
A SOPHISTICATE'S INTRODUCTION To DATABASE NORMALIZATION THEORY+

Catriel Beeri Philip A. Bernstein Nathan Goodman

Computer Science Department ,
The Hebrew University

Jerusalem, ISRAEL

Aiken Computation Lab.
Harvard University

Cambridge, MA 02138

Computer Corp. of America
575 Technology Square
Cambridge, WA 02139

Abstract

Formal database semantics has concentrated on
dependency constraints, such as functional and
multivalued dependencies, and on normal forms
for relations. Unfortunately, much of this work
has been inaccessible to researchers outside
this field, due to the unfamiliar formalism in
which the work is couched. In addition, the
lack of a single set of definitions has confused
the relationships among certain results. This
paper is intended to serve the two-fold purpose
of introducing the main issues and theorems of
formal database semantics to the uninitiated,
and to clarify the terminology of the field.

1. INTRODUCTION

1.1 Database Semantics

A database is a collection of information about
some enterprise in the world. The role of &tabase
semrmtics is to ensure that stored information
accurately represents the enterprise. Database.
semantics studies the creation, maintenance, and
interpretation of databases as models of external
activities. A wide variety of database semantic
tools exist, ranging from data type constraints, to
integdty con&mints, to semantic modelling
structures used in Artificial Intelligence [26,36,391.

table whose columns are labelled-with attributes
and whose rows depict tuples. Fig. 1 illustrates
a relation in this way. The data manipulation
operators used in this paper are projection and
natural join. The projection of relation R(X) on
attributes T is denoted R[Tl. If V=X-T,
R[T] = i<t>l<t,v>ER(X)} , and is defined iff T 5 X.
(If we visualize R as a table, R[TI is those columns
of R labelled with elements of T.) The natural join
of relations R and S is denoted R*S. Given R(X,Y)
and S(Y,Z), where X,Y,Z are disjoint sets, R*S =
(<x,y,z>l<x,y>ER and <y,z>Es).

Functional and multivalued dependencies are
predicates on relations. Intuitively, a functional
dependency (abbr. FD) f:X-tY holds in R(X,Y,Z) iff
each value of x in R is associated with exactly one
value of Y (see Fig. 1). The truth-value of f can
of course vary over time, since the contents of R
can vary over time. A multivalued dependency
(abbr. MVD) g:X*Y holds in R iff each X-value in
R is associated with a set of Y-values in a way
that does not depend on Z-values [see Fig. 1). FDs
and WVDs are defined formally in the next section.

FIGURE 1. A relation with functional and multi-
valued dependencies

This paper is concerned with a specif& type of
database semantic tool, namely da& depada&eS--
both functional and multi-valued dependencies. This
paper surveys the major results in this area. Our
aim is to provide a unified framework for under-
standing these results.

Relation: RENTAL-UWITS
Attributes: LANDLORD,ADDRESS,APT#,RENT,OCCUPANT,PETS
Functional dependencies:

ADDRFSS,APT#*RENT--Each unit has one rental
OCCUPANT+ADDRESS;APT#--Every occupant lives

in one unit
Multivalued dependencies:

LANDLORD~ADDRESS--Each landlord can own many
buildings

OCCuPANT*PETS --Each occupant may have
several nets

l-2 Database Models Tuples:

Most work on,data dependencies uses the re-
lathed data model, with which we assume reader
familiarity at the level of [%I. Briefly, a re-
lational database consists of a set of relations
defined on certain attributes. RIX) is our notation
for a relation named R defined on a set of attsi-
butes x.1 The relation R(X) is.a set of m-fxptes-,
where m=/Xl. A relation can be visualized as a

LXNDLORD, ADDRESS, AeT#, RENT, OCCUPANT, PETS

t This work was supported in part by the Mtional
Science Foundation under Grant WCS-77435314.

Wizard, Ox* x3, $ 50, Tinman, Oilcan
Wizard, -9 $1‘ $ 50, Witch, Bat
Wizard, OS, Xl, $ 50, Witch,,. Snake
Wizard* OZ# 112, $ 75, Lion, &owe
cod& 3 NF St, 111, $500, Beeri, Fish
codd, 3 NF St, #I, $500, Bernstein, Dog
Codd, 3 NF st, #l, $500, Bernstein, Rhino
Codd, 3 NF St, t2, $600, Goodman, Cat

%lore generally, the notation R(X,Y,Z,...) denotes
relation R defined on XUYUZU... . _,

113

CHl3894/78/0000-0113$00.75 0 1978 IEEE

1.3 Description vs. Content

The interplay between database description and
database content is a major theme in database
semantics. A database description is called a
schema, and contains descriptions for each relation
in the database. The description of a single re-
lation is called a relation scheme and consists of
the relation name, its attributes and a set of data
dependencies. E:<T,r> denotes a relation scheme R
with attributes T and dependencies I' (see Fig. 2):
We sometimes use the notation R(T) when r is either -
unknown or irrelevant.

FIGURE 2. Formal notation for a relation scheme
based on Figure 1.

RENTAL-UNITS =
<{LAND~~,ADDRESS,APT#,RENT,OCCUPANT,PETS'),

IADDRZSS,APT# +RR~JT;
OCCUPAWT + ADDRRSS,APT#;
LAwDIORD++ADDRRSS;
oCCUPAWT++PRTS1>

The contents of a relation is called the state
or extensia of the corresponding scheme, and is
a set of tuples as stated above. R(T) denotes an
extension of R=<T,r>. If R(T) satisfies all
dependencies Tn r, it is called an in8tance of 5
(notationally, R denotes an instance of R). A
re&ztiona~ database for a schema is a coilection of
instances, one for each relation scheme in the
schema.

In summary, schema and scheme are syntactic
objects; database and relation refer to database
content. The distinction between schema-related
and content-related concepts is often subtle yet
important, and we keep it sharp in this paper.

1.4 The Universal Relation Assumption

Most work on data dependencies assumes that
all relations in a database are projections of a
single relation. Formally, suppose Rl(Tl),
R2(T2),...r R,(T,] is a database of interest, and

let T = Ulcicn Ti. It is assumed that a tm&ersaZ

rekd~n U?Tj exists, such that Ri = U[Ti] for
l<iQ.

- - This "universal relation assumption" is a
controversial issue in the field. On the one hand,
it has formal advantages: it permits us to specify
ralations solely in terms of their attributes; also
it supports the PD and HVD M~m888 rule which
state8 that syntactically identical dependancies
are semantically equivalent. On the other hand,
many practical applications do not naturally con-
form tothe assumption; to force these applications
into the, universal relation mold places an added
burdenon the database administrator, and can
obscure desired relationships in the database.
The reader.should note that all results in this
paper make the universal relation assumption, and
in some casesthey do not extend to alternative
Frameworks.

1.5 Topics

Formal work in database semantics falls roughly
into the areas of SChema ds8M and data manipu~@'L

We limit our attention to the first area, though
some of the work we cover has application in the
second area also. The problem of schema design is:
Given an initial schema, find an equivalent one
that is better in some respect. As we will see,
different definitions of "equivalent" and "better"
lead to startlingly different results.

The paper is organized as follows. Section 2
formally defines data dependencies and reviews
their basic properties. Section 3 states the
schema design problem more precisely. Then
Sections 4, 5 and 6 examine several definitions of
schema "equivalence" and several criteria for one
schema to be "better" than another. Section 7 ties
these ideas together by looking at specific schema
design methods. We conclude with an historical
look at our field and predications for its future.

2. DATA DEPENDENCIES

2.1 Definition and Basic Properties

An FD is a statement of the form F:X+Y, where
X and Y are sets of attributes. f is defGaed for a
relation R(T) or a relation scheme R(T) if X and Y
are subsets of T. If f is defined for R, then f is
a predicate on R's state; f is Valid in R iff every
two tuples of R that have the same X-value also
have the same Y-value. From the definition we see
that f's validity depends only on the values
assigned to X and Y. We say that FDs enjoy the
projectivity and inverse projectivity properties:
For sets X,Y C_ T' C_ T, X+Y is valid in R(T) iff it
is valid in R[T'].

An MVD is a statement of the form g:X*Y. g
is defined for R(T) or R(T) if X and Y are subsets
of T. Let Z==T-(XUY). For a Z-value, z, we
define Y,,=
yxz = yxz

, fo~~;i~iz:~!. su~hi~$l~d i;; :ff
I

are nonempty. This ieiinition implieythat g7g
validity depends on values assigned to Z, not just
XandY. If g is valid in R(T), then it is valid
in all projections of R(T); the converse, however,
does not hold. MVDs thus enjoy the projectivity
property but not inverse projectivity.

The PD X+Y states that a unique Y-value is
associated with,each X-value: the MVD X-Y States
that a unigue seb of Y-values is associated with
each X-value. So essentially, an FD is just an MVD
plus a functionality condition.

2.2 Inierence Rules fur Dependencies

Given a set of dependencies in a relation, it
is often possible to deduce other dependencies that
also hold in that relation. Consider once again
the relation in Fig. 1. By examining its contents
we see that OCCUPAWT+RENT and LANDIDRD+AFK@ESS
hold, although,n&ither is expressly,stated. This
is not coincidental; these two PDs are logical con-
sequences of t$e given set of FDs and MVDs.

Given a schema R=<T,m, and a dependency g,
r irt@ies g in l? if g holds in every instance of IL
NDte that a dap&ndenoy p' may hold in 8Osl8 instances
of A without being implied by I'. For example,
ADDRESS+LARIXDRD holds in Fig. 1 although it is
not implied by -th8 given dependencies.

It is possible to tell whether g is implied by
r using systems of inference rules [3,6]. Inference
rules permit us to derive new dependencies implied
by a given set. A system of inference rules is
canpzete if (a) every g derivable from r is in
fact implied by I', and (b) every g implied by r is
derivable using the rules. Fig. 3 shows three
complete systems of inference rules for FDs and
NVDS. The FD-rules are complete when FDs only are
considered. The MVD-rules are complete for MVDs.
When FDs and MVDs are considered, all three systems
are needed for completeness. Fig. 3 also presents
other rules that are useful, though not needed.

as follows:
1. Initialize 2:=X. (Since X+X by FD1.)
2. If U+V is in r and UsZ, then.set Z:=Z+V.
3. Repeat step 2 until more attributes can be

added to Z.
A straightforward implementation yields an O(n2)
time algorithm 171; linear time implementation of
this algorithm is described in [5].

For MVDs the best known membership algorithm
requires O(n4) time [41.

FIGURE 3. Inference rules for FDs and MVDs [3,61

FD-rules:

FDl (reflexivity): If YQ(then X+Y.

FD2 (augmentation): If g and X+Y then XWYZ.

FD3 (transitivity): If X+Y and Y+Z then X+Z.

Other useful rutes:
FD4 (pseudo-

transitivity): If X+Y and YW+Z then XW+Z.
FD5 (union): If X+Y and X+Z then X+YZ.

FD6 (decomposition): If X-+YZ then X+Y and X+Z.

A coveting of r is any set f such that f;+= r+.
P is nmaredindant if no proper subset of it is a
covering. One can obtain a nonredundant covering
of r as follows. A dependency gEr is redundant
iff g E (r-IgIl+. For each gEr the above test is
performed using the membership algorithm, and g
is removed from r if it is found to be redundant.

2.5 Inherently Difficult Dependency Problems

We list here two inherently difficult depen-
dency problems. Other such problems are presented
in [5,281.

m-rules:

Key Finding: Given a set of FDs F over attri-
butes U, a relation scheme R(X) where XC_U, and a
subset of R's keys, determine whether R has any
other keys. This problem is NP-complete [5] (i.e.,
probably requires exponential time [2]).

MVDO(complementation):Let X+Y+Z=U and Ym; then
X*Y iff Xctz.

MVDl(reflexivity): If Ys then X+*Y.

MVD2(augmentation): If g and X++Y then XW++YZ.

MVD3(transitivity): If X-Y and Y+tz then X-HZ-Y.

Other useful rules:
MVD4(pseudo- If X*Y and ywttz then

transitivity): XW-WZ-YW.
MVD5 (union) : If X+-+Y and Xttz then X*YZ.
MVD6(decomposition): If X+-W and X*2 then

x*YllZ, x-Y-2, X+-a-Y.

Key Listing: Given F and 5 as above, list all
keys of & This problem has exponential worst-case
time since there are relation schemes with an ex-
ponential number of keys 1401.

3. THE SCHEMA DESIGN PROBLEM

ED-MVD rules:

2.4 Coverings

II5

FD-MVDl: If WY then X+W.
FD-MvD2: If X-HZ and Y-+z', Z1~. and if Y and

z are disjoint, then X+X'.

Another usefu~ruk:
FD-MVD3: If x++Yand XY+Z thenX+Z-Y.

We now return to the problemof schema design.
Our treatment considers one particular schema
.design scenario. We assume that a schema S+ con-
taining a single relation scheme is given. The
problem is to design a schema SD that is equi-
vaEent to ~4, but is better in some specified way.
Let S$=(U=<T,r>) and SD=(~=<Ti,ri>li=l,...,n).
In Our scenario SD contains "projections" of 2;
i.e., each TiC_T and ri is 'inherited" from l'. For
FDs, "inheritance" means ri is a covering of the
FDs in f+ that are defined for &. For MUDS, the
situation is wre complicated" and will not be
elaborated here. En instance U,of U is represented
in SD's database by fDrTi]li=l,...,3.

We set of all dependencies derivable from r
using a complete system of rules is called the
c~sure of F, denoted r+. From the foregoing it
should be clear #at l"+ is the exact set Of de-
pendencies implied by F.

our study of schema design can now-be con-
sidered to be a study of the mapping between S
and SD and between the set of instances Of S
the sets of instances of SD‘. (P !lrLd

4. THE PRINCIPLE OF REPRESENTATION

2.3 The Membership Problem
Given a set.of dependencies r and a dependency

g, the membership problem is to tell whether gEI'+.
For g:X+Y and r containing just PDs this problem
is solved by determining the maximum set Z such
that X+2isin r+. Then (by rules FDg and FDS,
Fig.3), gEr+ iff YEZ. Z can be computed

A clear requirement for schema SD to replace
s,# iS that.% and se be FiVale?t; that is, SD
must represent'the 8am@ znformatza as S .
Different researchers formulate this @0n ept in 8
different ways--ways that lead to startingly
different conclusions. In the following, let
si= {u=<T,r>) and SD= (lli=CTi,r~>ti~l,.;.,n).

Definition Repl. SD represents the same in-
formation as S4 if they contain the same attributes;
that is, if un T =T. i=l i

This definition is inadequate because it
ignores relationships among attributes. By this
definition, the schemas in Figs. 4 and 5 are egui-
valent to the one in Fig. 2, even though they con-
tain no data dependencies.

FIGURE 4.

51 =

52 =

E3 =

FIGURE 5.

A schema equivalent to one in Fig. 2
under Def. Repl.

SD = i$, s2, R3}

Another schema equivalent to one in
Fig. 2 under Repl.

ahNDLoRD,ib

<RENT, I}>

<ADDRESS,{)>

QPT#, iI>

<OCCUPANT,{)>

-PETS,{)>

Definition Rep2. SD represents the same
information as S # if they have the same attributes
and the same data dependencies.

When only FDs are involved, this definition
can be made precise. The FDs of S$ are r+. The
FDs of SD are (Uzxlri)+. SD represents S.4 if

r+ = (U"
r.

i=lri)+, i.e., if (Un i=lri) is a covering of

However, there is a problem with the defini-
tion as stated. The inference rules in Sec. 2 are
only defined with respect to dependencies in a
single relation. since SD involves m&tip&? re-
lations, it is not obvious that those inference
rules can validly be applied to it. Suppose,

SD represents S4 by the above definition. Yet SD
does not even contain a relation scheme in which
X+2 is defined:

This problem is rectified by the "universal
relation assumption" (Sec. 11 and the "inverse
projectivity property of FDs" fSec. 21. Let Rl
and R2 be instances of 3 and s; define
R -12

= <T.
12 =T1UT2, r12 =riurp ana define

R12= Rl"R2. From the inverse projectivity property

it can be shown that R 12 is an instance of R -12 if

Rl and R2 are.instances of 3 and 3. Thus the

FD X*2 (which is in rf,) is valid in R
12' More-

over, by the universal relation assumption Rl and

R2 are projections of U, as is R ,,tXZl. Conse-

quently the user can obtain the "extension" of
X+2 from SD, even though X+2 is not explicitly
represented. In fact, all FD inference rules can
be "simulated" by relational operators applied to
relations containing the FDs. It follows that all
FDs in F+ can be retrieved from SD if SD's schemes
contain a covering of r.

MVDs, on the other hand, do not possess the
inverse projectivity property, and definition Rep2
is not easily generalized to them. More research
is needed to formulate a suitable generalization
of Rep2 for MVDs.

Definition Rep3. SD represents the same in-
formation as S,$ if they have the same attributes
and the databases of SD contain the same data as
the databases of S+.

In contrast to Rep2, this definition stresses
the data component of equivalence. Two schemas
are equivalent under Rep3 if at all times their
databases contain the same information, albeit in
different formats.

The definition is formalized by the concept of
ZossZess join [l]. Suppose U(T) is an instance of
U and the corresponding set of instances of SD is
TRi(Ti)=U[Ti]Ii=l,...,n). To answer a query in-
volving, say, all attributes of T, we must re-
construct U from fRiJ via the join operator. If
U=Rl*...*Rn, then U can be precisely reconstructed
from its projections. If, however, UtR,...*Rn,
the join contains tuples that are not in U, and
ERi) is not a faithful representation. This
phenomenon is called a bossy join and is
illustrated in Fig. 6.

FIGURE 6. An Example of a lossy join.

Let S
4

= {RENTAL-UNITS) defined in Fig. 2, with
instance of Fig. 1.

Let SD= {LAND-APT#,APT#-RENT,PERS~N-PETS~

LAND-APT# = <bhNDLoRD,hPT#l,il>
APT#-RENT = <{APT#,REW~,~b
PERSON-PETS = &CCUPANT,PETS,ADDRESS},

~OCCUPANT-~ADDRESS;OCCUPANT-HPETS}>

Instances corresponding to Fig. 1 are

LAND-AFT# (LANDLORD,hFT#) hF'T#-RENT fAPT#,RENT)

Wizard, $1 #3, s 50
Wizard, tl #l, $ 50

Wizard, 12 #2, $ 75
- Codd, #l Cl, $500

coda, #2 #2, $600

LAND-APT#*hPT#-RENT =

Attributes: LhNDLOitD, APT++, RENT

Tu$,es: wizard, #3* $ 50
Wizard, Rl, $ 50
Wizard, #l. $500
Wizard, #2, $ 75
Wizard, P2, $600

116

FIGURE 6 continued

Attributes: LANDLORD, APT#, RENT

Tuples: Codd, #l, $ 50
Codd, #l, $500
Codd, #2, $ 75
Codd, #2, $600

Note that each LANDLORD is associated with RENTS
charged by the other.

Formally we say that SD has the Zoss&?ss join
property if for each instance U of g,

n
U = * UITil.

i=l

When only pairs of relations are considered, we
have the following results.

by a unique database of SD. Rep2 says that every
database of SD satisfies the same dependencies as
So, and hence represents a legal database of S .
Together, Rep2 and Rep3 imply Repl. 4

If only FDs are given, Rep4 is identical to
the notion of independent components 1311, and the
following is proved:

Let u=<T,F>, z$= <Tl,Fl> and s2=<T2,F2>.

{R,,R,) are independent components of g iff

(a; (zlUF2)+ = F+, and (b) F+ contains Tl flT2+Tl

or T1 nT2+T2 [311.

Comparison of Definitions. Fig. 5 illustrated
a schema equivalent to the schema of Fig. 2 by Rep1
but not by Rep2, Rep3, or Repl. Fig. J differenti-
ates between Rep2 and Rep3. Fig. J(a) is similar
to an example in [16, p. 1651. SD is equivalent to
S,+, under Rep3 but not Rep2; it would be considered
algood design by [16,231, but not by [Jl. In Fig.
J(b), SD is equivalent to S+ by Rep2 but not by
Rep3; it would be approved by [Jl, but not [23,3Jl.
These differences of opinion are examined further
in later sections.

FACT 1: If U=<T,F> (that is, only FDs are
given) then for sets Tl,T2 such that TlUT2 = T,

{El(Tl), s2((T2)) has the lossless join property

iff either TlnT2-+Tl or TlnT2+T is in r+[331. 2

FACT 2: For U=<T,r> and for Tl,T2 as above,
{El(Tl), s2(T2)) has the lossless join property

iff Tl flT2++Tl (and, by rule MVDO, TlnT2++T2) is

in I'+ [231.

FIGURE 7. Situations where Rep2 differs from Rep3.

s+= IDWELLER=<{ADDRESS,APT#,OCCUPANT),
{ADDRESS,APT#+OCCUPANT;
OCCUPANT~ADDRESS;OCCUPANT~APT#)>)

These facts are stated as properties of uni-
versally quantified sets of instances; i.e., the
conditions of Facts 1 Ei 2 hold iff all instances
of the given schemas have lossless joins. It is
possible, though, for the conditions not to hold,
yet for specific instances to have lossless joins,
nonetheless. Facts 1 & 2 can be adapted for
specific instances as follows.

sD= IADD-occ=<IADDRESS,~CCUPAET~,
&CUPAET+ADDRESS~>;

APT-occ <{APT#,occUPANT},{OCCUPANT'APT#)>}

SD does not Rep2-represent S
f4

.

%-

SD Rep3-represents

S+= (RENTAL=<{LANDLORD,ADDRESS,APT#,OCCUPANT},
(LANDLORD*ADDRESS;
ADDRESS,APT#+OCCUPANT;

FACT 1': Given U=<T,r>, and Tl,T2 as above. OCCUPANT~+DRESS;OCCUP~~APT#}>}
-

I L

T1”T2+T 1
or T1nT2 . - L-.#>- 1- . .

An instance U=U[T.]*U[T-I if (but ?Wi! only if)

An instance U=U[Tll*U[T21 iff Tl llT2*Tl (and by

MVDS T1nT2++T2) holds in U.

5 T
2 110ux5 In U.

FACT 2': Given E=<T,r>, and Tl,T2 as above.

SD= (OWNER =

SD RepZ-represents S

<{LANDLOPD,ADDRESS~,
~LAEDLORD+ADDRESS~>;

.
s . (4

SD does not Rep3-represents

+

DWELLER=<{ADDRESS,APT#,OCCUPANT),
~ADDRESS,APT#+OCCUPAET;
OCCUPANT~ADDRESS;OCCUP~~APT#)>)

When more than pairs of relations are con-
sidered, the situation is more complex. An algo-
rithm for deciding the lossless join property in
general is presented in [l]. The algorithm re-
quires polynomial time for FDs but may require
exponential time for MVDs. Another interesting
result is thatforall n>2 there are sets of n
relation schemes that have the lossless join
property, for which no proper subset has this
property.

5. TEE PRINCIPLE OF SEPARATION

The next question is to understand how SD can
be "better than" S,#,. One way is for "independent
relationships"to be represented by SD in indepen-
dent relation schemes. To illustrate this point,
let S+ be the RENTAL-UNITS scheme of Figs. 1 & 2,
and suppose we want to add a new LANDLORD to the
database. This can only be done if values for

Definition Rep4. SD represents the same
information as S,$ iff there exists a one-to-one
mapping between the databases of S
of s 0

and databases

D'

other attributes are given, too. The new LANDLORD
must be associated with an ADDRESS; the ADDRESS
must be associated with an APT#; the ADDRRs,APT#
pair requires a RENT and an OCCUPANT; and the
OCCUPANT needs PETS. So to add a new LANDLORD, S,
forces us to add information that is at most Y

Rep4 combines definitions Rep2 and P.ep3.
Rep3 says that every database of S,$ is represented distantly related to him. By the same token, when

117

the last PET of the last OCCUPANT of the last APT#
of a given ADDRESS runs away, the association
between LANDLORD and ADDRESS is also destroyed.

Another problem with S is data redundancy.
Each LANDLORD is represente 2 in four tuples although
each only owns one building. To change the
building owned by Codd, say, requires that all four
tuples with ADDRESS = "3 NF St" be updated. If
some of these tuples were forgotten, the database
would be inconsistat, meaning that some depen-
dencies would no longer hold. In this case,
LANDLORD-HADDRESS would no longer hold.

These difficulties are caused by a lack of
separation in S$. To overcome these difficulties,
a series of &h&se ncPm&fO~shave been proposed,
four of which are of interest. Before defining
them, we present several preliminary concepts.

Let S= &=<Ti,ri>(i=l,...,n) be a schema

and let r= (Uy,lri). (1) Superkey--Let XET.; X

is a superkey of R i if X+T. is in r + . 3. (2.) key--

Let XGT.; X is a key of R.
no X'cx'is.

if X is a superkey and
(3) prime ;;iftribute--Let AcTi; A

is prime in.% if A is in any key of 3.
(4) !l'ransit%ve dependence--Let AETi and XETi; A
is transitively dependent on X in 9 if there
exists YcTi such that X+YEr+, Y+AEr+, Y+Xer+,
and A$! < (5) TKviQZ FD--x+Y is trivial,
meaning it holds in all relations, if YEX.
(6) tiviaz m--X*4 and X*Ti-X are trivial
in I.

We now define four normal forms of interest.
1. Third Normal Form (abbr. 3NF)*: [141 &ES is
in 3NF if none of its nonprimeattributes is
tra=ively dependent on any of its keys
2. Boyce-Codd Normal Form (BCNF): [15] Let f:X+Y
be any nontrivial FD in r*, defined on %iES. %
is in BCNF if for all such f, X is a superkey of Ri.
3. Weak Fourth Normal Form (MNF): Let g:X++YEr+
be any nontrivial MVD in RJ ES. s is in W4NF if
it is in 3NF and all such g are FDs.
4. Fourth normal Form (4NF): [23) Let g:X+YEr+
be any nontrivial MVD in &ES. 3 is in 4NF if
for all such g, X is a superkey of 3.

Notice that 3NF is a weak version of BCNF, and
W4NF is a weak version of 4NF. Also W4NF implies
3NF and 4NF implies BCNF. BCNF and 4NF always
succeed in separating independent relationships into
separate schemes. This is illustrated in Fig. 8.
Notice that SD in Fig. 8 RepZ-represents RENTAL-
UNITS. There are cases, though, where the stronger
normal forms cannot be achieved and we must settle
for the weaker forms. Fig. 9 shows an example of
this sort. The following formalize this observ-
ation. Let s,+,= {c=<T,F>).

FACT 3: There always exists a 3NF schema that
Repl-represents So (7).

FACT 4: There need not exist a BCNF schema
that RepZ-represents S+. Moreover the question,
"Is schema S in BCNF?" is NP-hard [51.

FACT 5: There need not exist a 4NF schema
that RepZ-represents S$. (Follows from Fact 4 when
G= 4.) It is not known whether a W4NF scheme

*~NF simply requires that relations be "flat", non-
hierarchical. ~NF is a weak form of 3NF and is
subsumed by it [14,161.

RepZ-representing S
4

need always exist.

FACT 6: There always exists a 4NF schema that
Rep3-represents S 1231. It follows that a BCNF
schema Rep3-representing S

4
is always achievable,

too.

FIGURE 8. 4NF schema and instance corresponding to
RENTAL-UNITS (Figs. 1 & 2)

sD= {owNs,cBARGES,LIVES,L~VES~ -~--

OWNS <(LANDLORD,ADDRESS~,{LANDLORD"ADDRESS)>
CHARGES:<~ADDRESS,APT#,RENT~,~ADDRESS,~T#'~NT~>
LIVES =<(OCCUPANT,ADDRESS,APT#),

{OCCUPANT+ADDRESS,APT#)>
LOVES = <{OCCUPANT,PETS},{OCCUPANT*PETS~>

OWNS(LANDLORD,ADDRESS) LIVES(OCCUPANT,ADDRESS,APT#)

Wizard OZ Tinman, 02, #3
Codd 3 NF St Witch, 02, #l

Lion, oz., #2
CBARGES(ADDRESS,APT#,RENT) Beeri, 3 NF St,#l

02, #3 $ 50 Bernstein,3 NF St,#l
02, #l $ 50 Goodman, 3 NF St,#2

02, #2 $ 75
3 NF St, #l $500 L~VFS(~CCUPANTS,PETS)

3 N-F St, #2 $600 Tinman, Oilcan
Witch, Bat
Witch, Snake
Lion, Mouse
Beeri, Fish
Bernstein, Dog
Bernstein, Rhino
Goodman, Cat

FIGURE 9. w4NF schema and instance.

s
4

= IRENTA~UNITS' =

<{LANDLORD,ADDRESS,APT#,RENT,OCCUPANT,PETS),
IADDRESS,APT#+ P.ENT;~CCUPANT+ADDRESS,APT#,
LANDLORD-HADDRESS;OCCUPANT*PETS;
ADDRESS,APT#+LANDLORD)>

SD= {OWNS',CBARGES,LIVBS,LOVES~, CBARGES,LIVES,LOVES -- --_I
same as In Fig. 8.

OWNS' = <{LANDLORD,ADDRESS,AT#),CLANDLORD-HADDRESS;
ADDP.ESS,APT#+LANDLORD~>

CBARGES,LIVES,LOVES in 4NF (from Fig. 8) --
OWNS' in W4NF since LANDLORD'ADDRESS implied by

S
4

's dependencies:

(1) OCCUPANT'ADDRESS,APT#KJCCUPANT'ADDR=S(FD6)
(2) LANDLORDHADDRESS and OCCUPANT'ADDRESS

I, LANDLORD+ADDRESS(FD-MVD~)

Extension of OWNS', given data in Figs. 1 and 8.

OWNS'(LANDLORD, ADDRESS, APT#)

Wizard, 02, #3
Wizard, 02, #l
Wizard, oz, #2
Codd, 3NFst, #l
Codd, 3NFst, #2

118

Another observation to make from Fig. 9 is
that W4NF doesn't achieve total separation in the
way 4NF does. OWNS' has redundant information and
suffers the same kind of update anomalies as
RENTAL-UNITS does. The same is true of 3NF vs.
BCNF. And since 4NF and BCNF cannot always be
achieved under Rep2 (Facts 4 & 51, we must conclude
that Rep2 and total separation are incompatible
concepts. This result is both surprising and
fundamental; it holds for non-computerized data-
bases as well as computerized ones, and has
applicability in all data models.

This result has been interpreted differently
by some workers [16,24] who argue that BCNF and
4NF schemas should be obtained even if Rep2 is not
achieved. We saw such a case in Fig. 7(a), which
we replicate in Fig. 10. In that example, SD
violates Rep2 because it does not include
ADDRBSS,APT#'OCCUPANT. Without this FD legal
instances of SD can correspond to illegal in-
stances of S @' and may represent illegal conditions
in the real world (see Fig. 10(b)). It is
suggested in [16] that these illegal instances be
prevented by adding ADDRESS,APT#+OCCUPANT to SD
as an "interrelational constraint." However,
because Rep2 is incompatible with BCNF in this
case, this suggestion is futile. If we add the
suggested interrelational constraint, the two
relations can no longer be updated independently,
which simply defeats the original goal of sepa-
ration.

In other words, while total separation is a
goal of schema design, there simply are cases where
it cannot be achieved.

FIGURE 10. An instance of SD that is not an
instance of S

4'
s+= {DWELLER= <Im~mss,m~#,cxxw~~~l

~D~SS,APT#+~~CUP~T;
OCCUP~~~DRESS;OCCUPAN~~T#)>)

sD= {ADD-• CC= <bum~ss,occumml;
{CCCUPANT'ADDRESS~>;

APT-OCC=<~APT#,OCCUPANT};(OCCUPANT~APT#}>}.

SD does not Rep2-represent S

%'
4

. SD Rep3-represents

(a)

Relation: ADD-OCC

Attributes: ADDRFSS,OCCUPANT

Tuples: Oz, Tinman
02, Witch
02, Lion
02, Scarecrow

Relation: APT-OCC

Attributes: APT#, OCCUPANT

Tuples: #3, Tinman
#I, Witch
#2, Lion
a, Scarecrow

Each relation has legal contents--all dependencies
hold. But, ADDRESS,APT#+OCCUPANT does not hold in
ADD-OCC*APT-OCC.

ADD-OCC*APT-OCC =

Attributes: ADDRESS, APT#, OCCUPANT

Tuples: 02, #3, Tinman
02, #l, Witch
02, ?a, Lion
02, #2, Scrarecrow

(b)

6. THE PRINCIPLE OF MINIMAL REDUNDANCY

Another goal in designing SD is minimal ra-
dundrmcy; SD must contain the information needed
to represent S$ but it should not contain the in-
formation redundantly. The meaning of minimal
redundancy depends on the definition of represent-
ation. Only by knowing what it means to represent
information can we judge whether a certain re-
presentation is redundant.

Virtually all work on schema design adopts
some notion of minimal redundacy, although often
this point is addressed intuitively. Consequently
our treatment of redundancy must be sketchier than
the previous sections. We present here different
definitions of redundancy analogous to the defi-
nitions of representation in Sec. 4. In the
following, let SD=(~i=<Ti,ri>li=l,...,n}.

Definition Redl. EiiEsD is redundant if

T.cUn i- j=l,j#iTj' This approach, like Definition

Rep1 , is unsatisfactory since it does not account
for relationships among attributes. Also, minimal
redundancy under Red1 is always attained in S
since each attribute appears only once. 4

Definition Red2. SiEsD is redundant if 3's
data dependencies are represented by the other
schemes. For the case of FDs, the definition can
be made formal.

= (U"

R. ES, is redundant if (T=lrj)+
+ -

j=l,j+irj) e Note that the FDs of ri need not

be explicitly represented. Rather, they need only
be derivable from the FDs in the other schemes.
As for Rep2, this definition does not easily
generalize to MVDs since rules for manipulating
MVDs in different relations are not known.

Definition Red3. $6 SD is redundant if for
each database of SD, the data in Ri is contained in
(RjIj=l,...,n, j#i). For this definition to be
meaningful, a database of SD must be viewed as a
set of related relations, since if relations can
assume independent values, no relation scheme is
ever redundant. The universal relation assumption
(Sec.1) provides the necessary connection and leads
to the following.
f 0

R+ is redundant in SD if

R. = j=l j j=l,j#iRj' ! for all databases of SD.

Definition Red4. si.SD is redundant if there
is a one-to-one correspondence between the set of
instances of SD and the set of instances of SD-&_i).
This definition, like Repl, combines data and
dependency aspects of schema design.

We note, in conclusion, that other approaches
to redundancy are possible, e.g., using as a

119

measure the number of data items in relations, etc.

7. SCHEMA DESIGN METHODS

Traditionally, schema design has been called
"database normalization" in the literature in this
area and two approaches are prominent: synthesis
[5,7], and decomposition [14,20,21,25,41]. This
section describes both approaches, explaining how
they interpret and achieve the schema design
principles discussed earlier.

The key difference between synthesis and de-
composition lies in the definition of representation
that each adopts. In synthesis SD RepZ-represents
input S , whereas with decomposition SD
Rep3-re resents s 8 f’* This difference leads to a
series of other d screpancies between the methods:
(1) Since Rep2 is not compatible with total separa-
tion (Sec.S), synthesis can only achieve 3NF and
not higher normal forms: decomposition, on the
other hand, is not limited in this way. (2) Rep2
leads to the Red2 definition of redundancy, while
Rep3 leads to Red3; therefore synthesis strives
for minimality of dependencies while decomposition
strives for minimality of data content. (3) Because
definitions Rep2 and Red2 do not easily extend to
MVDs,itisnotknownhow [or if) synthesiscanhandle
MVDS; decomposition,ontheotherhand, is straight-
forwardlyextendabletoMVDs. (4) Finally, as ex-
plainedinsec. 5, RepSdoesnotguaranteethatallin-
stances of SD correspondtolegalinstancesofS4; thus
schemas producedbydecompositionadmit instancesthat
would not be permitted by synthesized schemas. These
differences are summarized in Figure 11.

FIGURE 11. Differences between principal
Normalization Methods

Method

Describei
by

Defini-
tion of
Represen-
tation

Dependen-
cies

Normal
Form

Defini-
tion of
Redun-
dancy

Instan-
ces ad-
mitted
by SD
--
*A decomE

Same as

%

More than SameasS

%
4

So, we add a stage to SYNl' to find and merge
all relation schemes with equivalent keys. Dn-
fortunately, this modification takes a step back-
ward: it no longer produces 3NF schemes! _When we
merge relation schemes we also add FDs to F from

sition app ach is suggested by [Rissanen,77] in which SD Rep4-represents S,+,. This approach is
algorithmically similar to the other decomposition approaches so will not be discussed separately.

Synthesis

Bernstein
r71

Reps, "SD
has same
dependen-
cies as
s n

$

FDs

3NF

Red2 "re-
dundincy
of depen-
dencies"

attained)

Decomposition Decomposition

Fagin [25] Rissanen [31]

Rep3, "SD ReP4, ,,sD and
has same
data con-

S$ databases
are l-to-l"

tent as S n
4

FDs + MVDs FDs

4NF,BCNF 3NF

Red3,"redun- Red4,"both
dancy of data Red2 + Red3"
content*' (not (not attained
attained by by current al-
current algo- gorithms]
rithms]

7.1 The Synthesis Approach

We discuss the synthesis approach in terms of
the specific method of [7]. A central concept of
this method is embodied FDS, which are FDS implied
by keys. Formally, given si=<Ti,ri>, X+A iS
embodied in % if X'AErir and X is a superkey of
Ri* Fig. 12 presents a simplified synthesis algo-
rithm (called SYNl) that uses embodied FDs to con-
struct an SD Repa-representing S,$. SYNl is a first
step towards a correct synthesis algorithm. SYNl
is not yet correct because SD is not necessarily
in 3NF, so transitive dependencies can be

FIGURE 12. Simplified Synthesis Algorithm

Algorithm SYNl

Input: S4 = fIJ = <T,F>j

output: SD = {R. -1 = <Ti,Fi>)i,l ,...,n

1. AFind Covering]. Find a nonredundant covering
F of F.

2. (Partition). Partition F^ into "groups", Fir
i=l,..., n, such that all FDs in each Fi have
the same left hand side, and no two groups have
the same left hand side.

3. (Construct Relations). For each Fi construct a
relation scheme s = <Ti,Fi> where Ti = all
attributes appearing in Fi,

Important Fact : The left hand side of every FD in
Fi is a superkey of 3; each FD in Fi is em-
bodied in R..

exhibited within individual FDs, due to extraneous
attributes in their left hand sides. An attribute
is extraneous in an FD if it could be eliminated
from the FD without affecting the closure (F+).

Let us precede SYNl with a step that elimi-
nates extraneous attributes from the left sides of
FDs in F, and call the resulting algorithm SYNl'.
SYNl' produces schemas that Rep2-represent the in-
put and are guaranteed to be in 3NF. Algorithm
SYNl' thus meets the representation and separation
goals of schema synthesis. h

The next step is to achieve minimality. Let F
be the nonredundant covering of F obtained by
SYNC' af$er excising extraneous attributes, and
suppose F includes V+W and X+Y, X#V. Clearly
these FDs will be embodied in different relation
schemes. But suppose V and X are eqU&&Zxt; i.e.,
V+X and X+V are in F+. Then V-*X and X+V can
be embedded in one relation scheme with both V and
X as keys. Doing so reduces the number of synthe-
sized schemes and makes explicit the equivalence
of X and V.

120

(F+-G) which may thereby cause F to become redun-
dant. A final stage is needed to eliminate this
redundancy. This modification brings us to algo-
ritlxnSYN2 (Fig. 13), which is our final schema
synthesis algorithm. The following facts, are
proved in [71, establishing that SYN2 achieves the
three schema design principles. Given
S+= lg=<T,F>) and SD = the result of applying
sYN2 to s

4'
FACT 7: SD RepZ-represents S

4
.

FACT 8: SD is in 3NF.

FACT 9: SD is minimally redundant under de-
finition Red2. In fact SD is minimal in an even
stronger sense. Let SD = {S;lSA Rep2-represents S
and all FDs in St, are embodced FDS). sD contains 4
no more relation schemes than any other scheme in
SD- In other words, SD is the smallest schema that
can Rep2-represent S

4
using just keys.

FIGURE 13. A Correct Synthesis Algorithm [5].

1.

2.

3.

4.

5.

6.

Algorithm SYN2

Input: S+ = (II= <T,F>}.

output: SD = {Ei = <Ti,Fi>li=l,...,n)

(Eliminate Extraneous Attributes) Eliminates
extraneous attributes from the left side of
each FD in F, producing the set F'.

(Find Covering) Find a nonredundant covering F^
of F'.

(Partition) Partition F^ into groups Fir
i=l,...,n , as in step 2 of SyNl.

(Merge Equivalent Keys) Set J:=@. For each
pair of groups Fir Fj with left hand sides Xi,
Xj do the following: If Xij . EF+ and
XjjXiEF', merge Fi and Fj, a d XiTXj and "a
Xj+Xi to J, and remove them from F.

(Eliminate Transitive Dependencies) Find a
minimal F^' C F^ such that ($+J)+= ($'+J). Delete
each element of Fh-Fh' from the group in which it
appears. For each Xi+Xj in J, add it to the
corresponding group.

(Construct Relations) For each Fi construct a
relation scheme % =<Ti,Fi> where Ti = all
attributes appearing in F..

1

7.2 The Decomposition Approach

Fig. 14 shows a typical decomposition algo-
rithm (which we call algorithm DEC) adapted from
WI. DEC achieves the representation and separa-
tion goals of decomposition but does not achieve
minimal redundancy. These conclusions are stated
formally as follows.
SD = the result of app?~~~~ ig %~~"" and

FACT 10: SD Rep3-represents S
0'

Reason: Whenever a scheme & is decomposed
into 3 and 3 (in step 3 of DRC) &,3 has the
lossless join property (by Fact 2).

FIGURE 14. Basic Decomposition Algorithm

1.

2.

3.

4.

5.

4NF.

FACT 12: SD is not necessarily minimally re-
dundant under Rep3 (or most other reasonable de-
finitions).

Reason: Fig. 15 shows two ways DEC could
decompose the same schema, one of which is minimal
and one of which is not. Few minimality facts
have been established regarding decomposition, and
it is not even known whether minimal schemas can
be produced by non-deterministic decomposition.
Also, it is not known whether decomposition can
consider coverings of dependencies rather than
entire closures; in the specific case of Fig. 15(a)
minimality would be guaranteed if S$ were decom-
posed using a nonredundant, nonextraneous covering
of r.

Algorithmic aspects of decomposition have not
been considered fully either, and current algorithms
have high computational complexity. For example,
DEC is probably very slow, because the question
"Is schema S in 4NF?" is NP-hard and DEC asks this
question repeatedly. A related problem is caused
by using closures rather than coverings. Closures
can be exponentially large and their use can lead
to exponential worst case running time.

Another problem is that decompositions are
not unique. At each stage the algorithm may have
several decomposition choices with different
choices leading to very different outputs (e.g.,
Fig. 15). Some choices produce "natural looking"
schemas while other choices may lead to bizarre
results (see Fig. 16). Also, the dependencies in
the output schema can depend idiosynchratically
on the input and the algorithm (see Fig. 17).

Algorithm DEC

Input:
%

= fu = <T,r>}

output: SD = {R+ = <Ti,ri>li=l,...,n)

(Initialize) Set k:=@.

(Test for Separation) If all schemes in Sk are
in 4NF, then output SD:=Sk.

(Decompose) Set Sk+l:=$. Let %=<Ti,ri> be

any non-4NF scheme in S k' and set Sk:=Sk-$.

Decompose $ into R+ 1 and R+ 2 as follows:

(1) Let X*Y be any'non-trivial MVD in r de-

R+fS . k
(Eliminate Some Redundancy) For each gi,%6Sk+l.

If TiGT. set S

(Iterate)'
k+l:=Sk+l - $1.

Set k:=k+l. Go to step 2.

FACT 11: SD is in 4NF.

Reason: DEC will not stop until SD is in

121

Notice in Fig. 17 that Sl Rep3-represents Sl

Rep3-represents S2 D1 cp' c

#'
and S and S2 both Rep3-repre2

4 cp
sent a third schema S

@
= {g=<T,(F1+F2)+. Wonethe-

less, Si and SE have substantially different sets

of legal instances. Heuristics for choosing
"good" decompositions are suggested in [411 but no
rules are known to work in all cases.

FIGURE 15. Algorithm D does not achieve minimal
redundancy (italicized attributes
become relations schemes).

s$=I~=<T=IA,B,c,D), r =(B*c;D*B;BC-HA)>~

ABCD

ABC

//I+\ //.?(

AB BC BD CD

(a)

ABCD
/\

AB ;sC BC CD

(b)

FIGURE 16. Natural and unnatural 4NF schemas
produced by decomposition.

S =<T={IANDLORD,ADDRESS,APT#,RENT,CCCUPANT,PETS~
= i LANDLORD* ADDRESS ; ADDRESS ,APT# + RENT;

OCCUPANT+ADDRESS,APT#;CCCUPANT++PETS)>

LANDMRD,ADDRESS,APT#,RENT,
OCCUPANT.PETS

ADDRESS, APTc#, RENT LANDLORD;ADDRESS,APT#,
OCCUPANT,PETS

/'
ADDRESS,APT#, OCCUPANT

LANDLORD,OCCUPANT,PETS

LANDLORD, UC&&NT h&ANT, PETS

(a) Si

LANDLORD,ADDRESS,APT#,PENT,
~CCUPANT,PETS

/ I
IANDLORD,ADDPESS,APT#, OCCUPANT, PETS

RENT,OCCUPANT

I 1
LANDLORD, ADDRESS LANDLOF?D,APT#,RENT,OCCUPANT

/\
LANDLORD, APT#, RENT APT#, OCCUPANT

(b) S;

FIGURE 17. Idiosyncratic behavior of decomposition

(Note : d)+ = (F2)+).

s; = $=<Tl={AB}, F;={A+B}>

R1=<T2={BC}, F;={B'C}>
-2

177=<T3=jCD), F;={C+Dj>)

S; = h;=<T1=bB}, F;={}>

E;=<T2={BCj, F;=@>{}>

I%%=<T3={CDj, F;={C'D]>) .

8. HISTORY, CONCLUSIONS, AND FUTURE WORK

The history of database normalization theory
begins with Codd's early work [14]. Codd intro-
duced the notion of FD, but did not formalize it.
The first mathematizations of FDs were by Delobel
[17], Rissanen and Delobel [331, and Delobel and
Casey [201; these authors concentrated on formal
properties of dependencies and their relationship
to the decomposition approach. They were followed
by Armstrong [3] who introduced the notion of
completeness of inference rules and proved the
completeness of a set of rules for FDs. This work
laid the groundwork for the formal theory that has
developed since. The earliest synthesis algorithm
was an informal one described by Wang and Wedekind
t381. Bernstein [173 followed with a synthesis
algorithm that used Armstrong's theory to prove
properties of synthesized schemas. Bernstein's
algorithm was the first to use a formal definition
of representation. This algorithm was subsequently
enhanced by Bernstein and Beeri [5,81 who improved
its running time.

The first generalization of FDs was the con-
cept of first order hierarchical decomposition by
Delobel 1181 and Delobel and Leonard [211. The
related concept of MVD was introduced by Fagin [231
and Zaniolo [41], and 4NF was introduced by Fagin

122

E31. Completeness of inference rules for MVDs is
treated by Beeri, Fagin and Howard [6] and Mendel-
zohn 1291, and algorithmic questions about MVDS by
Beeri [4]. Recently, attention has been directed
to the representation principle by the work of Aho,
Beeri, and Ullman [l] and Rissanen [31].

These references are a mere sketch of the
history of normalization theory; a more complete
bibliography follows.

A variety of important results appear in these
papers, but the lack of uniform definitions has
obscured the relationships among many works. We
hope the paper will clear up some of the confusion
by comparing the major definitions and outlining
a general framework in which all can be embedded.

Our main theme is that schema design is
directed by the three principles of representation,
separation, and minimal redundancy. A goal of
research in schema design is to develop a design
methodology that satisfies these three principles.
Specific formulations of the principles depend upon
the types of constraints involved, so a thorough
understanding of the formal properties of FDS and
MVDs is a prerequisite for achieving this goal.

Many questions still remain unanswered. We
list four important areas where more work is
needed:
1. Other dependency structures--An MVD can hold in
a projection of a relation, although it does not
hold in the entire relation 119,251. These em-
bedded MVDs (abbr. EMVD) may appear when decompo-
sing a relation scheme into smaller schemes. While
some inference rules for EMVDs have appeared, a
complete set is not currently known [19].

MVDs characterize lossless joins between two
relations. Dependency structures that characterize
lossless joins among N relations have recently been
suggested, and should be integrated into the theory
[30,321. In addition, the concept of representation
(particularly Rep2, Rep4) has only been developed
for FDs. Representation questions about MVDs and
other dependency structures are open.
2. Semantic operations on dependencies--Dependency
structures can be used to guide correct retrievals
given only minimal logical access path information
[11,34]. However, the influence of dependency
structures on data operations and the constraints
that hold in a relation constructed by operations
are only known for special cases.
3. UniversaZ PeZation asswnption--This assumption
simplifies many theoretical problems but apparently
does not hold in practice. It should either be
abandoned or adapted for practical situations in
some way.
4. Design tools--Mechanical procedures must be
developed to assist the database designer. A
schema synthesis algorithm that takes FDs and MVDs
as input could be one such design aid. Mechanical
mappings from high level data descriptions (e.g.,
[36]) into dependency structures are also needed.
The true test of the theory is demonstrating its
effectiveness in solving day to day database design
problems. On this metric the theory will live or
die.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

REFERENCES

A.V. Aho, C. Beeri, and J.D. Ullmann, "The
Theory of Joins in Relational Databases,"
Proc. 18th IEEE Symp. on Foundations of
Computer Science, Oct. 1977.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The
Design and Anal&s of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

W.W. Armstrong, "Dependency Structures of
Database Relationships," Proc. IFIP 74, North
Holland, 1974, pp. 580-583.

C. Beeri, "On the Membership Problem for
Multivalued Dependencies in Relational Data-
bases," TR-229, Dept. of Elec. Eng. and Comp.
Science, Princeton Univ., Princeton, N-J.,
Sept. 1977.

Beeri, C. and P.A. Bernstein, "Computational
Problems Regarding the Design of Normal Form
Relational Schemas," ACM T~ans. on Database
sys., to appear.

C. Beeri, R. Fagin, and J.H. Howard, "A Com-
pleteAxiomatization for Functional and Multi-
valued Dependencies," Proc. ACM-SIGMOD Conf.,
Toronto, Aug. 1977, pp. 47-61.

P.A. Bernstein, "Synthesizing Third Normal
Form Relations from Functional Dependencies,"
ACM Trans. on Database Sys., Vol. 1, No. 4
(Dec. 1976), pp. 277-298.

P.A. Bernstein and C. Beeri, "An Algorithmic
Approach to Normalization of Relational Data-
base Schemas," TR CSRG-73, Computer Systems
Research Group, Univ. of Toronto, Sept. 1976.

P.A. Bernstein, J.R. Swenson, and D.C.
Tsichritzis, "A Unified Approach to Functional
Dependencies and Relations," Proc. ACM-SIGMOD
Conf., San Jose, Cal., 1975, pp. 237-245.

J-M. Cadiou, "On Semantic Issues in the Re-
lational Model of Data," Proc. Intern. Symp.
on Math. Foundations of Comp. Science, Gdansk,
Poland, Sept. 1975, Springer-Verlag Lecture
Notes in Computer Science.

Carlson, C.R. and R.S. Kaplan, "A Generalized
Access Path Model and its Application to a
Relational Database Systems," Proc. 1976 ACM-
SIGMOD Conf., ACM, N.Y., pp. 143-156.

P.P-S. Chen, "The Entity-Relationship Model:
Toward a Unified View of Data," ACM !i?~a?z~. on
Database Sys., vol. 1, No. 1 (Sept. 1976),
pp. 9-36.

E.F. Codd, "A Relational Model for Large Shared
Data Bases," CACM, Vol. 13, No. 6 (June, 1970),
pp. 377-387.

123

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

E.F. Codd, "Further Normalization of the Data
Base Relational Model, m in Data Base Systems
(R. Rustin, ea.), Prentice-Hall, Englewood
Cliffs, N-J., 1972, pp. 33-64.

E.F. Codd, "Recent Investigations in Relational
Data Base Systems," Proc. IFIP 74, North-
Holland, 1974, pp. 1017-1021.

C.J. Date, An Introduction to Database Systems
(2nd ea.), Addison-Wesley, Reading, MA, 1977.

C. Delobel, "A Theory About Data in an Inform-
ation Systems," IBM Res. Rep. RJ964, Jan. 1972.

C. Delobel, "Contributions Thgoretiques 2 la
Conception d'un Systkne d'Informations," Ph.D.
Thesis, Univ. of Grenoble, Oct. 1973.

C. Delobel, "Semantics of Relations and Decom-
position Process in the Relational Data Model,"
Computer Laboratory, Univ. of Grenoble, 1977.

C. Delobel and R.C. Casey, "Decomposition of a
Data Base and the Theory of Boolean Switching
Functions," IBM J. of Res. and Dev., 17:5
(Sept. 1972), pp. 370-386.

C. Delobel and M. Leonard, "The Decomposition
Process in a Relational Model," Int. Workshop
on Data Structures, IRIA, Namur (Belgium),
May 1974.

R. Fadous and J. Forsythe, "Finding Candidate
Keys for Relational Data Bases," Proc. 1st
ACM-SIGMOD Conf., pp. 203-210, San Jose, Cal.,
1975.

R. Fagin, "Multivalued Dependencies and a New
Normal Form for Relational Databases," ACM
Trcms. on Database Sys., Vol. 2, No. 3 (Sept.
19771, pp. 262-278.

R. Fagin, "The Decomposition Versus the
Synthetic Approach to Relational Database
Design," Proc. 3rd VLDB Conf., Tokyo, Oct.
1977, pp. 441-446.

R. Fagin, "Functional Dependencies in a Re-
lational Database and Propositonal Logic,"
IBM J. of Res. ad Dev., Vol. 21, No. 6,
(NOV. 1977), pp. 534-544.

M.M. Hammer and D.J. McLeod, "Semantic Inte-
grity in a Relational Database System," Int.
Conf. on Very Large Data Bases, ACM, N.Y.,
pp. 25-47, 1975.

W. Kent, "A Primer of Normal Forms," IBM Sys.
Dev. Div., TRO2.600, San Jose, Cal., 1973.

C.L. Lucchesi and S.L. Osborn, "Candidate Keys
for Relations," Tech. Rep. Univ. of Waterloo,
Waterloo, Ontario, Canada, 1976.

A. 0. Mendelzon, "On Axiomatizing Multivalued
Dependencies in Relational Databases," Dept.
of Electr. Eng. and Computer Science, Princeton
Univ., Princeton, N.J., July 1977.

J.M. Nicolas, "Mutual Dependencies and Some
Results on Undecomposable Relations," ONERA-
CERT, Toulouse, France, Feb. 1978.

J. Rissanen, "Independent Components of
Relations ,'I ACM Trans. on Database Sys., Vol.
2, No. 4 (Dec. 19771, pp. 317-325.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

J. Rissanen, "Theory of Relations for Data-
bases--A Tutorial Survey," IBM Research Lab.,
San Jose, Cal., Apr. 1978.

J. Rissanen and C. Delobel, "Decomposition of
Files--A Basis for Data Storage and Retrieval,"
IBM Res. Rep. RJ1220, San Jose, Cal., May
1973.

K.L. Schenk and J.R. Pinkert, "An Algorithm
for Servicing Multi-Relational Queries,"
Proc. 1977 ACM-SIGMOD Conf., ACM, N.Y.,
pp. 10-19.

H.A. Schmid and J.R. Swenson, "On the Semantics
of the Relational Data Model," Proc.1975 ACM-
SIGMOD Conf., San Jose, Cal., pp. 211-223.

J.M. Smith and D.C.P. Smith, "Database Ab-
stractions: Aggregation and Generalization,"
ACM Trans. on Database Sys., Vol. 2, No. 2
(June 19771, pp. 105-133.

Y. Tanaka and T. Tsuda, "Decomposition and
Composition of a Relational Database,' Proc.
3rd VLDB Conf., Tokyo, Oct. 1977, pp. 454-461.

C.P. Wang and H.H. Wedekind, "Segment Synthe-
sis in Logical Data Base Design," IBM J. of
Res. and Dev., Vol. 19, No. 1 (Jan. 1975),
pp. 71-77.

H.K.T. Wong and J. Mylopoulos, "Two Views of
Data Semantics: A Survey of Data Models in
Artificial Intelligence and Data Management,"
Tech. Rep., Computer Science Dept., Univ. of
Toronto, 1977.

C.T. Yu and D.T. Johnson, "On the Complexity
of Finding the Set of Candidate Keys for a
Given Set of Functional Dependencies,' Infon-
ation Processing f&tters, Vol. 5, No. 4
(Oct. 19761, pp. 100-101.

C. Eaniolo, "Analysis and Design of Relational
Scemata for Database Systems," Tech. Rep.
UCLA-ENG-7769, Dept. of Computer Science,
UCLA, July 1976.

Acknowledgments

We gratefully acknowledge the assistance of
Renate D'Arcangelo for her expert preparation of
this manuscript.

124

