applications. In Proceedings of the 31st
International Conference on Machine Learning, pages 901–909, 2014.

[33] Fang Liu, Swapna Buccapatnam, and Ness Shroff. Information directed sampling for stochastic
bandits with graph feedback. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, 2018.

11

[34] Elchanan Mossel and Sebastien Roch. Submodularity of influence in social networks: From
local to global. SIAM Journal on Computing, 39(6):2176–2188, 2010.

[35] Harikrishna Narasimhan, David C Parkes, and Yaron Singer. Learnability of influence in
networks. In Advances in Neural Information Processing Systems, pages 3186–3194, 2015.

[36] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic cascades. In Pro-
ceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems, pages 211–222, 2012.

[37] Parikshit Ram and Alexander G Gray. Maximum inner-product search using cone trees. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 931–939, 2012.

[38] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

[39] Fumin Shen, Wei Liu, Shaoting Zhang, Yang Yang, and Heng Tao Shen. Learning binary codes
for maximum inner product search. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4148–4156, 2015.

[40] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search (mips). In Advances in Neural Information Processing Systems, pages
2321–2329, 2014.

[41] Anthony Man-Cho So, Yinyu Ye, and Jiawei Zhang. A unified theorem on sdp rank reduction.
Mathematics of Operations Research, 33(4):910–920, 2008.

[42] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A
martingale approach. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1539–1554, 2015.

[43] Sharan Vaswani and Nayantara Duttachoudhury. Learning influence diffusion probabilities
under the linear threshold model. Github pages, 2013. https://vaswanis.github.io/
social_networks_report.pdf.

[44] Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lak-
shmanan, and Mark Schmidt. Model-independent online learning for influence maximization.
In Proceedings of the 34th International Conference on Machine Learning, pages 3530–3539,
2017.

[45] Sharan Vaswani, Laks V. S. Lakshmanan, Mark Schmidt, et al. Influence maximization with
bandits. arXiv preprint arXiv:1503.00024, 2015.

[46] Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization for independent cas-
cade model in large-scale social networks. Data Mining and Knowledge Discovery, 25(3):545–
576, 2012.

[47] Qinshi Wang and Wei Chen. Improving regret bounds for combinatorial semi-bandits with
probabilistically triggered arms and its applications. In Advances in Neural Information
Processing Systems, pages 1161–1171, 2017.

[48] Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In Proceedings
of the 35th International Conference on Machine Learning, pages 5114–5122, 2018.

[49] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maxi-
mization under independent cascade model with semi-bandit feedback. In Advances in Neural
Information Processing Systems, pages 3022–3032, 2017.

[50] Qingyun Wu, Zhige Li, Huazheng Wang, Wei Chen, and Hongning Wang. Factorization bandits
for online influence maximization. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 636–646, 2019.

12

https://vaswanis.github.io/social_networks_report.pdf
https://vaswanis.github.io/social_networks_report.pdf

A Analysis and Discussions of LT-LinUCB

A.1 Proof of Theorem 1

Let rvS(w) be the probability that node v will be influenced under the weight vector w when the seed
set is S. Then

|r(S,w′)− r(S,w)|

≤
∑

v∈V \S

|rvS(w′)− rvS(w)|

=
∑

v∈V \S

Eθ∼(U [0,1])n [1{v is influenced under w′, θ} 6= 1{v is influenced under w, θ}] ,

where we use U [0, 1] to denote the uniform distribution on the interval [0, 1]. The reason that the
activation of v is different under w and w′ must be that during the propagation from S to v, at
some step τ and some node u ∈ VS,v, the activation of u is different. We enumerate u ∈ VS,v and
enumerate τ from 1 to D to bound the above probability. Recall that D is the propagation diameter.
Henceforth in this section, parameters w, w′, S, and v are all fixed. All the randomness comes from
θ ∼ (U [0, 1])n, and once θ is determined, the diffusion process is determined. Thus, we could assume
that every event is a subset of [0, 1]n. Define the following event, given the seed set S and target node
v:

E0 = {θ | 1{v is influenced under w′, θ} 6= 1{v is influenced under w, θ}}.
Thus

|r(S,w′)− r(S,w)| ≤
∑

v∈V \S

Pr
θ∼(U [0,1])n

{E0}. (12)

Let Φ(w, θ) = (S0 = S, S1, . . . , SD) be the sequence of activation sets given weight factor w and
threshold factor θ. Let Φi(w, θ) = Si be the set of nodes activated by time step i. For every node
u ∈ VS,v , we define the event that u is the first node that has different activation under w and w′.

E1(u) = {θ | ∃τ ∈ [D],∀τ ′ < τ, Φτ ′(w, θ) = Φτ ′(w
′, θ),

u ∈ (Φτ (w, θ) \ Φτ (w′, θ)) ∪ (Φτ (w′, θ) \ Φτ (w, θ))} .

It is clear that
E0 ⊆

⋃
u∈VS,v

E1(u) . (13)

Note that for each node u ∈ VS,v , u may be activated at different time steps from different paths, or
not activated at all. Thus, the fact that u is not activated at one time step may have implications on
u’s activations at other time steps, and thus we need to carefully classify the activation of u in order
to bound the probability of E1(u). Define the following events for each τ ∈ [D]:

E2,0(u, τ) = {θ | ∀τ ′ < τ,Φτ ′(w, θ) = Φτ ′(w
′, θ), u 6∈ Φτ−1(w, θ)} ,

E2,1(u, τ) = {θ | ∀τ ′ < τ,Φτ ′(w, θ) = Φτ ′(w
′, θ), u ∈ Φτ (w, θ) \ Φτ (w′, θ)} ,

E2,2(u, τ) = {θ | ∀τ ′ < τ,Φτ ′(w, θ) = Φτ ′(w
′, θ), u ∈ Φτ (w′, θ) \ Φτ (w, θ)} ,

E3,1(u, τ) = {θ | u ∈ Φτ (w, θ) \ Φτ (w′, θ)} ,
E3,2(u, τ) = {θ | u ∈ Φτ (w′, θ) \ Φτ (w, θ)} .

Note that all the events E2,1(u, τ), E2,2(u, τ) for τ ∈ [D] are mutually exclusive. Therefore,

Pr
θ∼(U [0,1])n

{E1(u)} =

D∑
τ=1

Pr
θ∼(U [0,1])n

{E2,1(u, τ)}+

D∑
τ=1

Pr
θ∼(U [0,1])n

{E2,2(u, τ)} . (14)

We first bound Prθ∼(U [0,1])n{E2,1(u, τ)}. Now fix all entries of θ vector except θu, denoted as θ−u,
and the corresponding subevent of E2,1(u, τ) is defined as E2,1(u, τ, θ−u) ⊆ E2,1(u, τ). Similarly
E2,0(u, τ, θ−u) ⊆ E2,0(u, τ) and E3,1(u, τ, θ−u) ⊆ E3,1(u, τ) are defined. Also E2,1(u, τ, θ−u) =
E2,0(u, τ, θ−u) ∩ E3,1(u, τ, θ−u).

13

Note that E2,1(u, τ) = E2,0(u, τ) ∩ E3,1(u, τ), and E2,2(u, τ) = E2,0(u, τ) ∩ E3,2(u, τ). Thus

Pr
θ∼(U [0,1])n

{E2,1(u, τ)} = Pr
θ∼(U [0,1])n

{E2,0(u, τ)} · Pr
θ∼(U [0,1])n

{E3,1(u, τ) | E2,0(u, τ)} . (15)

Then

Pr
θu∼U [0,1]

{E2,1(u, τ, θ−u)} = Pr
θu∼U [0,1]

{E2,0(u, τ, θ−u)}· Pr
θu∼U [0,1]

{E3,1(u, τ, θ−u) | E2,0(u, τ, θ−u)}.

(16)
Symmetric equations also hold for E2,2(u, τ, θ−u).

In the event E2,0(u, τ, θ−u), all entries in θ vector is fixed except for θu. It is easy to check that if
(θ−u, θu) ∈ E2,0(u, τ, θ−u), then for all θ′u ≥ θu, (θ−u, θ

′
u) ∈ E2,0(u, τ, θ−u). This is because the

θ−u is fixed, so the activations of all nodes other than u have the same conditions, while for u it is
even harder to activate u with larger θu. Therefore, in E2,0(u, τ, θ−u), the entry on θu must be an
interval from some lowest value to 1. Let θu,2,0(τ, θ−u) be the left point of this interval. That is
E2,0(u, τ, θ−u) = {(θ−u, θu) | θu > θu,2,0(τ, θ−u)}. Then we have

Pr
θu∼U [0,1]

{E2,0(u, τ, θ−u)} = 1− θu,2,0(τ, θ−u). (17)

For now, let’s first assume that E2,0(u, τ, θ−u) 6= ∅, that is, θu,2,0(τ, θ−u) < 1. In the event
E2,0(u, τ, θ−u), we know that the set of activated nodes until τ − 1 are the same under both w and
w′ and u is not activated by time τ − 1, and since θ−u is fixed, the set of activated nodes by time
τ − 1 are all fixed. We denote the set of nodes activated by time step i under event E2,0(u, τ, θ−u) as
Φi(E2,0(u, τ, θ−u)).

Now conditioned on the event E2,0(u, τ, θ−u), we consider event E3,1(u, τ, θ−u) ∪ E3,2(u, τ, θ−u).
This means that conditioned on θu > θu,2,0(τ, θ−u) and a fixed activated set Φτ−1(E2,0(u, τ, θ−u))
by time τ−1, u is activated at step τ under one ofw andw′ but not both. According to the information
diffsuion under the LT model, this means either the following inequality holds,∑

u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u)

w′(eu′,u) < θu ≤
∑

u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u)

w(eu′,u) .

or the following holds∑
u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u)

w(eu′,u) < θu ≤
∑

u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u)

w′(eu′,u) .

This in turn implies that

Pr
θu∼U [0,1]

{E3,1(u, τ, θ−u) ∪ E3,2(u, τ, θ−u) | E2,0(u, τ, θ−u)}

=

∣∣∣∑u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u) w(eu′,u)−
∑
u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u) w

′(eu′,u)
∣∣∣

1− θu,2,0(τ, θ−u)
.

Plugging the above equality and Eq.(17) into Eq.(16), and use the fact that E3,1(u, τ, θ−u) and
E3,2(u, τ, θ−u) are mutually exclusive, we have

Pr
θu∼U [0,1]

{E2,1(u, τ, θ−u) ∪ E2,2(u, τ, θ−u)}

=

∣∣∣∣∣∣
∑

u′∈Φτ−1(E2,0(u,τ,θ−u))∩N(u)

(w(eu′,u)− w′(eu′,u))

∣∣∣∣∣∣ . (18)

Note that when E2,0(u, τ, θ−u) = ∅, both the LHS and the RHS of the above equality is zero, so this
equality holds in general.

We now need to relax event E2,0(u, τ, θ−u), since it depends on both w and w′. We define a new
event to detach it from w′,

E4,0(u, τ, θ−u) = {θ = (θ−u, θu) | u 6∈ Φτ−1(w, θ)} .

14

It is clear that E2,0(u, τ, θ−u) ⊆ E4,0(u, τ, θ−u). Moreover, when E2,0(u, τ, θ−u) 6= ∅, we see that
both events E2,0(u, τ, θ−u) and E4,0(u, τ, θ−u) have fixed θ−u and dictate that u is not activated
by time τ − 1 under w. This implies that they have the same set of nodes activated by time step
i for i ≤ τ − 1. Denote Φi(E4,0(u, τ, θ−u)) be this set. The above means that for all i ≤ τ − 1,
Φi(E2,0(u, τ, θ−u)) = Φi(E4,0(u, τ, θ−u)). Therefore, we can relax Eq.(18) to get the following.

Pr
θu∼U [0,1]

{E2,1(u, τ, θ−u) ∪ E2,2(u, τ, θ−u)}

≤

∣∣∣∣∣∣
∑

u′∈Φτ−1(E4,0(u,τ,θ−u))∩N(u)

(w(eu′,u)− w′(eu′,u))

∣∣∣∣∣∣ .
Note that when E2,0(u, τ, θ−u) = ∅, the LHS of above is zero, so the inequality still holds.

Combining the above with Eq.(14), we have

Pr
θ∼(U [0,1])n

{E1(u)}

=

∫
θ−u∈[0,1]n−1

D∑
τ=1

Pr
θu∼U [0,1]

{E2,1(u, τ, θ−u) ∪ E2,2(u, τ, θ−u)} dθ−u

=

D∑
τ=1

∫
θ−u∈[0,1]n−1

Pr
θu∼U [0,1]

{E2,1(u, τ, θ−u) ∪ E2,2(u, τ, θ−u)} dθ−u

≤
D∑
τ=1

∫
θ−u∈[0,1]n−1

∣∣∣∣∣∣
∑

u′∈Φτ−1(E4,0(u,τ,θ−u))∩N(u)

(w(eu′,u)− w′(eu′,u))

∣∣∣∣∣∣ dθ−u

=

D∑
τ=1

Eθ−u∼(U [0,1])n−1

∣∣∣∣∣∣
∑

u′∈Φτ−1(E4,0(u,τ,θ−u))∩N(u)

(w(eu′,u)− w′(eu′,u))

∣∣∣∣∣∣
 .

Combining the above with Eq.(12) and Eq.(13), we have

|r(S,w′)− r(S,w)|

≤
∑

v∈V \S

∑
u∈VS,v

D∑
τ=1

Eθ−u∼(U [0,1])n−1

∣∣∣∣∣∣
∑

u′∈Φτ−1(E4,0(u,τ,θ−u))∩N(u)

(w(eu′,u)− w′(eu′,u))

∣∣∣∣∣∣

= E

[∑
v∈V \S

∑
u∈VS,v

τ2(u)−1∑
τ=τ1(u)

∣∣∣∣∣∣
∑

e∈Eτ (u)

(w(e)− w′(e))

∣∣∣∣∣∣
]
,

where the last equality comes from the definition of τ1(u),τ2(u) and Eτ (u) under weight vector w
and the expectation is taken over the randomness of the thresholds on nodes, specifically the value of
τ1(u),τ2(u) and Eτ (u) for each time step τ . Thus we get the desired result.

A.2 Proof of the Regret

The key Theorem 1 describes the difference of the influence spread under two weight vectors in
terms of the (expected) weight differences of some edge sets, which coincides with the possible
observations under LT model. So this theorem justifies why we distill the information and design the
updates of the algorithm LT-LinUCB in this way. Next lemma further states the rationality explicitly.
Recall that w is the (unknown) true weight vector.

Lemma 2. Let S,w′ be the seed set and the weight vector output at line 5 of PairOracle in a round
t. Then for each fixed threshold θ ∈ [0, 1]n,

τ2(u)−1∑
τ=τ1(u)

∣∣∣∣∣∣
∑

e∈Eτ (u)

(w′(e)− w(e))

∣∣∣∣∣∣ ≤ D · E [∣∣A>u (w′u − wu)
∣∣] ,

15

where the definitions of τ1(u), τ2(u) and Eτ (u) are defined under weight vector w, Au is the value
of At,u updated in lines 11–15 in round t, which is the distilled edge set chosen by LT-LinUCB to
update for node u, and the expectation is taken over the randomness of τ (line 10) in determining Au
when u has active in-neighbors.

Proof. Let Du = τ2(u) − τ1(u). If u has active in-neighbors, then according to line 7-17 of the
Algorithm 1, Au = χ(Eτ (u)) where τ = τ1(u), . . . , τ2(u)− 1 with probability 1/Du respectively.
Thus,

E
[∣∣A>u (w′u − wu)

∣∣] =
1

Du

τ2(u)−1∑
τ=τ1(u)

∣∣χ(Eτ (u))>(w′u − wu)
∣∣

=
1

Du

τ2(u)−1∑
τ=τ1(u)

∣∣∣∣∣∣
∑

e∈Eτ (u)

(w′(e)− w(e))

∣∣∣∣∣∣
 .

Since the diffusion process lasts for at most D steps, it is straightforward that Du ≤ D, thus we get
the inequality holds.

If u has no active in-neighbors, then by definition the values of both LHS and RHS are 0, thus the
inequality still holds.

Now we are ready to prove the regret bound.

Proof of Theorem 2. Define the failure event

F =
{
∃t ≤ T, v ∈ V : ‖wv − ŵt−1,v‖Mt−1,v

> ρt,v

}
(19)

to represent the true weight vector wv does not lie in the confidence ellipsoid Ct,v for some round t

and node v. Then by Lemma 1, when ρt,v = ρt =
√
n log(1 + tn) + 2 log 1

δ +
√
n, Fc holds with

probability at least 1− nδ. Next we bound the regret conditioned on the event Fc.
Recall that PairOracle is an (α, β)-approximation oracle, adopted in LT-LinUCB. Then the (α, β)-
scaled regret of round t satisfies

E [Rt] = E [αβ ·Optw − r(St, w)] ≤ E
[
αβ · r(SPOpt

Ct , wPOpt
Ct)− r(St, w)

]
≤ E [r(St, wt)− r(St, w)] ,

where the last inequality is by the property that PairOracle is (α, β)-approximation, and the
expectation is over the randomness of the oracle and the randomness in the influence spread.

Then by Theorem 1 and Lemma 2,

E [r(St, wt)− r(St, w)] ≤ D · E

 ∑
v∈V \St

∑
u∈VSt,v

∣∣A>t,u(wt,u − wu)
∣∣

≤ D · E

 ∑
v∈V \St

∑
u∈VSt,v

‖At,u‖M−1
t−1,u

‖wt,u − wu‖Mt−1,u

≤ D · E

 ∑
v∈V \St

∑
u∈VSt,v

2ρt ‖At,u‖M−1
t−1,u

 ,
since wt,u, wu are both in the confidence set. Thus

R(T) = E

[
T∑
t=1

Rt

]
≤ 2ρTD · E

 T∑
t=1

∑
v∈V \St

∑
u∈VSt,v

‖At,u‖M−1
t−1,u

16

≤ 2ρTD · E

√√√√(T∑

t=1

∑
u∈V

N2
St,u

)(
T∑
t=1

∑
u∈V
‖At,u‖2M−1

t−1,u

)
≤ 2ρTD · E

√Tγ(G) ·

√√√√(T∑
t=1

∑
u∈V
‖At,u‖2M−1

t−1,u

)
where the second line is by Cauchy-Schwartz inequality.

Note that Mt,u = Mt−1,u +At,uA
>
t,u and

det(Mt,u) = det
(
Mt−1,u +At,uA

>
t,u

)
= det

(
M

1/2
t−1,u

(
I +M

−1/2
t−1,uAt,uA

>
t,uM

−1/2
t−1,u

)
M

1/2
t−1,u

)
= det(Mt−1,u) det

(
I +M

−1/2
t−1,uAt,uA

>
t,uM

−1/2
t−1,u

)
= det(Mt−1,u)

(
1 + ‖At,u‖2M−1

t−1,u

)
where the last inequality holds because the determinant of a matrix is the product of its eigenvalues
and the matrix I + xx> has eigenvalues 1 and 1 + ‖x‖22. And here

∥∥∥M−1/2
t−1 At,u

∥∥∥ = ‖At,u‖M−1
t−1

.
Then

T∑
t=1

∑
u∈V
‖At,u‖2M−1

t−1,u
≤

T∑
t=1

∑
u∈V

n

log(1 + n)
· log

(
1 + ‖At,u‖2M−1

t−1,u

)
(20)

≤
∑
u∈V

n

log(1 + n)
log

det(MT,u)

det(I)

≤
∑
u∈V

n |N(u)|
log(1 + n)

log(trace(MT,u)/ |N(u)|) (21)

≤
∑
u∈V

n |N(u)|
log(1 + n)

log

(
1 +

T∑
t=1

‖At,u‖22 / |N(u)|

)

≤
∑
u∈V

n |N(u)|
log(1 + n)

log(1 + T)

=
n

log(1 + n)
log(1 + T) ·

∑
u∈V
|N(u)|

=
nm

log(1 + n)
log(1 + T), (22)

where (20) is by the inequality that u ≤ a
log(1+a) log(1+u) for u ∈ [0, a] and ‖At,u‖22 ≤ |N(u)| ≤ n;

(21) is by the inequality that det(MT,u) ≤ (trace(MT,u)/ |N(u)|)|N(u)| and (22) holds obviously
since the sum of the number of in-neighbors of all nodes is just the number m of edges in the graph.

Therefore the αβ-scaled regret satisfies

R(T) ≤ 2ρT γ(G)D
√
mnT log(1 + T)/ log(1 + n) + nδ · T (n− k)

≤ C · γ(G)Dnm1/2
√
T log(T),

for some universal constant C.

A.3 Discussions

Comparisons of regret bounds We compute the γ(G) andD for some special graphs and compare
our regret bound with the IMLinUCB algorithm [49] and CUCB algorithm [47], where these two
are under IC model and edge-level feedback. The results are listed in Table 1 where we use

17

the same examples as in [49, Figure 1]. For general graphs, our LT-LinUCB has regret bound
O(γ(G)Dnm1/2

√
T ln(T)) = O(n7/2m1/2

√
T ln(T)), the IMLinUCB algorithm has regret bound

(in the tabular case) O(CGm
√
T ln(T)) = O(nm3/2

√
T ln(T)) and the CUCB algorithm has regret

bound O(BG
√
mK ′T ln(T)) = O(mn

√
T ln(T)). So ours is at most O(n5/2/m) worse than

IMLinUCB and O(n5/2
√

ln(T)/
√
m) worse than CUCB. Note that the freedom degree of LT model

is O(n) as there are only n random variable ((θv)v∈V) while the freedom degree of IC model is
O(m). Also we assume only node-level feedback is observed while edge-level feedback can be
observed in their work on IC model.

Graphs D γ(G) LT-LinUCB (ours) IMLinUCB CUCB

bar graph O(1) O(
√
K) O(n

3/2
√
KT ln(T)) O(n

√
KT ln(T)) O(

√
nKT ln(T))

star graph O(1) O(n
√
K) O(n

5/2
√
KT ln(T)) O(n

2
√
KT ln(T)) O(n

2
√
T ln(T))

ray graph O(
√
n) O(n

5/4
√
K) O(n

13/4
√
KT ln(T)) O(n

9/4
√
KT ln(T)) O(n

2
√
T ln(T))

tree graph O(logn) O(n
3/2

) O(n
3

logn
√
T ln(T)) O(n

5/2
√
T ln(T)) O(n

2
√
T ln(T))

grid graph O(n) O(n
3/2

) O(n
4
√
T ln(T)) O(n

5/2
√
T ln(T)) O(n

2
√
T ln(T))

complete graph O(n) O(n
3/2

) O(n
9/2
√
T ln(T)) O(n

4
√
T ln(T)) O(n

3
√
T ln(T))

Table 1: The values of γ(G), D and regret bound comparisons of LT-LinUCB, IMLinUCB [49] and
CUCB [47] for special graphs.

If we represent each edge by a d-dimensional feature vector, then we can generalize our LT-LinUCB
for the large-scale case. The regret bound would become

O(ργ(G)D
√
dmnT log(1 + Tn2/d)) = O(γ(G)Dd

√
mnT ln(T))

= O(dn3
√
mT ln(T))

where ρ = O(
√
d log(1 + Tn2/d) + 2 log(1/δ)). We have used ‖At,u‖2 ≤ |N(u)|2 by assuming

the feature vector all have L2-norm at most 1. The regret bound of IMLinUCB [49] under IC model
with edge-level feedback is O(CGd

√
mT ln(T)) = O(dmn

√
T ln(T)), which achieves

√
m/n2

better order than ours.

GOM property Our GOM property (Theorem 1) plays a key role to bound the regret, similar to the
TPM condition [47] in the IC model with edge-level feedback. Their proofs [47, 49] can be simplified
by coupling the influence spread under weight w and w′ to reduce the proof length significantly (see
Appendix E). Under their setting, it is sufficient to prove the key property for monotone case w ≤ w′
since the confidence is estimated for each edge (base arm). The coupling technique can be designed
so that the realized graph of w is always a subgraph of w′. Then by comparing the connectivity
difference in a subgraph, it is easy to derive the desired result.

Situations are different in our setting of node-level feedback. Since only group effect can be observed,
we can not guarantee that the representative weight w′ is always larger than w (see Section B for
more discussions). Even though we can prove similar property for monotone w ≤ w′ and hope
to generalize it to arbitrary w,w′ by leveraging w ∧ w′, w ∨ w′, it does not work. By leveraging
w ∧ w′, w ∨ w′, the absolute function would be added to the edge-level (compared with the result
formula of Theorem 1), while we can not observe single edges in group effect. Only the absolute
functions on the differences of the weight sum are suitable for node-level feedback.

B The Optimization Problem of Weight-Constrained IM

Recall that we have a confidence ellipsoid C = {Cv}v∈V with Cv ={
w′v ∈ [0, 1]|N(v)| : ‖w′v − ŵv‖Mv

≤ ρv
}

and want to consider the optimization problem of
weight-constrained influence maximization (WCIM):

argmax(S,w′):S∈A,w′∈C r(S,w
′) . (23)

18

Let (SPOpt
C , wPOpt

C) be the best solution. We want to find an (α, β)-approximation oracle that outputs

(S′, w′) with P
(
r(S′, w′) ≥ α · r(SPOpt

C , wPOpt
C)

)
≥ β for some α, β > 0.

In the following, we first discuss the general difficulty, then give a general solution and later provide
efficient methods for some special graph classes.

B.1 General Difficulties

The UCB-type method does not directly apply here Under the edge-level feedback of the IC
model, the learner can update the information of each single edge if it is observed; then the confidence
set of the unknown weight vector is just the direct product of the confidence interval over the edges:

C = C1 × · · · × Ce × · · · × Cm ,

where Ce = [L(e), U(e)] is 1-dimensional confidence interval of weight w(e). Thus if we take
the upper bound U(e) of Ce for each edge e, the resulting vector U = (U(e))e∈E still lie in the
confidence set C and any weight vector w′ ∈ C satisfies w′ ≤ U . Since the reward function r(S,w)
is monotone increasing in weight vector w (Lemma 9), the influence spread of any seed set S under
U will be larger than w′. Hence U would be the optimal weight vector for the WCIM problem
(23). Then if we take the output SU from an usual (α, β)-approximation Oracle for the IM with
weight vector U , the pair (SU , U) is an (α, β)-approximation solution for the problem WCIM. In
such derivations, we have described a design of an (α, β)-approximation PairOracle. This also
explains why the designs in [49, 47] work.

w′(eu1,v)

w′(eu2,v)

Figure 2: An example that upper bound vector fails to lie in the confidence set.

But things are different in the node-level feedback of the LT model. In the node-level feedback,
the learner can only observe group effects of edges instead of single edges, so the confidence set is
high-dimensional ellipsoid instead of nice cuboid. If we take the upper bounds of each edge, which is
equivalent to find the upper confidence bound of the vector χ(e) with respect to the confidence set C,
the resulting vector might jump out of the confidence set C. Specifically, since LT-LinUCB updates
the information of each single node if it has active in-neighbors, the confidence set C of the unknown
weight vector w is actually the direct product of the confidence set over the nodes:

C = C1 × · · · × Cv × · · · × Cn ,

where Cv is a N(v)-dimensional confidence set and is related to the edges with ending node v.
Note that the confidence set Cv is different from the above Ce and we reuse the notation. For an
example of 2-dimensional case (see Figure 2), there are two in-neighbors u1, u2 of v and suppose a
confidence ellipse has such a shape (the red ellipse). The vector of largest w(e′u1

, v), w(e′u2
, v) (the

red point) is not in the confidence set, and actually is far away from the confidence set. When more
observations are collected, the red ellipse may shrink to the blue ellipse, but the vector of largest
w(e′u1

, v), w(e′u2
, v) (the blue point) just moves a little and its relative distance to the confidence set

is even farther.

Mixed integer optimization problem in bipartite graphs Consider the special bipartite graphs.
The node set V can be divided into V1 and V2 and each edge is from V1 to V2. Without loss of

19

generality, assume |V1| ≥ K, then a good solution S must satisfy S ⊂ V1. So the WCIM problem
can be reformulated as

max
α,w

∑
u∈V1,v∈Nout(u)

α(u) w(u, v)

s.t. α(u) ∈ {0, 1} for any u ∈ V1∑
u∈V1

α(u) ≤ K (24)

w(u, v) ∈ [0, 1] for any u ∈ V1 and v ∈ Nout(u)

w(·, v)>Mv w(·, v) ≤ ρ2
v for any v ∈ V2

where w(·, v) ∈ [0, 1]|N(v)|, Mv ∈ R|N(v)|×|N(v)| is some positive-definite matrix and ρv is some
constant.

This is a mixed integer optimization problem. Even if we relax the constraint of α(u) ∈ {0, 1} to
α(u) ∈ [0, 1] to make the constraints convex, the objective is bilinear but not convex (or concave),
making the problem hard to solve. This mixed integer programming is known to be difficult in the
optimization field [41]. Some techniques of semidefinite programming (SDP) relaxations might be
useful. We conjecture the approximation ratio, if solvable, is not constant and is O(1/ ln(n)) since
there are roughly n constraints for w, as also motivated by the greedy method for the problem of max
vertex cover. We leave this as interesting future work.

If we write the vector α in a nice vector form, we can see the problem is a special maximum inner
product [40, 37, 39]. This is an interesting direction but there are still many cases unexplored.

B.2 ε-net Method

The usual oracle for IM problem is to compute the seed set for a given weight vector. Now the
confidence set C is a continuous set. A method is to discretize it. We can first find an ε-net cover,
compute the seed set by any usual oracle for each representative, and select the best pair. The
complete method is provided in Algorithm 3. Recall that an ε-net N for a set C is for any w′ ∈ C,
there exists a π(w′) ∈ N such that ‖w′ − π(w′)‖2 ≤ ε. The minimal size of possible N is denoted
as NC,ε.

Algorithm 3 ε-net PairOracle
1: Input: Confidence ellipsoid C; offline IM Oracle; seed set cardinality K; parameter ε
2: Find an optimal ε-net N for C with size NC,ε
3: for π ∈ N do
4: Compute the seed set Sπ and r(Sπ, π) by Oracle with π and K
5: end for
6: Output: (S′, w′) = argmax(Sπ,π):π∈N r(Sπ, π)

Then we have the following approximation guarantee for the ε-net method.

Lemma 3. The Algorithm 3 runs with confidence ellipsoid C, seed set cardinality K, parameter ε
and an (α′, β′)-approximation Oracle. Then its output satisfies

P
(
r(S′, w′) ≥ α · r(SPOpt

C , wPOpt
C)

)
≥ β ,

where α = α′
(
1− mn·ε

K

)
and β = β′. Thus the ε-net PairOracle (Algorithm 3) is (α, β)-

approximation.

Proof. For any w′ ∈ C, let π(w′) ∈ N be its representative such that ‖w′ − π(w′)‖2 ≤ ε. Let S∗w′
denote the output of Oracle with input w′, then P (r(S∗w′ , w

′) ≥ α′ ·Optw′) ≥ β′. Thus

r
(
SPOpt
C , wPOpt

C

)
≤ r

(
SPOpt
C , π

(
wPOpt
C

))
+mn · ε

≤ Optπ(wPOpt
C) +mn · ε

20

≤ 1

α′
r

(
S∗
π(wPOpt

C)
, π
(
wPOpt
C

))
+mn · ε

≤ 1

α′
r(S′, w′) +mn · ε ,

where the first inequality is by Lipschitz continuity of r (Lemma 10) and
∥∥∥wPOpt
C − π(wPOpt

C)
∥∥∥

2
≤ ε,

the third inequality is by the definition of Oracle and holds with probability at least β′ and the last
inequality is by the rule of Algorithm 3.

Hence with probability at least β′,

r(S′, w′) ≥ α′ ·
(
r(SPOpt
C , wPOpt

C)−mn · ε
)
≥ α′

(
1− mn · ε

K

)
· r(SPOpt

C , wPOpt
C) ,

where the second inequality is by r(SPOpt
C , wPOpt

C) ≥ K.

The minimal size NC,ε of the ε-net for the m-dimensional ellipsoid C has order Θ((1/ε)m), which is
exponential in ε. So this method, though accurate, is not very efficient.

B.3 Graphs with In-degree at Most 1

We discuss the method to solve the case of graphs that any node has at most one incoming edge.
This includes examples in Figure 3. For such graphs, the node-level feedback is actually edge-level
feedback. More specifically, our LT-LinUCB will update the information of each single edge if its
start node is active. Thus the confidence set C is the direct product of the confidence intervals of each
edge, similar to IC model with edge-level feedback.

(a) (b) (c) (d) (e)

Figure 3: Examples of graphs with in-degree at most 1. (a) bar graph. (b) chain graph. (c) out-
arborescence graph. (d) out-star graph. (e) certain bipartite graph. Each undirected edge represents a
pair of directed edges pointing to opposite directions.

Hence we can just perform as [11, 49]. As mentioned above, we first take the upper bound for each
edge and formulate U , then use an (α, β)-approximation Oracle to compute SU such that

P
(
r(SU , U) ≥ α · r(SPOpt

C , wPOpt
C)

)
≥ β . (25)

So we get an efficient (α, β)-approximation PairOracle for these special graphs.

B.4 Bipartite Graphs

We consider the special case of bipartite graphs here where there are two node sets V1 and V2 and
each edge is from V1 to V2 (see Figure 4 for examples). This is a popular influence spread formulation
for one step and is a generalization of vertex cover.

Recall that the objective is to solve

max
S∈A,w′∈C

r(S,w′) = max
S∈A

max
w′∈C

r(S,w′) .

Note that r(S,w) =
∑
u∈S,v∈Nout(u) w(eu,v) is linear in w for the bipartite graphs. Let

r(S) := max
w′∈C

r(S,w′) = max
w′∈C

∑
u∈S,v∈Nout(u)

w(eu,v) .

21

(a)

u3

u2

u1

v

(b)

Figure 4: Examples of special bipartite graphs. (a) bipartite graph with in-degree at most 2. (b)
bipartite graph with in-degree 3.

Recall that C = {w′ ∈ Rm : ‖w′ − ŵ‖M ≤ ρ} for some positive-definite matrix M and a constant
ρ ≥ 0. So the computation of r(S) is quadratic constrained linear programming and can be solved
efficiently. We have the following properties for r(S). The first one is about its monotonicity for any
graph.

Lemma 4. For any graph, given the confidence set C, the function r(S) = maxw′∈C r(S,w
′) is

monotone increasing in S. That is, r(S) ≤ r(S′) if S ⊆ S′.

Proof. Let r(S) = r(S,wS), r(S′) = r(S′, wS′). Then

r(S) = r(S,wS) ≤ r(S′, wS) ≤ r(S′, wS′) = r(S′) .

The next one states the submodularity of r(S) for bipartite graphs with in-degree at most 2 (for
example Figure 4(a)).

Lemma 5. In bipartite graphs with in-degree at most 2, the function r(S) = maxw′∈C r(S,w
′)

satisfies submodularity. That is, for arbitrary set S ⊆ S′ and node u /∈ S′, there is

r(S ∪ {u})− r(S) ≥ r(S′ ∪ {u})− r(S) . (26)

Proof. As discussed in Section B.1, the confidence set C for unknown weight vector w is actually the
direct product of confidence set over nodes, that is

C = Πv∈V2 Cv ,

where Cv is the confidence set for in-coming edges of node v. The edges in each Cv are disjoint with
each other, so

r(S) = max
w′∈C

∑
u∈S,v∈Nout(u)

w′(eu,v) = max
w′∈C

∑
v∈V2

∑
u∈S,u∈N in(v)

w′(eu,v)

=
∑
v∈V2

max
w′v∈Cv

∑
u∈S,u∈N in(v)

w′v(eu,v) ,

where w′v = w′(eu,v)u∈N in(v). So to maximize over C, it suffices to maximize the weights of
incoming edges for each v ∈ V2.

Since each node has at most two in-coming edges, if eu,v ∈ E for some v then it must hold that there
is at most one in-neighbor of v from S′. For node v such that eu,v ∈ E but there is no edge from S′

to v, the contribution of v’s part to S, S′ are the same.

For node v such that eu,v, eu′,v ∈ E for some u′ ∈ S′ \ S, it suffices to prove that

max
w′v∈Cv

w′v(eu,v) ≥ max
w′v∈Cv

{w′v(eu,v) + w′v(eu′,v)} − max
w′v∈Cv

w′v(eu′,v) ,

which is obviously true.

For node v such that eu,v, eu′,v ∈ E for some u′ ∈ S ⊆ S′, the contribution of v’s part to S, S′ are
the same.

22

Algorithm 4 Greedy PairOracle

1: Input: Graph G = (V,E), confidence set C, seed set cardinality K
2: Initialize: S = ∅
3: for i ∈ [K] do
4: v = argmaxu∈V \S r(S ∪ {u})− r(S)

5: S = S ∪ {v}
6: end for
7: Output S

With the submodularity property, we can get the approximation result by designing a greedy policy
(Algorithm 4).

Lemma 6. Recall that SPOpt
C = argmaxS∈Amaxw′∈C r(S,w

′) = argmaxS∈Ar(S) is the optimal
seed set given confidence set C. Let S′ be the solution returned by Greedy PairOracle (Algorithm
4). Then for bipartite graphs with in-degree at most 2,

r(S′) ≥
(

1− 1

e

)
r(SPOpt
C) . (27)

The proof is a direct application of [19, Theorem 2.1] by noting that the function r(·) satisfies
monotonicity (Lemma 4) and submodularity (Lemma 5) in such graphs.

A counterexample of in-degree 3 Here we show an example of bipartite graphs with in-degree 3
but the r(·) does not have the submodularity property.

Let V1 = {u1, u2, u3} , |V2| = 1 and there are only 3 edges (see Figure 4(b) for example). The
confidence set C =

{
w′ ∈ R3 : ‖w′‖M ≤ 1

}
with

M =

[
2 1 0
1 3 1
0 1 2

]
.

Note M = I + (1, 1, 0)>(1, 1, 0) + (0, 1, 1)>(0, 1, 1) can happen for our algorithm LT-LinUCB.
We solve the optimization problem and get r({u1, u2}) ≈ 0.791, r({u2, u3}) ≈ 0.791, r({u2}) ≈
0.707, r({u1, u2, u3}) ≈ 1.000. Thus let u = u1, S = {u2} , S′ = {u2, u3}, we have

r(S ∪ {u})− r(S) < 0.09 < 0.2 < r(S′ ∪ {u})− r(S′) ,
which violates the definition of submodularity.

B.5 Directed Acyclic Graphs

Recall that r(S) = maxw′∈C r(S,w
′) and SPOpt

C = argmaxS∈Ar(S) is the optimal solution. Let S′
be the output of Greedy PairOracle (Algorithm 4). Then we have the following 1/K-approximation
result.
Lemma 7. For general graphs, suppose we can compute r(S) for any S. Then

r(S′) ≥ 1

K
· r(SPOpt

C) . (28)

Proof. Denote SPOpt
C = {s∗1, s∗2, ..., s∗K}. Assume the Greedy PairOracle first chooses s′. Then

s′ ∈ S′ and s′ = argmaxu∈V r ({u}) or equivalently r({s′}) ≥ r ({u}) for any u ∈ V . By
monotonicity of r (Lemma 4),

r(S′) ≥ r({s′}) ≥ 1

K
· (r({s∗1}) + r({s∗2}) + ...+ r({s∗K})) .

It suffices to prove that r satisfies the subadditivity. It is well known that the reward function r(·, w′)
satisfies submodularity in LT model [19]. Then for any S ⊆ S′′,

r(S,w′) + r(S′′, w′) ≥ r(S ∪ S′′, w′) + r(S ∩ S′′, w′) ≥ r(S ∪ S′′, w′) .

23

Recall that r(SPOpt
C) = r(SPOpt

C , wPOpt
C). Then

r({s∗1}) + r({s∗2}) + . . .+ r({s∗K})
≥ r({s∗1}, w

POpt
C) + r({s∗2}, w

POpt
C) + . . .+ r({s∗K}, w

POpt
C)

≥ r(SPOpt
C , wPOpt

C) = r(SPOpt
C)

and the result follows.

Next we show that for directed acyclic graphs (DAGs), there is an efficient method to compute
r(S) = maxw′∈C r(S,w

′).

Algorithm 5 Compute r(S) in DAGs
1: Input: DAG G = (V,E); seed set S;

the set of confidence ellipsoids (Cv)v∈V with Cv =
{
w′v : (w′v)

>Mvw
′
v ≤ ρ2

v

}
2: Initialize: Delete all in-edges to nodes in S ⊆ V
3: Use topological ranking to form ‘layers’ of nodes L0, . . . , L`, . . . , Ln−1 satisfies any edge e ∈ E

points from Li to Lj for some i < j
4: ruS = 1 for u ∈ S; ruS = 0 for u ∈ L0 \ S
5: for ` = 1, 2, . . . do
6: for v ∈ L` do
7: Solve rvS = maxw′∈Cv

∑
u∈N(v) r

u
S · w′(eu,v)

8: end for
9: end for

10: Output: r(S) =
∑
v∈V r

v
S

For seed set S, delete all in-coming edges to S. Take all nodes with in-degree 0 and form a set
L0 ⊇ S. Then consider the reduced subgraph for remaining nodes V \ L0, take all nodes in the
subgraph with in-degree 0 and form a set L1. Note subgraphs of DAGs are still DAGs and in DAGs
there are nodes with in-degree 0, otherwise we could find a cycle by adaptively adding in-neighbors.
Then the procedure can continue until no node is left. Such process is just topological ranking to
form ‘layers’ of nodes. For any node u ∈ L`, its incoming edges are all from previous layers (except
seed nodes), or equivalently nodes in L0 ∪ L1 ∪ · · · ∪ L`−1. There are at most n layers.

Let E′` to denote the edges that has end node in layer ` and E′`:`′ = E′` ∪ E′`+1 ∪ · · · ∪ E′`′ . Then
E′`
⋂
E′`′ = ∅ if ` 6= `′.

Let ruS(w′) be the probability that node u will be influenced under the weight vector w′ when the
seed set is S and ruS = maxw′∈C r

u
S(w′). For seed node u ∈ S, it is activated with probability 1, or

ruS(w′) ≡ 1. For node u ∈ L0 \ S, there is no directed path connecting from seed node S, so its
activation probability is always 0, or ruS(w′) ≡ 0. So we have computed ruS for u ∈ L0.

Let ` = 1. For node u ∈ L`, its incoming edges all come from former layers < `. Note that ruS has
been defined for any layer < ` and r(S,w′) can be decomposed as

∑
v∈L`

 ∑
u∈N in(v)

ruS · w′(eu,v)

 · fv(w′, E′`+1:n) , (29)

where fv(w′, E′`+1:n) is the expected influenced nodes by node v for later layers and it only relates
with the edges ending in later layers. Recall that the constraints are added to the edges with the same
ending node. The edge eu,v for v ∈ L` ends in L`, so it is independent with E′`′ for `′ > `. Note
that fv(w′, E′`+1:n) ≥ 1 > 0 since node v at least influences itself. So to maximize r(S,w′) over
w′ ∈ C, the weights related with edges in E′` can be maximized separately. Specifically, we can solve
the maximization problem for each v ∈ L`:

max
∑

u∈N in(v)

ruS · w′(eu,v) (30)

s.t. (w′v)
>Mvw

′
v ≤ ρ2

v

24

where the w′v = (w′(eu,v))u∈N(v), Mv is some positive-definite matrix and ρv is some constant.
This optimization problem is linear programming with quadratic convex constraints and can be solved
efficiently. The resulting maximum value is actually rvS . So we can compute rS for layer `. Then
we can compute r(S) =

∑
v∈V r

v
S by repeating steps (29) (30) with induction on `. The process is

presented in Algorithm 5.

The key point to make this through for DAGs is based on the linearity of LT. Then we can decompose
the objective functions to isolated parts and use common optimization methods to solve each part
step by step.

C Analysis of OIM-ETC Algorithm

We first provide the regret bound of OIM-ETC Algorithm under both IC and LT models and then give
discussions about it.

C.1 Proof of Theorem 3

Recall that ŵ is the empirical estimate of weight vector w (line 6 of Algorithm 2) and Ŝ is the output
of the (α, β)-approximation Oracle under estimated weight vector ŵ (line 7 of Algorithm 2). Define
event

F =
{
r(Ŝ, ŵ) < α ·Optŵ

}
.

Then P (F) < 1− β since the Oracle is (α, β)-approximation.

We first decompose the regret

R(T) = E

[
T∑
t=1

(αβ ·Optw − r(St, w))

]

= E

[
nk∑
t=1

(αβ ·Optw − r(St, w))

]
+ E

[
T∑

t=nk+1

(αβ ·Optw − r(St, w))

]
≤ nk∆max + (T − nk)E

[
αβ ·Optw − r(Ŝ, w)

]
≤ nk∆max + (T − nk)β · E

[
α ·Optw − r(Ŝ, w)

∣∣∣Fc] (31)

where the last inequality is by

E
[
r(Ŝ, w)

]
= E

[
r(Ŝ, w)

∣∣∣F]P (F) + E
[
r(Ŝ, w)

∣∣∣Fc]P (Fc) ≥ β · E
[
r(Ŝ, w)

∣∣∣Fc] .
Note under Fc,

α ·Optw = α · r(SOpt
w , w)

≤ α · r(SOpt
w , ŵ) + α ·mn ·max

e∈E
|ŵ(e)− w(e)|

≤ α · r(SOpt
ŵ , ŵ) + α ·mn ·max

e∈E
|ŵ(e)− w(e)|

≤ r(Ŝ, ŵ) + α ·mn ·max
e∈E
|ŵ(e)− w(e)|

≤ r(Ŝ, w) + (1 + α) ·mn ·max
e∈E
|ŵ(e)− w(e)| . (32)

Then when maxe∈E |ŵ(e)− w(e)| < ∆min

(1+α)mn =: ε0, Ŝ /∈ SB . So the regret becomes

R(T) ≤ nk∆max + (T − nk) · 2m exp(−2kε20)∆max

≤
(
nk + 2mT exp(−2kε20)

)
∆max

=
n∆max

2ε20
ln+ 4mTε20

n
+
n∆max

2ε20

25

where the first inequality is to bound the complement of the event maxe∈E |ŵ(e)− w(e)| < ε0 by
the Chernorff-Hoeffding bound (Lemma 8), the equality is optimized with k satisfying exp(2kε20) =
4mTε20/n and ln+(x) = max {0, ln(x)}.

Therefore taking k = max
{

1, 1
2ε20

ln
4mTε20
n

}
= max

{
1, 2m2n2

∆2
min

ln
T∆2

min

mn3

}
together with R(T) ≤

T∆max, the regret satisfies

R(T) ≤ min

{
T∆max, n∆max +

2m2n3∆max

∆2
min

(
1 + ln+ T∆2

min

mn3

)}
= O

(
m2n3∆max

∆2
min

ln(T)

)
. (33)

Next we prove the problem-independent bound. Following (32) under Fc, with a suitable ε to be
decided later,

E
[
α ·Optw − r(Ŝ, w)

]
≤ 2mn · E

[
max
e∈E
|ŵ(e)− w(e)|

]
≤ 2mnε+ 2mn

∞∑
s=0

2s+1ε · P
(

2sε < max
e∈E
|ŵ(e)− w(e)| ≤ 2s+1ε

)

≤ 2mnε+ 2mn

∞∑
s=0

2s+1ε · P (∃e ∈ E, |ŵ(e)− w(e)| > 2sε)

≤ 2mnε+ 2mn

∞∑
s=0

2s+1ε · 2m exp(−2k22sε2)

= 2mnε+
8m2n√

2k

∞∑
s=0

√
2k2sε · exp(−(

√
2k2sε)2) .

Let Xs :=
√

2k2sε. Note that the function f(x) = xe−x
2

increases in [0, 1/
√

2] and decreases in
[1/
√

2,∞). Let s0 satisfy

2s0 <
1

2
√
kε
≤ 2s0+1 ,

or equivalently Xs < 1/
√

2 for s ≤ s0 and Xs ≥ 1/
√

2 for s ≥ s0 + 1. Then we can divide the sum
into three parts

s0−1∑
s=0

f(Xs) +

s0+1∑
s=s0

f(Xs) +
∞∑
s0+2

f(Xs) .

By monotonicity,
∑s0−1
s=0 f(Xs) ≤

∫ s0
0
f(x) dx and

∑∞
s0+2 f(Xs) ≤

∫∞
s0+1

f(x) dx. Thus

E
[
α ·Optw − r(Ŝ, w)

]
≤ 2mnε+

8m2n√
2k

(∫ ∞
0

f(x) dx+ f(Xs0) + f(Xs0+1)

)
≤ 2mnε+

8m2n√
2k

(
1

2
+ 2f(1/

√
2)

)
= 2mnε+

8m2n√
2k

(
1

2
+
√

2 exp(−1/2)

)
≤ 2mnε+ 7.69m2n/

√
k .

By substituting it to (31), the regret is bounded by

R(T) ≤ nk∆max + T ·
(

2mnε+ 7.69m2n/
√
k
)

≤ n2k + T ·
(

2mnε+ 7.69m2n/
√
k
)

26

≤ 3.9(mn)4/3T 2/3 + 1 ≤ 5(mn)4/3T 2/3

= O
(

(mn)4/3T 2/3
)
, (34)

where we take k = 3.9m4/3n−2/3T 2/3 and ε = 1/(2mnT).

C.2 Discussions

As we mentioned, our OIM-ETC algorithm is model independent and applies to both LT and IC model
with node-level feedback.

Recall that for a typical influence spread under the IC model, each edge e is live with the associated
probability w(e) ∈ [0, 1] and a node is activated if there is a (directed) path connecting from the seed
set. For the IC model, there are three types of feedback: (1) bandit feedback, where the learner can
only observe the number of influenced nodes; (2) edge-level feedback, where the learner can observe
the liveness status of each outgoing edge from the activated nodes; (3) node-level feedback, where the
learner can only observe the spread propagation but not individual edge liveness. The bandit feedback
presents the least information and is most difficult considering the nonlinearity and complexity of the
influence reward function. The edge-level feedback gives the most informative feedback and most
previous work study this scheme [11, 47, 49, 50].

Since our OIM-ETC only selects size-1 seed set in the exploration phase, so the node-level feedback of
the first-step triggering is the same with the edge-level feedback. Thus OIM-ETC can be applied to
both IC and LT model. Though simple, OIM-ETC is the first model-independent algorithm for OIM3.
Furthermore, the computational complexity for OIM-ETC is really low, as it only calls once of the
offline oracle.

As mentioned in related work, the algorithm for the combinatorial partial monitoring [32] can be
applied in OIM for both LT and IC models with node-level feedback. However, the second best
solution used in their algorithm could not be directly computed in the offline IM setting. Hence only
their the second stop-exploration condition applies and a regret bound of O(nm3/2T 2/3 ln(T)) is
obtained. Our OIM-ETC is better in O(ln(T)) term and a bit worse in O((n/

√
m)1/3) term. Also our

OIM-ETC has a problem-dependent regret bound.

Comparing with LT-LinUCB we see that OIM-ETC only requires the first-step node feedback, not
the full diffusion process feedback of St,0, St,1, . . . , St,τ , Moreover, it only requires the offline
oracle to solve the maximization problem using the empirical mean as the fixed weight vector. The
objective function in this case is known to be monotone and submodular [19, 34], and thus a greedy
algorithm [19] or IMM algorithm [42] could achieve 1−1/e− ε approximation (for any small ε > 0)
with probability at least 1− 1/n. That is, (α, β)-approximation Oracle with α = 1− 1/e− ε and
β = 1− 1/n has an efficient implementation. This is also easier than the PairOracle, which has
the confidence ellipsoid as the constraint on weight vectors.

D Technical Lemmas

Lemma 8. (Chernorff-Hoeffding bound) Let X1, X2, . . . , Xn be independent random variables with
common support [0, 1]. Let Sn = X1 +X2 + · · ·+Xn and µ = E [Sn]. Then for any ε ≥ 0,

P (|Sn − µ| ≥ nε) ≤ 2 exp
(
−2nε2

)
.

Next is a property of the reward function on the weight vector under the LT model. Note that the
similar property also holds for IC model [11, Lemma 6].

Lemma 9. Under the LT model, the reward function r(S,w) is monotone increasing in w. And for
any seed set S and any two weight vectors w,w′ ∈ [0, 1]m, there is

|r(S,w)− r(S,w′)| ≤ mn ·max
e∈E
|w(e)− w′(e)| . (35)

3Note that the work [44] presents a model-free algorithm for an approximated reward function without
approximation ratio while we do not relax the spread objective.

27

Proof. We first prove the monotonicity. Suppose w(e) ≤ w′(e) for all e ∈ E. For any fixed
thresholds θv’s, the instance of influence graph under weight vector w is always a subgraph of w′
since any activated node v under w is always activated under w′. Thus r(S,w) ≤ r(S,w′).

For (35), it is enough to prove the case w ≤ w′; otherwise we can prove it first for w∧w′ and w∨w′
and then conclude the result since r(S,w ∧ w′) ≤ {r(S,w), r(S,w′)} ≤ r(S,w ∨ w′).

Now assume w,w′ only differ on one edge e: w′(e) > w(e) and w′(e′) = w(e′) for any e′ 6= e. For
any fixed thresholds θv’s, consider the two diffusion process under w,w′. If the spreads are different,
then the starting node that the diffusion processes starts to become different must be the end node
of edge e. Then this difference would cause at most n nodes differences. Such an event happens
when the difference of w′(e)− w(e) contributes to the activation of end node of edge e, which has
probability at most w′(e)− w(e). Thus r(S,w′)− r(S,w) ≤ n · (w′(e)− w(e)).

Then for vectors w ≤ w′, we can construct at most |E| = m vector pairs from w to w′ with
each pair only differing on one edge. By summing them up, we get r(S,w′) − r(S,w) ≤ mn ·
maxe∈E |w(e)− w′(e)|.

Lemma 10. For any seed set S and any two weight vectors w,w′ ∈ [0, 1]m, there is

|r(S,w)− r(S,w′)| ≤ mn · ‖w − w′‖2 .

Proof. Lemma 10 can be concluded directly from Lemma 9 since it is obvious that
maxe∈E |w(e)− w′(e)| ≤ ‖w − w′‖2.

E A Simplified Proof for the TPM Condition

We give a simplified proof for the TPM condition under the IC model with edge-level feedback,
which corresponds to [49, Theorem 3] and the key equation [47, Lemma 2, (28)]. For completeness,
we also give the theorem statement here, which mainly follow the notations of [49].

f(S,w, v) is the influence probability of seed set S to node v when the mean of the weights is vector
w. O(e) denotes the event that edge e is observed. Recall that an edge e is relevant with S, v means
there exists a path ` from a seed node s ∈ S to v such that (1) e ∈ ` and (2) ` does not contain another
seed node other than s. In the following, we use boldface w to represent a random realization of the
weight vector.
Theorem 4. (restated) For any node v /∈ S,

f(S,U, v)− f(S, w̄, v) ≤
∑

e is relevant with S,v

Ew̄[1{O(e)} · (U(e)− w̄(e)) | S] (36)

Proof. Note that

f(S,U, v) = Ew1∼U1{v is influenced under w1} ,
f(S, w̄, v) = Ew2∼w̄1{v is influenced under w2} .

When we compute the difference of these two terms, we do not need to make these two w independent.
Specifically, for each edge e, we can design w1,w2 in the following way. Suppose for each edge e
we independently draw a uniform random variable A(e) over [0, 1], let

w1(e) = w2(e) = 1, if A(e) ≤ w̄(e) ;

w1(e) = 1,w2(e) = 0, if A(e) ∈ (w̄(e), U(e)] ;

w1(e) = w2(e) = 0, if A(e) > U(e) .

Such a design of w2 would introduce a subgraph of w1 and the marginal expected means of w1,w2

are U, w̄ respectively. Then the difference would become much simpler

f(S,U, v)− f(S, w̄, v) = Ew1,w2∼A[f(S,w1, v)− f(S,w2, v)]

and f(S,w1, v)− f(S,w2, v) = 0 or 1.

f(S,w1, v) − f(S,w2, v) = 1 means f(S,w1, v) = 1 and f(S,w2, v) = 0. Thus for any path `
from S to v in w1, there is an edge e ∈ ` such that e /∈ w2. We take first such e = (u1, u2), thus the
edges on ` before e are live in w2 and the starting node u1 of e is activated under w2 without edge e.
Therefore there is an edge e = (u1, u2) on the path from S to v such that

28

1. u1 is activated by w2 on the graph without edge e ;

2. w1(e) = 1,w2(e) = 0 .

Such an edge e is relevant with S and v. Thus

Ew1,w2∼A[f(S,w1, v)− f(S,w2, v)]

≤
∑

e is relevant with S,v

Ew2
[1{e is observed under w2} · (U(e)− w̄(e))] .

With the help of this theorem, we can get the same result of TPM conditions in the work [49, 47].

29

	Introduction
	Setting
	LTLinUCB Algorithm
	Regret Analysis

	The Explore-then-Commit Algorithm
	Conclusion
	Analysis and Discussions of LTLinUCB
	Proof of Theorem 1
	Proof of the Regret
	Discussions

	The Optimization Problem of Weight-Constrained IM
	General Difficulties
	-net Method
	Graphs with In-degree at Most 1
	Bipartite Graphs
	Directed Acyclic Graphs

	Analysis of OIMETC Algorithm
	Proof of Theorem 3
	Discussions

	Technical Lemmas
	A Simplified Proof for the TPM Condition

