Abstract

Semantic integrity assertions are predicates that define consistent database states. To enforce such assertions, a database system must prevent any update from mapping a consistent state to an inconsistent one. In this paper, we describe an enforcement method that is efficient for a large class of relational calculus assertions. The method automatically selects minima and maxima of certain sets to maintain as redundant data in the database. This redundant data is sufficient for enforcing all of the assertions in the class, yet it can be easily maintained. Correctness proofs are expressed in Hoare's program logic.

1. Introduction

Accuracy is an important property of any database. One way to prevent inaccurate data from being stored in a database is to use semantic integrity assertions. These assertions are predicates on database states; a database state is consistent with these assertions if all assertions hold in that state. By defining a collection of semantic integrity assertions, a user specifies consistent states. The database system is responsible for ensuring database consistency by rejecting updates that produce inconsistent states.

The main components of an implementation of semantic integrity assertions are a specification language for defining assertions and enforcement algorithms for guaranteeing database consistency relative to those assertions. Expressive power is an asset for such a language, since it allows many types of constraints to be stated; but it is also a liability, since complicated assertions are often expensive to enforce. One language that is richly expressive is relational calculus [Codd 72]. However, since many applications do not need the full power of relational calculus to express semantic integrity assertions, and since arbitrary relational calculus assertions can be quite expensive to enforce, we focus on a restricted class of assertions. Our restricted class is sufficiently general to express many common assertions, yet simple enough to be enforced efficiently.

Efficient enforcement depends not only on the complexity of the assertions, but also on the structure of the database. One method for improving the efficiency of enforcement algorithms is to augment the database, D, with stored redundant information, D', that summarizes the contents of D. If D' is cleverly designed, it will contain sufficient information for testing the consistency of most assertions during updates. However, D' itself must be kept consistent relative to the database, D. It is intended to describe. So, there is a trade-off between the work saved during consistency testing by exploiting D' and the extra effort required to keep D' consistent with respect to D. For D' to be effective, its benefit for consistency testing must exceed the cost of maintaining it.

We have adopted the use of redundant data to reduce the cost of testing consistency. The redundant data that we typically add to the database is aggregate information that characterizes a set of values in the database, such as the greatest lower bound of a set. We test consistency using the stored aggregate data rather than all the individual values in the set. The aggregate information is designed to be quickly accessed and easily maintained.

The enforcement method that is the subject of this paper includes: A formal definition of the class of assertions it can enforce; a procedure that selects the appropriate aggregate information to store for each assertion in the class; a procedure that determines the proper run-time test for each type of update and assertion; and a procedure that generates an efficient program for maintaining the correctness of the redundant aggregate information during database updates. Each of these procedures requires little more than a table look-up. The method requires no mechanical theorem proving, and can exploit the full capabilities of the database system's query processor (as in [Stonebraker 75]).

This method represents a qualitatively different approach to integrity enforcement than other published methods. We do not simply incorporate heuristics in a general purpose integrity enforcement mechanism and apply the heuristics whenever they seem cost effective. Rather, we define a class of assertions for which the heuristic—maintaining aggregate data—is virtually guaranteed to be cost effective. We can then conclude that any assertion in our class will be enforced efficiently by our method.

*This work was supported by the National Science Foundation under grants MCS-77-05314, MCS-79-07762, and MCS-79-00365.
Section 2 defines the database model and the restricted class of assertions we consider in this paper. Section 3 presents algorithms to generate fast consistency tests. We use Hoare's program logic [Hoare 69; Hoare and Wirth 73] to prove that these tests are sufficient to guarantee consistency. Implementation issues of accessing and maintaining aggregate data are discussed in Section 4. Finally, in Section 5, we compare our approach with previous work and argue that our approach has low cost.

2. Modelling Databases, Assertions and Updates

2.1 Relational Data Model

We use relations as our underlying data model. A database is described by a database schema, consists of a set of relation schemas. Each relation schema consists of a relation name, say R, and a set of attributes, say \(\{A_1, \ldots, A_n\} \), and is denoted by \(R(A_1, \ldots, A_n) \). An example database schema that we use throughout this paper appears in Fig. 1.

A state of a relation schema \(R(A_1, \ldots, A_n) \) is a relation, \(R \), which is a subset of \(\text{dom}(A_1) \times \cdots \times \text{dom}(A_n) \), where \(\text{dom}(A_i) \) is the domain of values for \(A_i \). A database state \(D \) of database schema \(\{R_1, \ldots, R_n\} \) is a set of relations \(\{R_1, \ldots, R_n\} \) where \(R_i \) is a state of \(R_i \), \(i = 1, \ldots, n \).

2.2 The Assertion Language

We express assertions in a language much like relational calculus [Codd 72]. The symbols of our language include:

- relation symbols (e.g., \(R, S \));
- tuple variable symbols (e.g., \(x \), which denotes a tuple of a relation);
- indexed tuple variable symbols (e.g., \(r.B \), which denotes the \(B \) attribute of tuple \(r \));

- constant symbols (including "true", "false", and the rational numbers);
- function symbols, including arithmetic functions (e.g., \(+, \times, \ldots\));
- predicate symbols, including arithmetic relations (e.g., \(=, \leq, \ldots \));
- the quantifiers \(\forall \) and \(\exists \);
- boolean operators (e.g., \(\wedge, \vee, \neg \)).

Assertions are well-formed formulas (abbr. wffs) as in relational calculus, where terms are indexed tuple variables and constants and clauses are formed in the usual way. (Unlike relational calculus, the range of a quantifier can only be a single relation.) \(\forall x \in y \) denotes a wff \(\phi \) with \(x \) substituted for all occurrences of \(y \).

A structure for our language interprets the parameters and assigns a universe to the variables. It assigns a value to each constant symbol, a function to each function symbol (with the standard interpretation of arithmetic function symbols), a relation to each predicate symbol (with the standard interpretation of arithmetic relations), and a set of relations to each relation symbol (the set of possible states of each relation schema). An interpretation of our language includes a structure and a database state. In what follows, we assume a fixed structure; only the database state can change as a result of program execution.

Example 1 - Assertions

(a) English assertion: No item may be sold at a loss.

\[\forall \text{buys}(\text{ITEM}=\text{sells.(ITEM)} \Rightarrow \text{buys.COST} < \text{sells.PRICE}) \]

(b) English assertion: Items can only be bought by cases.

\[\forall \text{buys}(\text{ITEM} = \text{packs.ITEM} \land \text{buys.QUANTITY} = \text{packs.#PER-CASE}) \]

where \(x \div y = z \) is an integer multiple of \(y \).

(We will use \(\exists \) to abbreviate "is defined as")

Figure 1

An Example Database Schema

DATABASE SCHEMA: \(D = \{\text{BUYS}, \text{SELLS}, \text{PACKS}\} \)
RELATION SCHEMAS:

\(\text{BUYS(INVOICE#,DEPT,ITEM,QUANTITY,COST)} \)
An invoice entry records a department buying a quantity of an item at a certain cost per item.

\(\text{SELLS(INVOICE#,DEPT,ITEM,QUANTITY,COST)} \)
An invoice entry records a department selling a quantity of an item at a certain price per item.

\(\text{PACKS(ITEM,CASE-TYPE,#-PER-CASE)} \)
A certain number of items are packed in each type of case (e.g., 'economy', 'jumbo', etc.)

ATTRIBUTES:

\begin{align*}
\text{DEPT,ITEM,CASE-TYPE} & : \text{Alphanumeric strings} \\
\text{INVOICE#,QUANTITY,#-PER-CASE} & : \text{Nonnegative integers} \\
\text{COST,PRICE} & : \text{Positive real numbers with two decimal places}
\end{align*}

2.3 A New Class of Assertions

Our assertion language is very powerful, making it potentially quite expensive to preserve the consistency of an arbitrary assertion. The purpose of this paper is to demonstrate methods for preserving the consistency of a restricted class of assertions, called two-free assertions.

An assertion is two-free if it is of the form: 1) \(\forall x \in y \phi(x,y) \Rightarrow r.A < s.B \), or 2) \(\forall r.A \in s.B \), or 3) \(\exists r.A \in s.B \), where \(r.A \) and \(s.B \) have the same underlying domain, \(P \) is a wff, \(r.A \) and \(s.B \) are the only free tuple variables in \(P \), and \(\phi(x,y) \) is a wff of the form: 1) \(\forall x \in y \), 2) \(\forall x \in y \), or 3) \(\exists r.A \in s.B \).

* We use \(\forall \text{buys} \in \text{BUYS(\ldots)} \) to abbreviate the more complex but formally correct \(\forall \text{buys}(\text{BUYS(\ldots)}) \).

127
and no bound tuple variable in \(P \) has the same range as \(r \) or \(s \).*

We will only consider updates to relations whose tuple variables are free in \(P \). In our examples, \(P \) is a function of \(r \) and \(s \) only. If \(R \) and \(S \) are the same relation, we perform tests for an update to \(R \) and for an update to \(S \).

The assertions in Ex. 1 are two-free. In Ex. 1b,

\[
\text{Vbuys} \subseteq \text{BUYS}, \text{vPacks} \subseteq \text{Packs}, \text{ITEM} \in \text{buys.ITEM} = \text{packs.ITEM} \\
\text{A buys.QUANTITY} = \text{packs.#-PER-CASE},
\]

integer division defines a partial order. While we could denote the partial order by the symbol \(\leq \), we use \(\div \) to avoid confusion with the standard arithmetic ordering.

In this paper, "assertion" refers only to two-free assertions. Assertions of forms 1, 2, and 3 are called \(\forall \)-assertions, \(\exists \)-assertions, and \(\exists \forall \)-assertions, respectively. We fix the order of the quantifiers and require that the \(r \) quantifier precede the \(s \) quantifier.

2.4 Simple Updates

In this paper we consider only simple updates: single-tuple insertions and single-tuple deletions. An in-place modification of an existing tuple is modelled currently by a deletion followed by an insertion; techniques for handling these updates directly will appear in a future paper. We model updates with assignment statements. Given a tuple \(r_0 \) and a relation \(R \), "\(R := R \cup r_0 \)" denotes an insertion of \(r_0 \) into \(R \), and "\(R := R \setminus r_0 \)" denotes a deletion of \(r_0 \) from \(R \). (We have dropped the usual set brackets, "\(\{ \} \), from enclosing \(r_0 \) to avoid confusion with the notation of Hoare's logic that follows.)* Assignments to \(R \) have no effect on other relations in the database.

2.5 Hoare's Logic

We use Hoare's program logic [Hoare 69; Hoare and Wirth 73] to analyse the effects of updates on assertions. Formulas in the logic include formulas of the assertion language and formulas of the form \(P(\mathcal{F}) \), where \(P \) and \(Q \) are formulas and \(\mathcal{F} \) is a program. In our case, \(u \) will always be a database update. A formula \(P(\mathcal{F}) \) is true in an interpretation \(\mathcal{I} = (\mathcal{M}, \mathcal{A}) \), where \(\mathcal{M} \) is a structure and \(\mathcal{A} \) is a database state, denoted \(\models_{\mathcal{I}} P(\mathcal{F}) \), if whenever preconditions \(P \) is true in \(\mathcal{I} \) before the update then postcondition \(Q \) is true in \((\mathcal{F}u(\mathcal{D})) \), where \(u(\mathcal{D}) \) is the database state after \(u \) executes. The logic is a set of axioms and inference rules that permits us to determine, whenever provable, if a formula is true in all database states (see Fig. 2). We use \(\models_{\mathcal{I}} P(u)Q \) to denote that the formula \(P(u)Q \) is provable in the logic.

Figure 2
Axioms of Hoare's Program Logic

- **General form:**
 \[
 \frac{E_1, E_2, \ldots, E_n}{E_1 \land E_2 \land \ldots \land E_n \land E} \quad \text{then } E
 \]

 Assignment Axiom:
 \[
 \models \text{P}(y/x)(x := y)P
 \]

 Composition Axiom:
 \[
 \frac{\models P(Q_1)R_1, \models R_1(Q_2)R}{\models P(Q_1, Q_2)R}
 \]

 Conditional Axiom:
 \[
 \frac{P \land \text{B} \Rightarrow Q}{\models P \land \text{B} \Rightarrow Q}
 \]

 Alternative Axiom:
 \[
 \frac{\models P \land \text{B} \Rightarrow Q_1 \lor P \land \neg \text{B} \Rightarrow Q_2}{\models P \Rightarrow (Q_1 \lor Q_2)}
 \]

 Consequence Rule:
 \[
 \frac{P(\mathcal{F}) \Rightarrow \mathcal{S} \Rightarrow \mathcal{P} \Rightarrow \mathcal{T}}{\models \mathcal{S}(\mathcal{F})\mathcal{T}}
 \]

It follows from the soundness of the logic that if \(\models_{\mathcal{I}} P(u)Q \), then for all database states \(\mathcal{D} \), \(\models_{\mathcal{I}} P(\mathcal{D})Q \) [Clarke 79].

A database state \(\mathcal{D} \) is consistent with an assertion \(A \) iff \(\models_{\mathcal{D}} A \). An update \(u \) preserves the consistency of \(\mathcal{D} \) with respect to \(A \) iff \(\models_{\mathcal{D}} (\mathcal{F}u)A \).

We say \(u \) preserves \(A \) iff, for all database states \(\mathcal{D} \), \(u \) preserves the consistency of \(\mathcal{D} \) w.r.t. \(A \). Note that if \(\models_{\mathcal{D}A}(u)A \), then \(u \) preserves \(A \).

We assume that the database state is consistent prior to the update. \(\exists \forall \)-assertions are the only ones for which the empty database state is inconsistent. In this case only, we assume that consistency tests for each update are suppressed until an initial consistent state is reached.

3. Determining Whether Updates Preserve Consistency

3.1 General Strategy

One way to test that an update, \(u \), preserves the consistency of an assertion \(A \), in a particular state is to perform \(u \) and then evaluate \(A \) in the new
state. If the new state is consistent, then the update is backed-out, thereby undoing its effects.

In view of this potential back-out, it may be preferable to test that \(u \) preserves \(A \) before \(u \) is actually executed. To accomplish this, we construct a consistency test, \(t \), that, for each database state, \(D \), determines whether \(u \) preserves \(D \) w.r.t. \(A \). We can check that we correctly constructed \(t \) by proving the theorem: \(\neg A \rightarrow [t \text{ then } u] A \). This theorem verifies that \(t \) is a correct test for all database states. (If \(t(D) = \text{false} \), then \(u \) is not executed and the database state is unchanged.) We adopt this strategy of testing consistency before permitting the update. We note that this strategy is essentially the one used in the query modification method proposed by Stonebraker [75].

To enforce an assertion \(A \), a database system must provide a consistency test for each update. Assuming the enforcement method is a compile-time algorithm that cannot access the database state, then enforcement amounts to an algorithms that maps each assertion \(A \) and update \(u \) into a test \(t \), such that \(A \rightarrow [t \text{ then } u] A \). This theorem verifies that \(t \) is a correct test for all database states.

To determine a test \(t \) for \(A \) and \(u \), we could begin by finding the weakest precondition sufficient to ensure the truth of \(A \) after \(u \) executes, denoted \(wp(A,u) \) [Dijkstra 76]; so, \(A \rightarrow [wp(A,u) \text{ then } u] A \). However, \(wp(A,u) \) assumes we know nothing about the database state before \(u \) executes. In fact, we do know that \(A \) holds in that state. So, we can substitute any test \(t \) for \(wp(A,u) \) such that \(A \rightarrow [t \text{ then } u] A \). For the tests in this paper, the proof of \(A \rightarrow [t \text{ then } u] A \) should be clear from the proof of \(A \rightarrow [wp(A,u) \text{ then } u] A \).

To determine a test \(t \) for \(A \) and \(u \), we could begin by finding the weakest precondition sufficient to ensure the truth of \(A \) after \(u \) executes, denoted \(wp(A,u) \) [Dijkstra 76]; so, \(A \rightarrow [wp(A,u) \text{ then } u] A \). However, \(wp(A,u) \) assumes we know nothing about the database state before \(u \) executes. In fact, we do know that \(A \) holds in that state. So, we can substitute any test \(t \) for \(wp(A,u) \) such that \(A \rightarrow [t \text{ then } u] A \). For the tests in this paper, the proof of \(A \rightarrow [t \text{ then } u] A \) should be clear from the proof of \(A \rightarrow [wp(A,u) \text{ then } u] A \).

3.2 Trivial Tests

For some combination of two-free assertions and updates, the assertion implies the weakest precondition. That is, \(A \rightarrow wp(A,u) \). In this case, the consistency test is trivial—it is simply true, because \(A \rightarrow [wp(A,u) \text{ then } u] A \). A trivial consistency test for a particular assertion and update means that the update preserves the assertion. For such updates, the database system does not need to do any work to enforce the assertion.

Example 2 - A Trivial Test

Assertion: (as in Ex. 1a)
Update: \(SELLS := SELLS \cup \{sells_0\} \), where \(sells_0 \) is an arbitrary tuple in \(SELLS \)
Claim: The update preserves \(A \), so no consistency test is required. Formally stated, \(A \rightarrow [SELS := SELLS \cup \{sells_0\}] A \)

Proof.
1. \(\forall buys_0 \in \text{BUYSbuys}_0 \rightarrow \text{BUYSbuys}_0 \) \(\forall \text{buys}_0 \in \text{BUYSbuys}_0 \) \(\Rightarrow \text{buys}_0 \in \text{BUYSbuys}_0 \); by def. of two-free, there are no variables other than \(\text{buys} \) and \(\text{buys} \) bound to \(\text{BUYS} \) and \(\text{SELLS} \) in \(\text{P} \).
2. \(\neg A \rightarrow A \left[\text{SELLS} := \text{SELLS} \cup \text{buys}_0 \right] \) \(\text{SELLS} := \text{SELLS} \cup \text{buys}_0 \); 1 and def. of substitution
3. \(A \left[\text{SELLS} := \text{SELLS} \cup \text{buys}_0 \right] \) \(\Rightarrow \text{buys}_0 \in \text{BUYSbuys}_0 \); Assignment axiom.
4. \(A \left[\text{SELLS} := \text{SELLS} \cup \text{buys}_0 \right] \) \(\Rightarrow \text{buys}_0 \in \text{BUYSbuys}_0 \); 1, 2, and Consequence Rule.

3.3 Using Stored Aggregates to Simplify Consistency Tests

We can simplify all nontrivial consistency tests further, provided certain aggregate values—minima and maxima of certain domains—are maintained.

Let \(V \) be a set whose domain is partially ordered by \(\leq \). We define \(\text{MIN}(V,\leq) = \{v \in V : (\forall v' \in V) (v' \leq v)\} \), where \((v' < v) \) abbreviates \((\forall v' \in V) (v' < v') \). Similarly, \(\text{MAX}(V,\leq) = \{v \in V : (\forall v' \in V) (v < v')\} \). Note that \(\text{MIN} \) and \(\text{MAX} \) are sets, not necessarily singletons. We assume \(\text{MIN} \) and \(\text{MAX} \) are non-empty. When \(|\text{MIN}(V,\leq)| = 1 \), we use \(\text{MIN}(V,\leq) \) to abbreviate the unique element in the set (similarly for \(\text{MAX} \)). When the relevant partial order is clear in context, we drop \(\leq \) as a parameter to \(\text{MIN} \) and \(\text{MAX} \).

Example 3 - Using a Stored Aggregate to Simplify a Consistency Test

Assertion: same as Ex.1a.
Update: \(\text{BUYS} := \text{BUYS} \cup \text{buys}_0 \), where \(\text{buys}_0 = (494, 'toy', 'whistle', 100, .20) \)
Claim: If \(A \) is true before the update then \(A \rightarrow [\text{TEST} \Rightarrow \text{buys}_0 \in \text{BUYS}] A \) is sufficient to ensure consistency. Formally stated, \(A \rightarrow [\text{TEST} \Rightarrow \text{buys}_0 \in \text{BUYS}] A \).

Proof.
1. \(A \rightarrow [\text{TEST} \Rightarrow \text{buys}_0 \in \text{BUYS}] A \); defs. of \(A \) and \(U \)
2. \(A \rightarrow [\text{TEST} \Rightarrow \text{buys}_0 \in \text{BUYS}] A \); def. of \(\text{A} \), \(\text{TEST} \), and \(\text{MIN} \)
3. \(A \rightarrow [\text{TEST} \Rightarrow \text{buys}_0 \in \text{BUYS}] A \); 1 and 2
4. \(A \rightarrow \text{buys}_0 \in \text{BUYS} \); Assignment axiom
5. \(A \rightarrow \text{buys}_0 \in \text{BUYS} \); 3, 4, and Consequence rule
6. \(A \rightarrow [\text{TEST} \Rightarrow \text{buys}_0 \in \text{BUYS}] A \); 5 and Conditional axiom

Since we design our tests to promote efficiency, let us briefly discuss here the cost of this method (a fuller discussion is in Section 5.2). If the minimum PRICE of all 'whistle' tuples in \(\text{SELLS} \) is available, we only need one comparison to evaluate
TEXT. By contrast, note that query modification
[Stonebraker 751 sets out to prove
\[\text{A} \land \text{BUYS := BUYS \cup \text{buys0}} \] and uses the Assignment Axiom
to produce the precondition \(\text{buys \in SELLs} \). Assuming
no inverted files, this formula entails searching the
entire SELLs relation, checking the ITEM values, and
comparing .20 to the PRICE value for every tuple
with ITEM='whistle'. If SELLs is inverted on ITEM,
then the test must still be made on all 'whistle'
tuples in SELLs.

In general, for any two-free assertion \(A \) and any
simple update \(u \), there is an efficient test \(t \) such
that \(\neg A \land t \implies u \) \(A \). Figure 3 shows the test \(t \n\) for
each type of assertion and update. In all cases
where \(t \) is nontrivial, \(t \) relies on a MIN or MAX value
that must be maintained as redundant information in
the database. Efficient methods for locating and
maintaining these MIN and MAX values are discussed
in Section 4.

The proof of \(\neg A \land t \implies u \) \(A \) for each case
included in Fig. 3 is similar to those in Examples
2 and 3; proofs appear in [Bernstein and Blaustein
80].

Figure 3
Consistency test \(t \) for assertion \(A \) and update \(u \) such
that \(\neg A \land t \implies u \) \(A \).

Assertions and Updates

| Assertion: \(\forall r \in \text{BUYS} (P(r,s) \land r.A < s.B) \) |
| Update: |
\(R:=R \cup s_0 \)	\(\exists \text{MIN}((r.A \land r \in \text{BUYS}) \land P(r,s)) \)
\(S:=S \cup s_0 \)	\(\forall r.A < s.B \)
\(R:=R \setminus s_0 \)	\(\text{MIN}((s.B \land s \in \text{BUYS})) \leq s_0 \)
\(S:=S \setminus s_0 \)	\(\text{TRUE} \)

Assertions and Updates

| Assertion: \(\forall r \in \text{BUYS} (P(r,s) \land r.A < s.B) \) |
| Update: |
\(R:=R \cup s_0 \)	\(\exists \text{MAX}((r.A \land r \in \text{BUYS}) \land P(r,s)) \)
\(S:=S \cup s_0 \)	\(\forall r.A < s.B \)
\(R:=R \setminus s_0 \)	\(\text{MAX}((s.B \land s \in \text{BUYS}) \geq s_0 \)
\(S:=S \setminus s_0 \)	\(\text{TRUE} \)

Assertions and Updates

| Assertion: \(\exists r \in \text{BUYS} (P(r,s) \land r.A < s.B) \) |
| Update: |
| \(R:=R \setminus r_0 \) | \(\text{TRUE} \) |
| \(S:=S \setminus s_0 \) | \(\exists \text{MIN}((r.A \land r \in \text{BUYS}) \land P(r,s)) \) |
| \(\forall r.A < s.B \) |

3.4 Special Cases

The tests in Fig. 3 are sufficiently general
to handle MIN and MAX as sets. The cost of per-
forming a test, then, depends principally on the
size of the MIN or MAX set. However, in most com-
mon cases MIN and MAX each consist of a single
value. Consistency tests for these cases require
at most on comparison per update.

Lemma 1. If \(< \) defines a lattice and \(X \) is a
finite set, then there is a single value \(v \) which
is the greatest lower bound of \(\text{MIN}(X, <) \). Similarly,
there is a single value \(v' \) which is the least
upper bound of \(\text{MAX}(X, <) \).

Note that Lemma 1 is only useful for \(\forall \)-assertions.

Lemma 2. If \(< \) defines a total ordering, then
\(\text{MIN}(X, <) = \text{MAX}(X, <) = 1 \).

Examples 1-3 use a partial ordering that is
also a total ordering. The following example ap-
plies our strategy to a different partial order,
integer division, and illustrates a case where the
MAX values are sets.

Example 4 - A Different Type of Partial Order

| Assertion: \(\forall r \in \text{BUYS} (P(r,s) \land r.A < s.B) \) |
| Update: |
\(R:=R \cup s_0 \)	\(\exists \text{MIN}((r.A \land r \in \text{BUYS}) \land P(r,s)) \)
\(S:=S \cup s_0 \)	\(\forall r.A < s.B \)
\(R:=R \setminus s_0 \)	\(\text{MIN}((s.B \land s \in \text{BUYS}) \leq s_0 \)
\(S:=S \setminus s_0 \)	\(\text{TRUE} \)

Integer division defines our partial order
(\(m \div n \) means that \(n \) divides \(m \)), so MAX contains the
least common divisors in the set. We take the MAX
(or least common divisors) of QUANTITY values of tuples
in BUYS with ITEM='whistle' and try to find an
integer divisor for each such QUANTITY value from
the set of least common divisors of \#-PER-CASE
values of PACKS tuples with ITEM='whistle'.

\[\text{MAX}((\text{BUYS}.\text{QUANTITY} \land \text{BUYsBUYs.buy}.\text{ITEM} = 'whistle') \leq \text{MAX}((\text{PACKS}.\#-\text{PER-CASE} \land \text{PACKS.pack}.\text{ITEM} = 'whistle')) \]

This simplifies to

Example 4 - A Different Type of Partial Order

Integer division defines our partial order
(\(m \div n \) means that \(n \) divides \(m \)), so MAX contains the
least common divisors in the set. We take the MAX
(or least common divisors) of QUANTITY values of tuples
in BUYS with ITEM='whistle' and try to find an
integer divisor for each such QUANTITY value from
the set of least common divisors of \#-PER-CASE
values of PACKS tuples with ITEM='whistle'.

\[\text{MAX}((\text{BUYS}.\text{QUANTITY} \land \text{BUYsBUYs.buy}.\text{ITEM} = 'whistle') \leq \text{MAX}((\text{PACKS}.\#-\text{PER-CASE} \land \text{PACKS.pack}.\text{ITEM} = 'whistle')) \]
4. Implementation

Having discussed our general strategy, we now focus on implementing a system based on this strategy. For any assertion and any update, Fig. 3 gives a consistency test. For trivial tests, the update preserves the assertion, so there is nothing to implement. For nontrivial tests, MIN and MAX values are needed. So, to support nontrivial tests, the system must create MIN and MAX values in the database when an assertion is defined, and must maintain these values during updating.

When an assertion is defined and added to the system, the following steps must be taken.

A1. Augment the data description to include appropriate MIN or MAX sets needed for all nontrivial tests.

A2. Compute these MIN and MAX values.

A3. Test that the new assertion is true in the current database state. When an update is processed, the following steps must be taken for each assertion:

U1. Find the appropriate test in Fig. 3.

U2. Locate the correct MIN or MAX value.

U3. Perform the test. If it fails, reject the update. Otherwise perform U4 and U5.

U4. Do any necessary bound maintenance.

U5. Execute the update.

We now explain how to perform each of the above steps.

4.1 Identifying Bounds

Step A1 uses Fig. 3 to determine which bounds must be included in the data description for nontrivial tests. Suppose Fig. 3 specifies that a MAX of the set \(\{s \in S | r \in R \text{ and } s \in S(r,s) \} \) is needed to test consistency when some \(r \in R \) is deleted. So, the MAX of this set must be incorporated in the database.

It appears that each \(r \in R \) has its own set \(\{s \in S | s \in S(r,s) \} \) and its own MAX. Fortunately, fewer sets and MAX's are usually sufficient. The smaller number of sets is obtained by grouping together \(R \) tuples that satisfy \(P \) for precisely the same \(S \) values, since each of these \(R \) tuples has the same associated set. For formalize this idea, we define the equivalence set of \(r \in R \) w.r.t. \(P \) in state \(D \) to be \(r \in R \)

\[\{r \in S | r \in S(r,s) \} \] \(\subseteq \{s \in S | r \in R \text{ and } s \in S(r,s) \} \]. We will drop \(D \) as a parameter when it is clear in context.

Example 5 - Equivalence Sets of Tuples

Assertion: same as Ex. 1a.

Update: (as in Example 4) \(\text{PACKS} := \text{PACKS} - \text{PACKS}_0 \),
where \(\text{PACKS}_0 \) = ('whistle', 'economy', 100)

In Ex. 4 we need the MAX of the set \(\{\text{packs}_0 \#-\text{PER-CASE} \); \(\text{PACKS} - \text{PACKS}_0 \); \(\text{packs}_0 \text{ITEM} = 'whistle' \}).

This set is simply the projection of \(\text{packs}_0 \#-\text{PER-CASE} \), where \(\text{P} = (\text{buys.ITEM}=\text{packs.ITEM}) \) and \(D \) is the state after the deletion. In words, \(\text{packs}_0 \) is the set of remaining PACKS tuples with ITEM='whistle'.

Equivalence sets can be indexed by the attributes referenced in \(P \), called P-attributes. Let \(A_1, \ldots, A_m \) be all the P-attributes for \(R \). Since \(P \) is a formula on indexed tuple variables and constants, each \(A_1, \ldots, A_m \) value uniquely identifies an equivalence set of \(R \) tuples. Therefore, each equivalence set and its relevant bounds can be indexed by P-attribute values.

Example 6 - Identifying Aggregate Values

Assertion: same as Ex. 1a.

All BUYS tuples with the same ITEM value are equivalent with respect to this assertion, as are SELLS tuples. We store bounds of COST values indexed by ITEM values for BUYS tuples and bounds of PRICE values indexed by ITEM values for SELLS tuples.

Executing A1, then, involves identifying the P-attributes of the relations in the assertion and using these P-attribute values to identify stored bound values. A2 computes the MIN or MAX of all tuples in the relation having the same P-attribute values. A3 then compares bound values to test the current state. We proceed in Section 4.2 to show how to decide which values must be compared with each other.

4.2 Locating the Correct MIN and MAX Values

The tests in Fig. 3 show which aggregates to store for assertions of each type. Steps A3 and U2 depend on accessing particular bound values. Once the appropriate values are accessed, A3 and U3 simply compare them. Using equivalence sets of tuples reduces the number of bounds stored, and these bounds are easy to locate because they are indexed by P-attribute values. The only remaining difficulty is to find pairs of equivalence sets from \(R \) and \(S \) that simultaneously satisfy \(P \). That is, given an assertion and P-attribute values for one relation (the one being updated), we need to find the (set of) P-attribute values in the other relation that satisfy \(P \). In this paper, we assume that each tuple has a unique associated equivalence set in the other relation*. Essentially, \(P \) is being interpreted as a query.

*Although our examples deal only with assertions where \(P \) is a single equality formula, methods handling general expressions have been developed and will appear in a later paper.
Example 7 - P as a Query

Assertion: same as Ex.1a.

Update: BUYS := BUYS buyo, where

\[\text{buys}_0 = (324, 'toy', 'whistle', 100, 0.1) \]

Before we can compare .10 with the minimum PRICE value, we must evaluate \(P(\text{BUYS.ITEM} = \text{sells.ITEM}), \) with \(\text{buys}_0 \) substituted for \(\text{buys} \), to find the ITEM-value in SELLS which indexes the correct equivalence set. Thus, \(P \) acts as a query which finds an ITEM-value in SELLS given a tuple in BUYS.

Even had we not used equivalence sets, it would have been necessary to compare .10 with PRICE values for all tuples satisfying \(\text{sells} \in \text{SELLS}(\text{ITEM} = 'whistle') \). \(P \) would have had to be evaluated in exactly the same way. Consistency checking methods must all evaluate the query \(P \) and can all use the same mechanism to do so.

Interpreting \(P \) is basic to all consistency testing methods. It is essentially a query optimization problem and can be abstracted from other aspects of consistency verification. We choose to treat it in this way and do not discuss it further in this paper.

4.3 Maintaining Bounds

If an update preserves consistency (the test in \(U_3 \) succeeds), then we may need to change the bound value of the updated tuple's equivalence set (in step \(U_4 \)). It is not enough for the assertion \(A \) to be true after the update; the stored bound value must also be accurate relative to the new database state produced by the update. In effect, we are adding a new precondition and postcondition that describe the accuracy of our bounds. Formally, we must define a formula \(B \) that is true in a database state if the stored bound is accurate in that state. We then augment the given update, \(u \), by another update, \(u' \), that maintains the consistency of the bounds. That is,

\[\neg A \wedge B \]

For our method to be cost effective, the cost of bound maintenance must not exceed the savings gained in using those bounds to test the consistency of assertions. So, bound maintenance must be efficient. This efficiency is obtained by combining bound maintenance with the consistency test. This combined activity helps when a tuple update does not affect the bound of its equivalence set. Since consistency only depends on bound values, if the bound is unchanged, then the database must be consistent and no consistency test is needed. In such cases, bound maintenance subsumes the consistency test.

Example 9 - Combining Bound Maintenance and Consistency Tests

Assertion: same as Ex.1a.

Update: BUYS := BUYS \(u_0 \), where

\[\text{buys}_0 = (434, 'toy', 'whistle', 500, 0.05) \]

Claim: Let \(MX \) be the BUYS aggregate used to test consistency of insertions into BUYS. Let \(B \) be

\[\text{MAX}(\text{buys.ITEM} = \text{sells.ITEM}) \]

\(\text{buys}_0 \) is an assertion that describes states in which \(MX \) has the intended value. We claim that if \(A \wedge B \) hold before the update and the update does not force a recalculation of \(MX \), then no consistency test is required. Formally stated

\[\neg A \wedge B \]

In the above program, if \(.05 < MX \), then the assertion is satisfied, the existing bound (\(MX \)) is still correct, and no SELLS tuples need be accessed. If not, a consistency test is performed and, if it yields true, then the stored bound is changed and the update is executed.

Sketch of Proof. Let \(T_1 = (.05 < \text{MAX}(\text{buys.COST})) \) and \(T_2 = (.05 < \text{MIN}(\text{sells.PRICE})) \). The proof follows immediately from

\[\neg A \wedge B \text{ if } \text{buys}_0 \text{ then } \\
\neg A \wedge (T_1 \text{ and } T_2) \text{ if } .05 < MX \text{ and } \text{buys}_0 \text{ then } \]

Each combined consistency check and bound maintenance algorithm given by Fig. 4 and the above procedure definitions ensures that \(A \) is true and the stored bound is correct after the algorithm is executed.
Comined Integrity Checking and Bound Maintenance

Assertion type: $V_r V_s$

UPDATE: $R := R U r_0$; PROCEDURE: CHECK

TEST1 = $(\exists m \in M^c_{p_{r_0}}) (\{r_0.A \leq m\})$

TEST2 = $(\forall m \in \text{MIN}(\{s.B \in S \ W s(r_0, s)\})) (r_0.A \leq m)$

BOUND $= MX_{P_{r_0}} := (M^c_{P_{r_0}} - \{m \in M^c_{p_{r_0}} | m < r_0.A\}) \cup \{r_0.A\}$

UPDATE: $R := R U r_0$; PROCEDURE: MAINT

TEST1 = $(\exists m \in M^c_{p_{r_0}}) (m \leq s_0.B)$

TEST2 = $(\forall m \in \text{MAX}(\{r.A | r \in R A P(r, s_0)\})) (m \leq s_0.B)$

BOUND $= MN_{P_{s_0}} := (M^c_{P_{s_0}} - \{m \in M^c_{P_{s_0}} | s_0.B < m\}) \cup \{s_0.B\}$

UPDATE: $S := S U s_0$; PROCEDURE: CHECK

TEST1 = $(\exists m \in M^c_{P_{s_0}}) (m \leq s_0.B)$

TEST2 = $(\forall m \in \text{MAX}(\{s.B \in S \ W s(s, s)\})) (m \leq s_0.B)$

BOUND $= MN_{P_{s_0}} := (M^c_{P_{s_0}} - \{m \in M^c_{P_{s_0}} | s_0.B < m\}) \cup \{s_0.B\}$

Assertion type: $V_s J_s$

UPDATE: $R := R \ominus r_0$; PROCEDURE: CHECK

TEST1 = $(\exists m \in M^c_{P_{r_0}}) (r_0.A \leq m)$

TEST2 = $(\exists m \in \text{MAX}(\{s.B \in S \ W s(r_0, s)\})) (r_0.A \leq m)$

BOUND $= MX_{P_{r_0}} := (M^c_{P_{r_0}} - \{m \in M^c_{P_{r_0}} | m < r_0.A\}) \cup \{r_0.A\}$

UPDATE: $S := S \ominus s_0$; PROCEDURE: MAINT

TEST1 = $(\exists m \in M^c_{P_{s_0}}) (s_0.B \leq m)$

TEST2 = $(\exists m \in \text{MIN}(\{s.B \in S \ W s(s, s)\})) (s_0.B \leq m)$

BOUND $= MX_{P_{s_0}} := (M^c_{P_{s_0}} - \{m \in M^c_{P_{s_0}} | s_0.B < m\}) \cup \{s_0.B\}$

UPDATE: $R := R \ominus r_0$; PROCEDURE: MAINT

TEST1 = $(\exists m \in M^c_{P_{r_0}}) (r_0.A \leq m)$

TEST2 = $(\exists m \in \text{MAX}(\{s.B \in S \ W s(r_0, s)\})) (s_0.B \leq m)$

BOUND $= MN_{P_{r_0}} := \text{MAX}((s.B \in S \ W s(r_0, s))) (m \leq m)$

UPDATE: $S := S \ominus s_0$; PROCEDURE: CHECK

TEST1 = $(\exists m \in M^c_{P_{s_0}}) (s_0.B \leq m)$

TEST2 = $(\exists m \in \text{MIN}(\{s.B \in S \ W s(s, s)\})) (s_0.B \leq m)$

BOUND $= MN_{P_{s_0}} := \text{MIN}((s.B \in S \ W s(s, s))) (m \leq m)$

133
5. Comparison with Previous Work

5.1 Comparing Approaches

Few systematic approaches to the implementation of semantic integrity assertions have been published; two well-known examples are the query modification method of Stonebraker [75] and the heuristic program analysis of Hammer and Sarin [78]. Let us compare our method to each of these two.

Comparing our method to [Stonebraker 75], we see three main differences: the types of assertions studied, the role of aggregates in assertion and the cost of consistency testing.

Our class of assertions is a subset of those studied by Stonebraker [75]. We studied only two-variable assertions with certain forms (two-free assertions). Stonebraker studied assertions with any number of variables and with any logical structure. We divided assertions into categories based on the number of variables in the assertion and on the role in the assertion of the relation being updated. Our class of two-free assertions is not directly comparable to his categories, in that two-free assertions include two-variable assertions from each of these categories. We note that the categorization of assertions by Hammer and McLeod [75] is similar to that of [stonebraker 75], and the above comments apply to their categorization as well.

The impact of aggregates on consistency tests is markedly different in each method. In query modification, the modified update often requires significantly more work for evaluation than does the original update. For example, for multivariate assertions with more than one tuple ranging over the relation being updated, the number of clauses to be evaluated is exponential in the number of variables ranging over the relation being updated. This usually leads to a high cost of evaluating the assertion. Even when the number of clauses is small, the modified update may access many tuples of relations referenced in the assertion.

Example 9 - Update Modification

Assertion: same as Ex.1a.
Modified Update: Insert (432, ‘toy’, ‘whistle’, 30, .75) into SELLS where
Wbuys <= BUYs (buys.ITEM = ‘whistle’) = buys.COST <. 75.

All tuples in BUYs must be checked for ITEM=‘whistle’ or COST <. 75 before the insertion is done. If BUYs is inverted on ITEM, then [BUYs[ITEM=‘whistle’]] tuples must accessed, compared to only one tuple in our method.

Section 5.2 discusses cost comparisons more fully.

Hammer and Sarin [Sarin 77; Hammer and Sarin 78] discuss faster methods of evaluating assertions by using knowledge about the update transaction and the assertion to identify specific conditions which may cause a semantic integrity violation. Testing these conditions is often less costly than evaluating the complete assertion on the current database state. This method depends on an analysis of the particular assertion and update transaction. And, the analytic technique is essentially mechanical, theorem proving, which is typically slow. By contrast, our algorithms apply to all simple updates and a given class of assertions. And, they do not require any prior analysis of the actual update transaction; all of the analysis is done a posteriori and can be summarized in a table. At run-time, the analysis is no more complex than a table look-up to obtain the appropriate procedures.

5.2 Cost Estimates

It is difficult to quantify the cost of different integrity enforcement methods, yet this task is essential for precisely comparing them. As with any cost model, it is difficult to capture all the factors which affect the final cost and to assign relative costs to each factor. Integrity enforcement costs cannot be accurately determined independent of an actual machine and database because they depend on such factors as the structure of the assertion to be verified, the type and frequency of updates, the storage structure of the database, and even on the actual values in the database and in the update.

Although we cannot define a general and mathematically precise cost model, we can focus on several of the major factors affecting cost. The role of each of these factors in different verification methods helps to determine the condition under which each method works best. The cost of our method is chiefly dependent on:

1. the type of assertion (VV, V3, etc.)
2. the ratio of deletions to insertions
3. the probability that the bound of an equivalent set will not change with each update
4. the average size of equivalence sets, and
5. the cost of evaluating P.

With the caveat that our cost equations are only rough estimates, we proceed to characterize the impact of the above factors. We use the resulting formulas only to help compare relative costs and do not try to derive absolute costs from them.

Cost Constants:

\[Q_0 = \text{cost of evaluating } P \text{ for an updated tuple } r_0 \]
\[i.e., of finding } s S \in P(r_0,s) \]

\[Q_R = \text{cost of evaluating } P \text{ for an updated tuple } r_0 \]
\[i.e., of finding } } r S \in P(r_0,s) \]

\[M_R = \text{average size of } P \]
\[r_0 \]

\[M_S = \text{average size of } P \]
\[r_0 \]
We simply store the new bound value. We have all relation with existentially quantified tuple variable, therefore, the cost formula is QS+~S*d+c.

W-assertion requires evaluating P, accessing each S tuple which satisfies P, and comparing it to the inserted tuple. In our system, the S tuple satisfies an equivalence set per relation (this is only relevant for W-assertions.)

The algorithm for inserting r, for a W-assertion is CHECK(A, R := R, TEST1, TEST2, BOUND). Filling in the appropriate tests and bound assignments we get:

1. if \exists \in \operatorname{MAX}(\{r . a | r \in P \}) r_0 . A > s \text{ then } \text{R} := \text{R} \cup r_0 ;
2. else if \forall \in \operatorname{MIN}(\{s . b | s \in \operatorname{ESAP}(r_0 . s)\}) r_0 . A < s
3. then begin MX := \{\text{MAX}(\{r . a | r \in P \}) | r_0 . A \};
4. \text{R} := \text{R} \cup r_0 ;

Evaluating Line 1 involves accessing the stored bound and comparing it to \(r_0 . A \), for a cost of d+c.

Line 2 is only executed if the bound must be changed \((r_0 . A > \text{MAX}(\{r . a | r \in P \})) \), so it only adds to the total cost with probability \(P_R \). Evaluating Line 2 involves evaluating P to find the correct S equivalence set, accessing the stored bound, and comparing it with \(r_0 . A \). Thus, Line 2 costs \(p_R(Q+S_d+c) \).

The rest of the algorithm adds no significant cost. If the test succeeds and Line 3 is executed, we simply store the new bound value. We have already accessed the proper equivalence set, and changing the bound involves no new computation. Line 4 is just the cost of inserting the tuple.

Query modification for insertion to R for a W-assertion requires evaluating P, accessing each S tuple which satisfies P, and comparing it to the inserted tuple. In our system, the S tuples satisfying P would constitute an equivalence set, so we can denote the number of these S tuples as \(M_S \).

Therefore, the cost formula is \(Q_S * M_S * d + c \).

Cost formulas for other types of assertions are: 1) Insert to relation with universally quantified tuple variable, \(d + c + p(Q + d + c) \), and 2) Insert to relation with existentially quantified tuple variable, \(d + c + p(Q + d + c) \).

Note that for W-assertions, insertion and deletion of S tuples are exactly analogous to those of R tuples.

In performing a comparison of the two methods, we make the following simplifying assumptions: 1) each operation (insert to R, insert to S, delete from R, delete from S) occurs with the same frequency; 2) the average equivalence set size is the same for R as for S (\(M_R = M_S \); we will use \(M = M_R = M_S \)); 3) the query processor is equally efficient given an R tuple or an S tuple (\(Q_R = Q_S \); we will use \(Q \) to mean either \(Q_R \) or \(Q_S \)); 4) c is a unit cost, and evaluating P costs more than a database access, which in turn is more than \(c \) (|d|<Q); and 5) the probability that the bound of an equivalence set will change with a given update is \(1/M \). Assumption 1 allows us to simply add together the costs for each operation. We drop the c in each formula by Assumption 4 and make the simplifications in Assumption 2, 3, and 5.

Query modification: \(2(Q+Md) \)

Our method: \(2(d+1/M(Q+d)+d+(1/M)Md) = 2(Q/M^2(3+1/M)d) \)

Comparing these formulas, we see that our method is more efficient (given all the assumptions), when the average equivalence set size is 3 or more. Depending on the cost of evaluating P relative to the cost of a database access, our method may also be efficient for \(M=2 \).

Under other assumptions, our method may be even more efficient. For example, if Assumption 1 were changed to model a situation where insertions outnumber deletions, our method would compare even more favorably to query modification. On insertions a bound change only requires comparison with the previous bound; it is not necessary to access all the tuples in the equivalence set. Deletions that cause bound changes are more costly, in that each tuple in the equivalence set must be accessed; but even this process only involves accessing the same number of tuples that query modification accesses on each insertion (i.e., the set of tuples which satisfy P). Furthermore, in most cases (\(p < 1 \)) bound maintenance will not have to be done for each deletion.

Although the above formulas yield no absolute cost values, they help identify the conditions under which our method is most useful. Whenever stored aggregates of values in an equivalence set can be used frequently to avoid accessing tuples individually, the efficiency of checking integrity offsets the cost of maintaining bounds.
6. Conclusion

The approach to semantic integrity we have described consists of designing a class of assertions that can be efficiently enforced using suitable tactics, and then fully analyzing the compile-time and run-time enforcement algorithms. In this paper, we worked through the analysis for two-free assertions using redundant aggregate data as a tactic. We have carried out this analysis on other classes of assertions with equal success. We believe this approach offers the best hope of developing a semantic integrity subsystem for a database system with acceptable performance.

Acknowledgements

We gratefully acknowledge Marco Casanova, Nathan Goodman, John Smith and Umeshwar Dayal, whose careful reviews of early drafts led to many terminological and organizational improvements. We also wish to thank the referees for their helpful comments and suggestions.

References

[Berstein and Blaustein 80]

[Clarke 79]

[Codd 72]

[Dijkstra 76]

[Hammer and McLeod 75]
Hammer, M. M.; and McLeod, D. J., "Semantic Integrity in a Relational Data Base System", in Proceedings First International Conference on Very Large Data Bases, 1975, pp.25-47.

[Hammer and Sarin 78]

[Hoare 69]

[Hoare and Wirth 73]

[Sarin 77]

[Stonebraker 75]