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Abstract
Recently, there has been a strong push to transition from hy-
brid models to end-to-end (E2E) models for automatic speech
recognition. Currently, there are three promising E2E methods:
recurrent neural network transducer (RNN-T), RNN attention-
based encoder-decoder (AED), and Transformer-AED. In this
study, we conduct an empirical comparison of RNN-T, RNN-
AED, and Transformer-AED models, in both non-streaming
and streaming modes. We use 65 thousand hours of Microsoft
anonymized training data to train these models. As E2E models
are more data hungry, it is better to compare their effectiveness
with large amount of training data. To the best of our knowl-
edge, no such comprehensive study has been conducted yet. We
show that although AED models are stronger than RNN-T in
the non-streaming mode, RNN-T is very competitive in stream-
ing mode if its encoder can be properly initialized. Among all
three E2E models, transformer-AED achieved the best accuracy
in both streaming and non-streaming mode. We show that both
streaming RNN-T and transformer-AED models can obtain bet-
ter accuracy than a highly-optimized hybrid model.
Index Terms: end-to-end, RNN-transducer, attention-based
encoder-decoder, transformer

1. Introduction
Recently, the speech community is seeing a significant trend of
moving from deep neural network based hybrid modeling [1]
to end-to-end (E2E) modeling [2, 3, 4, 5, 6, 7, 8, 9, 10] for
automatic speech recognition (ASR). While hybrid models re-
quire disjoint optimization of separate constituent models such
as acoustic and language model, E2E ASR systems directly
translate an input speech sequence into an output token (sub-
words, or even words) sequence using a single network.

Some widely used contemporary E2E approaches for
sequence-to-sequence transduction are: (a) Connectionist Tem-
poral Classification (CTC) [11, 12], (b) recurrent neural
network Transducer (RNN-T)[13], and (c) Attention-based
Encoder-Decoder (AED) [14, 15, 3]. Among these three ap-
proaches, CTC was the earliest and can map the input speech
signal to target labels without requiring any external align-
ments. However, it also suffers from the conditional frame-
independence assumption. RNN-T extends CTC modeling by
changing the objective function and the model architecture to
remove the frame-independence assumption. Because of its
streaming nature, RNN-T has received a lot of attention for in-
dustrial applications and has also managed to replace traditional
hybrid models for some cases [9, 16, 17, 18].

AED is a general family of models that was initially pro-
posed for machine translation [19] but has shown success in
other domains (including ASR [14, 15, 3]) as well. These mod-
els are not streaming in nature by default but there are several

studies towards that direction, such as monotonic chunkwise at-
tention [20] and triggered attention [21]. The early AED models
used RNNs as a building block for its the encoder and decoder
modules. We refer to them as RNN-AED in this study. More re-
cently, the transformer architecture with self attention [22] has
also become prevalent and is being used as a fundamental build-
ing block for encoder and decoder modules [23, 24, 25]. We
refer to such a model as Transformer-AED in this paper.

Given the fast evolving landscape of E2E technology, it
is timely to compare the most popular and promising E2E
technologies for ASR in the field, shaping the future research
direction. This paper focuses on the comparison of current
most promising E2E technologies, namely RNN-T, RNN-AED,
and Transformer-AED, in both non-streaming and streaming
modes. All models are trained with 65 thousand hours of Mi-
crosoft anonymized training data. As E2E models are data hun-
gry, it is better to compare its power with such a large amount
of training data. To our best knowledge, there is no such a de-
tailed comparison. In a recent work [16], the streaming RNN-
T model was compared with the non-streaming RNN-AED. In
[26], streaming RNN-AED is compared with streaming RNN-
T for long-form speech recognition. In [25], RNN-AED and
Transformer-AED are compared in a non-streaming mode, with
training data up to 960 hours. As the industrial applications
usually requires the ASR service in a streaming mode, we fur-
ther put more efforts on how to develop these E2E models in a
streaming mode. While it has been shown in [27] that com-
bining RNN-T and RNN-AED in a two-pass decoding con-
figuration can surpass an industry-grade state-of-the-art hybrid
model, this study shows that a single streaming E2E model, ei-
ther RNN-T or Transformer-AED, can also surpass a state-of-
the-art hybrid model [28, 29].

In addition to performing a detailed comparison of these
promising E2E models for the first time, other contributions of
this paper are 1) We propose a multi-layer context modeling
scheme to explore future context with significant gains; 2) The
cross entropy (CE) initialization is shown to be much more ef-
fective than CTC initialization to boost RNN-T models; 3) For
streaming Transformer-AED, we show chunk-based future con-
text integration is more effective than the lookahead method; 4)
We release our Transformer related code with reproducible re-
sults on Librispeech at [30] to facilitate future research.

2. Popular End-to-End Models
In this section, we give a brief introduction of current popu-
lar E2E models: RNN-T, RNN-AED, and Transformer-AED.
These models have an acoustic encoder that generates high level
representation for speech and a decoder, which autoregressively
generates output tokens in the linguistic domain. While the
acoustic encoders can be same, the decoders of RNN-T and



AED are different. In RNN-T, the generation of next label is
only conditioned on the label outputs at previous steps while
the decoder of AED conditions the next output on acoustics as
well. More importantly, RNN-T works in a frame-synchronized
way while AED works in a label-synchronized fashion.

2.1. RNN transducer

The encoder network converts the acoustic feature x1:T into a
high-level representation henc1:T . The decoder, called prediction
network, produces a high-level representation hpreu by consum-
ing previous non-blank target yu−1. Here u denotes output la-
bel index. The joint network is a feed-forward network that
combines the encoder network output henct and the prediction
network output hpreu to generate the joint matrix ht,u, which is
used to calculate softmax output. Here t denotes time index.

The encoder and prediction networks are usually realized
using RNN with LSTM [31] units. When the encoder is a uni-
directional LSTM-RNN as Eq. (1), RNN-T works in streaming
mode by default.

henct = LSTM(xt, h
enc
t−1) (1)

However, when the underlying LSTM-RNN encoder is a bi-
directional model as Eq. (2), it is a non-streaming E2E model.

henct = [LSTM(xt, h
enc
t−1), LSTM(xt, h

enc
t+1)] (2)

When implemented with LSTM-RNN, the prediction network
formulation is

hpreu = LSTM(yu−1, h
pre
u−1). (3)

With the advantage of Transformer models, there is a re-
cent work to replace the LSTM-RNN in the encoder with the
Transformer model to construct Transformer transducer [32]
and Conformer transducer [33].

2.2. Attention-based Encoder-Decoder

While RNN-T has received more attention from the indus-
try due to its streaming nature, the Attention-based Encoder-
Decoder (AED) models attracts more research from academia
because of its powerful attention structure. RNN-AED and
Transformer-AED differ at the realization of encoder and de-
coder by using LSTM-RNN and Transformer, respectively.

2.2.1. RNN-AED

The encoder of RNN-AED can have the same structure as RNN-
T like Eq. (1) and Eq. (2). However, the attention-enhanced
decoder operates differently as below:

hdecu = LSTM(cu, yu−1, h
dec
u−1). (4)

here cu is the context vector obtained by weighted combination
of the encoder output. cu is supposed to contain the acoustic
information necessary to emit the next token. It is calculated
using the help of the attention mechanism [14, 34].

2.2.2. Transformer-AED

Even though RNNs can capture long term dependencies, Trans-
former [22] based models can do it more effectively given the
attention mechanism sees all context directly. Specifically, the
encoder is composed of a stack of Transformer blocks, where
each block has a multi-head self-attention layer and a feed-
forward layer. Suppose that the input of a Transformer block

can be linearly transformed to Q, K, and V. Then, the output
of a multi-head self-attention layer is

Multihead(Q,K,V) = [H1 . . .Hdhead ]W
head (5)

where Hi = softmax(
QiK

T
i√

dk
)Vi,

Qi = QWQi ,Ki = KWKi ,Vi = VWVi .

Here dhead is the number of attention heads and dk is the di-
mension of the feature vector for each head. This output is
fed to the feed-forward layer. Residual connections [35] and
layer normalization (LN) [36] are indispensable when we con-
nect different layers and blocks. In addition to the two layers
in an encoder block, the Transformer decoder also has an ad-
ditional third layer that performs multi-head attention over the
output of the encoder. This is similar to the attention mechanism
in RNN-AED.

3. Our Models
3.1. Model building block

The encoder and decoder of E2E models are constructed as the
stack of multiple building blocks described in this section. For
the models using LSTM-RNN, we explore two structures. The
first one, LSTM cuDNN, directly calls Nvidia cuDNN library
[37] for the LSTM implementation. We build every block by
concatenating a cuDNN LSTM layer, a linear projection layer
to reduce model size, and then followed by LN. Calling Nvidia
cuDNN implementation enables us for fast experiment of com-
paring different models.

The second structure, LSTM Custom, puts LN and projec-
tion layer inside LSTM, as it was indicated in [9] that they are
important for better RNN-T model training. Hence, we only
use this structure for RNN-T by customizing the LSTM func-
tion. The detailed formulations are in [17]. However, this slows
down the model training speed by 50%.

For the Transformer-AED models, we remove the position
embedding part [38] and use a VGG-like convolution module
[39] to pre-process the speech feature x1:T before the Trans-
former blocks. The LN is put before multi-head attention layer
(Pre-LN), which makes the gradients well-behaved at the early
stage in training.

3.2. Non-streaming models

We achieve non-streaming behavior in RNN-T by adding bidi-
rectionality in the encoder. The encoder of this RNN-T is com-
posed of multiple blocks of bi-directional LSTM cuDNN as de-
scribed in Section 3.1. The prediction network is realized with
multiple uni-directional blocks of LSTM cuDNN.

Similar to RNN-T, the non-streaming RNN-AED in-
vestigated in this study also uses multiple blocks of bi-
directional LSTM cuDNN in the encoder and uni-directional
LSTM cuDNN in the decoder. This decoder works together
with a location-aware softmax attention [15]. No multi-task
training or joint-decoding with CTC is used for RNN-AED.

Following [25], the Transformer-AED model uses the
multi-task training and the joint decoding of CTC/attention.
The training objective function is

L = −α log pctc(y|x1:T )− (1− α) log patt(y|x1:T ). (6)

The log-likelihood of the next subword log p(yu|x1:t, y1:u) in
the joint decoding is formulated as

log pctc(yu|x1:t, y1:u) + β1 log patt(yu|x1:t, y1:u). (7)



In practice, we first use the attention model to select top-k can-
didates and then re-rank them with Eq. 7.

3.3. Streaming models

Streaming RNN-T model has a uni-directional encoder. While
we can directly incorporate a standard LSTM as the build-
ing block with either LSTM cuDNN or LSTM Custom as de-
scribed in Section 3.1, incorporating the future context into en-
coder structure can significantly improve the ASR accuracy, as
shown in [17]. However, different from [17] which explores fu-
ture context frames together with the layer trajectory structure,
in this study we propose to only use context modeling. We do
this to save model parameters. Future context is modelled using
the simple equation below.

ζlt =

τ∑
δ=0

qlδ � glt+δ. (8)

Because � is element-wise product, Eq. (8) only increases the
number of model parameters very slightly. It transfers a lower
layer vector glt together with its future vectors glt+δ into a new
vector ζlt , where δ is future frame index. We modify the block
of LSTM cuDNN or LSTM Custom with the context modeling.

• LSTM cuDNN Context: the block is constructed with a
Nvidia cuDNN LSTM layer, followed by a linear projec-
tion layer, then the context modeling layer, and finally a
LN layer.

• LSTM Custom Context: the block is constructed with
the layer normalized LSTM layer with projection, and
then followed by the context modeling layer.

A similar concept of context modeling was applied to RNN in
[40] as Lookahead convolution layer. However, it was only
applied to the top layer of a multi-layer RNN. In contrast,
in this study we apply context modeling to every block of
LSTM cuDNN or LSTM Custom, and also investigate its ef-
fectiveness in the context of E2E modeling. For RNN-T, we
also investigate initializing the encoder with either CTC [6] or
CE training [41].

RNN-AED models use blocks of LSTM cuDNN Context
as encoder. Experiments with LSTM Custom Context will be
a part of future study. The streaming mechanism we have cho-
sen for this study is Monotonic Chunkwise Attention (MoChA)
[42]. MoChA consists of a monotonic attention mechanism [43]
which scans the encoder output in a left to right order and se-
lects a particular encoder state when it decides to trigger the de-
coder. This selection probability is selected by sampling from a
parameterized Bernoulli random variable. Once a trigger point
is detected, MoChA also uses an additional lookback window
and applies a regular softmax attention over that. Note that we
have a sampling operation here, which precludes the use of stan-
dard backpropagation. Therefore we train with respect to the
expected values of the context vectors. Please refer to [42] for
more details.

To enable streaming scenario in Transformer-AED mod-
els, we borrow the idea in trigger-attention (TA) [21], where
the CTC conducts frame-synchronized decoding to select top-k
candidates for each frame and then the attention model is lever-
aged to jointly re-rank the candidates using Eq. 7 once a new
subword is triggered by the CTC. Since the Transformer en-
coder is deeper than LSTM, the lookahead method may not be
the best solution. We compare the chunk-based method and the
lookahead-based method. The former segments the entire input

Table 1: Average WER of all non-streaming E2E models on 13
test sets containing 1.8 M words.

non-streaming models WER
RNN-T (cuDNN) 9.25
RNN-AED (cuDNN) 8.05
Transformer-AED 7.83

into several fixed-length chunks and then feeds them into the
model chunk by chunk, while the latter is exactly the same with
the method in RNN-T and RNN-AED. For the chunk-based en-
coder, the decoder can see the end of a chunk. For the lookahead
based encoder, we set a fixed window size for decoder.

4. Experiments
In this section, we evaluate the effectiveness of all models by
training them with 65 thousand (K) hours of transcribed Mi-
crosoft data. The test sets cover 13 application scenarios such
as Cortana and far-field speech, containing a total of 1.8 million
(M) words. We report the word error rate (WER) averaged over
all test scenarios. All the training and test data are anonymized
with personally identifiable information removed.

For fair comparison, all E2E models built for this study
have around 87 M parameters. The input feature is 80-
dimension log Mel filter bank with a stride of 10 millisec-
onds (ms). Three of them are stacked together to form a 240-
dimension super-frame. This is fed to the encoder networks for
RNN-T and RNN-AED, while Transformer-AED directly con-
sumes the 10 ms feature. All E2E models use the same 4 K
word piece units as the output target.

4.1. Non-streaming E2E models

As described in Section 3.1, the non-streaming RNN-T model
uses bi-directional LSTM with Nvidia cuDNN library in its en-
coder. The LSTM memory cell size is 780. The LSTM outputs
from the forward and backward direction are concatenated with
the total dimension of 1560 then linearly projected to dimension
780, followed by a LN layer. There are total 6 stacked blocks of
such operation. The prediction network has 2 stacked blocks,
each of which contains a uni-directional cuDNN LSTM with
memory cell size of 1280, followed by a linear projection layer
to reduce the dimension to 640, and then with a LN layer.

The non-streaming RNN-AED model uses exactly the same
encoder and decoder structures as the non-streaming RNN-T
model. Similar to [34], a location-aware attention mechanism
is used. In addition to the encoder and decoder hidden states,
this mechanism also takes alignments from previous decoder
step as inputs. The attention dimension is 512.

The Transformer-AED model has 18 Transformer blocks in
encoder and 6 Transformer blocks in decoder. Before Trans-
former blocks in encoder, we use a 4 layers VGG network to
pre-process the speech feature with total stride 4. The num-
ber of attention head is 8 and the attention dimension of each
head is 64. The dimension of the feed-forward layer is 2048 in
Transformer blocks. The combination weights of joint training
and decoding (i.e. α, β) are both 0.3.

As shown in Table 1, the non-streaming AED models have
a clear advantage over the non-streaming RNN-T model due to
the power of attention modeling. Transformer-AED improves
RNN-AED by 2.7% relative WER reduction.



4.2. Surpassing hybrid model with streaming E2E models

In [28] we reported results from our best hybrid model called
the contextual layer trajectory LSTM (cltLSTM) [29]. The cltL-
STM was trained with a three-stage optimization process. This
model was able to obtain a 16.2% relative WER reduction over
the CE baseline. Introducing 24 frames of total future-context
further yields an 18.7% relative WER reduction. The encode
latency is only 480 ms (24*20ms=480 ms; stride-per-frame is
20 ms due to frame skipping [44]). Hence, this cltLSTM model
(Table 2) presents a very challenging streaming hybrid model to
beat. This model has 65 M parameters, and is decoded with 5
gigabytes 5gram decoding graph.

We list the results for all streaming E2E models in Table
2. The baseline RNN-T implementation uses unidirectional
cuDNN LSTMs in both the encoder and the decoder. The en-
coder has 6 stacked blocks of LSTM cuDNN. Each block has
a unidirectional cuDNN LSTM with 1280 memory cells which
projected to 640 dimension and followed by LN. The predic-
tion and the joint network is the same as in the non-streaming
RNN-T model. This RNN-T model obtains 12.16% test WER.
The second RNN-T model inserts the context modeling layer
(Eq. (8)) after the linear projection layer in each block. The
context modeling has 4 frames lookahead at each block, and
therefore the encoder has 4 ∗ 6 = 24 frames lookahead. Be-
cause the frame shift is 30 ms, the total encoder lookahead is
720ms. The lookahead brings great WER improvement, ob-
taining 10.65% WER. This is 12.4% relative WER reduction
from the first RNN-T model without any lookahead. We also
followed lookahead convolution proposed in [40] by using 24
frames lookahead only on the top most RNN block. This model
gives 11.19% WER, showing that our proposed context model-
ing, which allocates lookahead frames equally at each block, is
better than lookahead convolution [40], which simply puts all
lookahead frames on the top layer only.

Next, we look at the impact of encoder initialization for
RNN-T. Shown in Table 2, the CTC initialization of RNN-T
encoder doesn’t help too much while the CE initialization sig-
nificantly reduces WER to 9.80. This is 8.0% relative WER
reduction from the randomly initialized model. The CTC ini-
tialization makes the encoder emit token spikes together with
lots of blanks while CE initialization enables the encoder to
learn time alignment. Given the gain with CE initialization, we
believe the encoder of RNN-T functions more like an acoustic
model in the hybrid model. Note the CE pre-training needs time
alignments, which is hard to get for word piece units as many of
them don’t have phoneme realisation. However, the time align-
ment for words is still accurate. We make an approximation
and obtain alignments for a word piece by simply segmenting
the duration of its word equally into its constituent word pieces.

For the last RNN-T model, we put projection layer and LN
inside the LSTM cell (Custom LSTM), and then insert the con-
text modeling layer after it. Putting projection layer inside al-
lows us to use larger number of memory cells while keeping
similar model size as the cuDNN LSTM setup. This LSTM has
2048 memory cells and the project layer reduces the output size
to 640. This model finally gives 9.27% WER, which is slightly
better than our best hybrid model.

With the same encoder architecture as the cuDNN RNN-T,
the MoChA-based streaming RNN-AED model gives impres-
sive results. Unlike RNN-T, it does not need any initialization
and is still able to slightly outperform it in an apple-to-apple
comparison (9.61% vs 9.80%). To the best of our knowledge,
this is the first time a streaming RNN-AED has outperformed

Table 2: Average WERs of streaming models on 13 test sets
containing 1.8 M words.

streaming models WER encoder lookahead
hybrid

cltLSTM 9.34 480 ms
RNN-T

cuDNN 12.16 0 ms
cuDNN+Context 10.65 720 ms
cuDNN+convolution [40] 11.19 720 ms
cuDNN+Context+CTC init. 10.62 720 ms
cuDNN+Context+CE init. 9.80 720 ms
Custom+Context+CE init. 9.27 720 ms

RNN-AED
cuDNN+Context 9.61 720 ms

Transformer-AED
Lookahead method 10.26 720 ms
Chunk-based method 9.16 720 ms

RNN-T on a large scale task. Note that our previous study didn’t
observe accuracy improvement for RNN-AED with CE initial-
ization [45]. We will investigate whether RNN-AED can also
benefit from customized LSTM function in future study.

The architecture of the streaming Transformer-AED model
is the same as the non-streaming one. For lookahead context-
modeling method, each encoder block looks ahead 1 frame.
Considering the total stride of VGG is 4 and the speech sam-
pling rate is 10ms, the encoder has 1 ∗ 18 ∗ 4 ∗ 10ms = 720ms
latency. The decoder of the lookahead method introduces an
extra 240ms latency. The chunk-based method considers future
context with a fixed-chunk. The latency of each frame is in
the range of [480ms, 960ms], resulting in a 720ms averaged la-
tency without extra decoder latency. The chunk-based method
obtains 9.16% WER, significantly outperforming the lookahead
method, mainly because the bottom Transformer blocks of the
lookahead approach cannot enjoy the full advantages provided
by the right context.

5. Conclusions
This work presents the first large-scale comparative study
of three popular E2E models (RNN-T, RNN-AED, and
Transformer-AED). The models are compared in both stream-
ing and non-streaming modes. All models are trained with
65K hours of Microsoft’s internal anonymized data. We ob-
serve that with the same encoder structure, AED is better than
RNN-T for both non-streaming and streaming models. With
customized LSTM and CE initialization for encoder, the RNN-
T model becomes better than RNN-AED. Among all models,
Transformer-AED obtained the best WERs in both streaming
and non-streaming modes.

In this study, both streaming RNN-T and Transformer-AED
outperformed a highly-optimized hybrid model. There are sev-
eral significant factors contributing to this success. For stream-
ing RNN-T, the proposed context modeling reduces the WER
by 12.4% relative from the one without any lookahead. The
CE initialization for RNN-T improves over the random initial-
ization baseline by 8.0% relative WER reduction. This shows
pretraining is helpful even on a large scale task. To utilize fu-
ture context for streaming Transformer-AED, we show that the
chunk-based method is better than the lookahead method by
10.7% relative.
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