
DETECTION OF MALICIOUS VBSCRIPT USING STATIC AND DYNAMIC ANALYSIS WITH
RECURRENT DEEP LEARNING

Jack W. Stokes† Rakshit Agrawal? Geoff McDonald±

† Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA
? University of California, Santa Cruz, Santa Cruz, CA 95064 USA

± Microsoft Corp., #305 876 14th Ave. W, Vancouver, British Columbia, V5Z 1R1, Canada

ABSTRACT

Attackers have used malicious VBScripts as an important computer
infection vector. In this study, we explore a system that employs
both static and dynamic analysis to detect malicious VBScripts. For
the static analysis, we investigate two deep recurrent models, LaMP
(LSTM and Max Pooling) and CPoLS (Convoluted Partitioning of
Long Sequences), which process a VBScript as a byte sequence.
Lower layers capture the sequential nature of these byte sequences
while higher layers classify the resulting embedding as malicious
or benign. Our models are trained in an end-to-end fashion allow-
ing discriminative training even for the sequential processing layers.
Dynamic analysis allows us to investigate obfuscated VBScripts an
additional files which may be dropped during execution. Evaluating
these models on a large corpus of 240,504 VBScript files indicates
that the best performing LaMP model has a 69.3% true positive rate
(TPR) at a false positive rate (FPR) of 1.0%. Similarly, the best
CPoLS model has a TPR of 67.9% at an FPR of 1.0%. Our system
is general in nature and can be applied to other scripting languages
(e.g., JavaScript) as well.

Index Terms— VBScript, Detection, Recurrent Neural Net-
work, Deep Learning

1. INTRODUCTION

Malicious scripts are widely abused by malware authors to infect
users’ computers. In the current threat landscape, one of the most
prevalent types of script malware that Windows users have en-
countered is VBScript (VBS). VBScript, or Microsoft Visual Basic
Scripting Edition, is an active scripting language originally designed
for Internet Explorer and the Microsoft Internet Information Service
web server [1].

While a wide range of different machine learning models have
been proposed for detecting malicious executable files [2], there has
been little work in investigating malicious VBScript. Two previous
solutions for VBScript are based on static analysis [3, 4]. In addition,
deep recurrent models have recently been proposed detecting system
API calls in PE files [5, 6, 7], JavaScript [8, 9], and Powershell [10].

There are several challenges posed by trying to detect malicious
VBScript. Malicious scripts include obfuscation to hide the mali-
cious content, and often unpack or decrypt the underlying malicious
script only upon execution. Complicating this is the fact that the
obfuscators, in some cases, are used by both benign and malware
files. Thus pure static analysis of the primary script often fails to
detect some malicious activity. Another problem is that anti-virus
(AV) automation systems such as sandboxing environments are de-
signed primarily to handle Windows Portable Executable (PE) files

(e.g., .exe and .dll). Another problem is that anti-virus (AV) analysts
typically spend the majority of their time authoring new signatures
for executable malware (e.g., .exe, .dll). Accordingly, the number of
labeled script files is typically much lower than for executable files.

In this paper, we propose VbsNet, a deep recurrent neural clas-
sification system which can be trained to detect malicious VBScript
using a combination of both static and dynamic analysis. We first
use a production anti-virus engine to dynamically execute a script in
a sandboxed environment inside of the engine. This allows the AV
engine to safely analyze any obfuscated scripts or child scripts which
are dropped during script execution without infecting the computer.

We investigate two different models for the task of detecting ma-
licious VBScript using static analysis on the resulting files after dy-
namic analysis. Both models encode sequential information using
one or more long short-term memory (LSTM) layers. The LSTM
and Max Pooling (LaMP) model follows a two-stage approach where
the first stage learns a language model for the individual characters
in the script content. Next, the second stage includes a, potentially
deep, neural network for the final classification of the script as ma-
licious or benign. To allow the processing of longer script files,
we next investigate the Convoluted Partitioning of Long Sequences
(CPoLS) model which adds an additional layer consisting of a one-
dimensional convolutional neural network. Since our models operate
directly on the script content encoded as bytes, they do not require
careful and potentially computationally expensive feature engineer-
ing proposed by other solutions.

VbsNet is the first deep learning model which has been pro-
posed for detecting malicious VBScript. LaMP and CPoLS have
recently been proposed for detecting malicious JavaScript in the
ScriptNet model [9]. However, ScriptNet only does static analysis
of the file. Since the ScriptNet model does not employ dynamic
analysis, it cannot detect malicious child scripts which are dropped
during execution. In addition, ScriptNet must deal with obfuscated
files. Agrawal, et al. [11] also used LaMP and CPoLS for detecting
malicious Windows portable executable files. In this work, we show
that these models are also effective for detecting malicious VBScript
files. The main contributions of this paper include the following. 1)
We propose the first deep neural network models for the detection
of malicious VBScript. 2) We evaluate these models on a large
corpora of VBScript files. 3) We demonstrate that these models can
effectively detect malicious VBScript files.

2. MOTIVATION

With advances in browser and operating system security making
browser exploit attacks more difficult, miscreants are instead rely-
ing on social engineering attacks. Figure 1a indicates the percentage



(a) Percentage of different non-PE file de-
tections in January-September 2019 (re-
maining 97.65% are PE files).

(b) Arrival methods for malicious VB-
Script files detected from January through
September 2019.

of all, non-PE files detected in the Windows Defender anti-malware
product’s telemetry for the first nine months of 2019. This figure in-
dicates that VBScript was the second most prevalent type of detected
scripts found in the telemetry data. Since the remaining 97.65% of
the detections are for PE files, malicious scripts are still a small mi-
nority of the detected files in the wild.

Figure 1b illustrates the identified attack methods of VBScript
based on telemetry data from January 1, 2019 through September
30, 2019. The main threat vector of malicious VBScript is remov-
able drives followed closely by archives. Web downloads, email and
bit torrent play a smaller role in VBScript attacks, but they were still
important threat vectors. Through September, Web downloads were
the third most prevalent threat vector, so this likely motivated Mi-
crosoft to recently disable VBScript execution in Internet Explorer.

3. SYSTEM

Figure 2 presents an overview of VbsNet, our proposed neural VB-
Script classification system. A labeled collection of malicious and
benign VBScripts are first scanned with the Microsoft Windows De-
fender anti-malware engine. During this scanning operation, the
script is emulated and unpacked, and may drop one or more ad-
ditional scripts. Each child script is also emulated and unpacked
which may generate even more scripts. This process continues until
all scripts have been extracted and scanned.

Fig. 2: Overview of the VbsNet neural VBScript classification sys-
tem.

These scripts are next normalized. All whitespace characters,
except line breaks, are first removed. Next the text is standardized to
lowercase and converted to the US-ASCII character set. Any char-
acters which are not included in the US-ASCII character set, such as
non-English language characters, are replaced by the constant char-
acter ‘?’.

Before training the model, each normalized script is written to
the file system. To avoid storing malicious content on the hard drive,
the characters are next encoded by their numeric ASCII encoding
(e.g., ’97’ for the character ’a’) delimited by commas. This delim-

ited, encoded sequence data is then used to train the neural script
malware model.

To evaluate an unknown file, the system uses the trained model
to produce a prediction which indicates the probability that the un-
known VBScript is malicious.

4. MODELS

Dynamic analysis of VBScript files allows our system to use infor-
mation hidden in the VBScript’s unpacked content to learn its ma-
licious nature. In this section, we discuss our models which can
capture and learn the malicious intent of VBScript files using neural
classifier models and sequential learning.
Translation to Sequences: The raw scripts can be considered to be
documents containing a limited vocabulary set. As such, the VB-
Scripts are long ordered sequences of encoded characters. For nor-
malized VBScript files, we define our vocabulary as the set of all
possible bytes (8-bits). This leads to a vocabulary of size 256. Each
normalized VBScript, therefore, is a sequence of these bytes.
Model Architectures: In our experiments for sequential learning,
we employed two neural model architectures. The primary differ-
ence in these two architectures is their resilience against long length
sequences.
LSTM and Max Pooling: In the LSTM and Max Pooling (LaMP)
architecture, illustrated in Figure 3, we first use an embedding layer,
EMBEDDING, to process the input byte sequence B. Since each el-
ement in B corresponds to a byte from the vocabulary, it is sym-
bolic in nature. We use the embedding layer to transform each byte
into a dense vector (i.e., an embedding) which captures relatedness
among different bytes, thereby assisting the overall model in learn-
ing. The sequence of embeddings E is then passed through multi-
ple LSTM layers stacked on top of each other. The LSTM gener-
ates representations for each element in the input sequence as HL.
In order for us to perform classification on the sequence and iden-
tify its hidden malicious content, we transform the sequence HL
into a vector highlighting significant information, while reducing
its dimensionality. For this purpose, we use a temporal, max pool-
ing layer, MAXPOOL1D, as proposed by Pascanu et al. [7]. Given
an input vector sequence S = [s0, s2, . . . sM−1] ∈ S of length
M , where each vector si ∈ Rk is a k-dimensional vector, MAX-
POOL1D computes an output vector sMP ∈ Rk as sMP (k) =
max(s0(k), s1(k), · · · sM−1(k)).

We pass the sequence HL through MAXPOOL1D to obtain vec-
tor hL. Next, hL is passed through one or more dense neural layers
employing a rectified linear (RELU) nonlinear activation function.
This helps learn an additional layer of weights before performing
the final prediction. The RELU activation vector is finally used by
a sigmoid layer to generate the final probability pm indicating if the
VBScript is malicious or benign. We can formally define LAMP on
an input byte sequence B as:

E = EMBEDDING(B)

HL = LSTM(E)

hL = MAXPOOL1D(HL)

hCL = RELU(WL ∗ hL)
pm = σ(WD ∗ hCL)

(1)

whereWL is the weight matrix for the dense RELU hidden layer, and
WD is the weight matrix for the final sigmoid classification layer.

While LaMP provides a simple model to capture sequences di-
rectly, it is limited by the length of the input sequences. As the length



of input sequence B increases, the model becomes both difficult to
train and more memory-intensive. In the case of detecting malicious
content, long sequences can often separate two or more bytes far
from each other even when their combined presence is a cause of the
malicious intent. When learning directly on a sequence, it is possi-
ble for the model to lose the context of an identified byte earlier in
the sequence when processing a new byte at a larger distance. To
cope with such problems in detection, we therefore, investigate an-
other architecture called Convoluted Partitioning of Long Sequences
(CPoLS).

Fig. 3: LaMP model for detecting malicious VBScript files.

Convoluted Partitioning of Long Sequences: Convoluted Partition-
ing of Long Sequences (CPoLS) is a neural model architecture de-
signed specifically to extract classification information hidden deep
within long sequences. In this model illustrated in Figure 4, we pro-
cess the input sequence in parts by splitting it first into smaller pieces
of fixed length. By performing this step, we generate a sequence of
multiple partitions, each of which is a sequence in itself of a smaller
length.

We use Convolutional Neural Networks (CNNs) [12] in this
model, along with the other LaMP modules. CNNs are widely used
in computer vision [13, 14], and they have also recently shown
success in sequential learning domains as well [15, 16].

Given an input byte sequence B, the model first splits it into
a partitioned list C containing several small subsequences ci ∈ C
where i is the index of each partition in C. To translate the bytes
in these sequences from symbols to dense vectors, we pass them
through an embedding layer, EMBEDDING, and obtain sequence E,
where each element ei ∈ E corresponds to the sequence of em-
beddings for partition ci in C. Each of these partitions ei, are now
separately processed, while still maintaining their overall sequen-
tial nature. We call this method RECURRENTCONVOLUTIONS. In
this method, we pass each partition ei through the one-dimensional
CNN, CONV1D, which applies multiple filters on the input sequence
and generates tensor eχi representing the convoluted output of vec-
tor sequence ei. χ refers to the sequence with CONV1D performed
on it. The combined list of these convolved partitions eχi is referred
to as Eχ. In RECURRENTCONVOLUTIONS, we then reduce the
dimensionality of eχi by performing a temporal max pooling MAX-
POOL1D (not shown). MAXPOOL1D takes a tensor input eχi and
extracts a vector e′i from it. Similarly, we apply RECURRENTCON-

Script Model Parameter Description Value
LaMP BV BS,LaMP Minibatch Size 100
LaMP HV BS,LaMP LSTM Hidden Layer Size 1500
LaMP EV BS,LaMP Embedding Layer Size 128
CPoLS BV BS,CPoLS Minibatch Size 100
CPoLS HV BS,CPoLS LSTM Hidden Layer Size 1500
CPoLS EV BS,CPoLS Embedding Layer Size 128
CPoLS WV BS,CPoLS CNN Window Size 10
CPoLS SV BS,CPoLS CNN Window Stride 5
CPoLS FV BS,CPoLS Number of CNN Filters 128

Table 1: Settings for the various model parameters.

VOLUTIONS on each partition ei to obtain the updated vectors e′i.
These vectors e′i are finally combined in the same order to create an
updated sequence E′ of learned partition representations. With the
help of partitioning, the length of E′ is also limited to a trainable
length.

At this stage, the model uses sequence E′ as an input to the
LaMP model and learns the probability pm that the VBScript is ma-
licious. Therefore, we use a combination of an LSTM, a second
MAXPOOL1D layer, dense RELU activations, and a final sigmoid
layer for generating the prediction pm on the new input sequence
E′. Formally, we define the CPOLS model as:

C = PARTITION(B)

E = [EMBEDDING(ci) ∀ci ∈ C]

Eχ = [CONV1D(ei) ∀ei ∈ E]

E′ = [MAXPOOL1D(eχi ) ∀eχi ∈ E
χ]

pm = LaMP (E′)

(2)

Such a model is resilient to extremely long sequence lengths and can
also find malicious objects hidden very late in the sequence.

Fig. 4: Convoluted Partitioning of Long Sequences (CPoLS) model
for detecting malicious VBScript files.

End-to-End Learning: To train the models described above, we
perform an end-to-end learning process. Since the data available to



us is in the form of a sequence and an associated binary label, we
need to train the entire model, solely from this label. In end-to-end
learning, we pass each sequence B through all layers of our model
to derive the probability pm. Using this probability, with the true
label L ∈ {0, 1}, we measure the cross-entropy loss L. This loss is
used to compute the gradients required for updating the weights in
each layer of the model. Therefore, we simultaneously learn all the
parameters for the primary classification objective.

5. EXPERIMENTAL RESULTS

We next evaluate the performance of the proposed neural VBScript
malware classifier models on files collected from Microsoft’s pro-
duction malware infrastructure. We first start by describing the ex-
perimental setup used to generate the results. We then evaluate the
LaMP and CPoLS models trained on our large collection of VB-
Script files.
Datasets: Our anti-virus partners provided the first 1000 bytes
of 240,504 VBScript files which contained 66,028 malicious and
174,476 benign scripts. We randomly assigned these scripts into
training, validation, and test sets containing 168,353, 24,050, and
48,101 samples, respectively. The labels are obtained from the
production antimalware detection system.
Experimental Setup: All the experiments were performed using
Keras [17] with the TensorFlow [18] backend. The models were
trained and evaluated on a cluster of NVIDIA K40 graphical pro-
cessing unit (GPU) cards. All models were trained with a maxi-
mum of 15 epochs, but early stopping was employed if the model
fully converged before reaching the maximum number of epochs.
All LaMP models are trained and tested using the first 200 bytes of
the VBScript files, while the CPoLS models are evaluated using the
first 1000 bytes.

We did hyperparameter tuning of the various input parameters
for both types of VBScript models, and the results are summarized
in Table 1. With these settings, we evaluate the classification error
rate on the test set for the VBScript dataset.
Model Performance: We evaluate the LaMP and CPoLS models
for VBScript in Figures 5a and Figure 5b, respectively. The sim-
plest LaMP and CPoLS VBScript models with a single LSTM layer
and classifier hidden layer offer the best, or nearly the best, per-
formance compared to the more complex models. At an FPR of
1.0%, the TPR for the LaMP model is 69.3% with LV BS,LaMP =
1, CV BS,LaMP = 1. Similarly, CPoLS yields a TPR of 67.1% with
LV BS,CPoLS = 1, CV BS,CPoLS = 1 at this FPR = 1.0%. Thus,
the LaMP models trained with only the first 200 bytes are able to
outperform the the CPoLS models which are trained with the first
1000 bytes.

6. RELATED WORK

VBScript: The detection of malicious VBScript has been an under-
studied problem, but there have been a few works which consider
this script type. Kim et al. [3] take a static analysis, graph-based ap-
proach and search for conceptual graphs which are similar to those
containing malicious VBScript files. Wael et al. [4] propose a num-
ber of different classifiers to detect malicious VBScript including
Logistic Regression, a Support Vector Machine with an RBF kernel,
a Random Forest, a Multilayer Perceptron, and a Decision Table.
In [19], Zhao and Chen detect malicious applets, JavaScript and VB-
Script based on a method which models immunoglobulin secretion.
JavaScript: Our work is most closely related to ScriptNet [9] by
Stokes, et al. which also uses LaMP and CPoLS for the detection

(a) LaMP (b) CPoLS

Fig. 5: ROC curves for various VBScript models.

of JavaScript. In addition to using the model on a different type
of script, ScriptNet evaluates the script using only static analysis.
VbsNet uses a combination of both static and dynamic analysis.
Deep learning models, sparse random projections, logistic regres-
sion and auto-encoders were used to detect malicious Javascript by
Wang et al. [8]. A statistical n-gram language model was proposed
for the purpose of detecting malicious JavaScript in [20]. Other
papers which investigate the detection of malicious JavaScript in-
clude [21, 22, 23, 24, 25].
Other File Types: A number of deep learning models have been
proposed for detecting malicious PE files including [5, 26, 27, 6, 7].
Agrawal et al. [11] also use LaMP and CPoLS for the detection of
malicious PE files using system API calls. A character-level CNN
has been proposed for detecting malicious PE files [5] and Power-
shell script files [10].
Architecture: An approach for learning from images presented in
RCNN [28] uses an architecture similar to CPoLS but performs 2-
dimensional convolutions on images, and derives their vector repre-
sentation via dense layers, before passing it through an RNN. We, in-
stead use 1-dimensional convolutions feeding directly into the RNN,
followed by max-pooled learning over the sequence outputs.

7. CONCLUSIONS

Our analysis shows that malicious VBScript was the second most
prevalent type of malicious script encountered by Windows users for
the first nine months of 2019. In this work, we investigate combining
static analysis and dynamic analysis to help detect malicious VB-
Script. Dynamic analysis allows us to detect additional files which
are dropped during execution of obfuscated commands. The results
show that the LaMP model, which employs a full LSTM for the se-
quence model, is able to outperform the CPoLS architecture for the
task of VBScript detection using only 20% of the initial bytes in the
file. However, CPoLS scales much better, and we expect CPoLS
to perform better with more data since the number of bytes that the
LaMP model can process is limited due to its high computational
and memory resource requirements. Analyzing the model’s perfor-
mance on VBScript provides important validation for the model’s
applicability for malicious scripts in general. Even though VBScript
has recently been disabled in Internet Explorer, our proposed system
is general in nature and can be applied to other scripting languages
such as JavaScript. Results of the proposed system on JavaScript can
be found in our extended technical report [29].



8. REFERENCES

[1] Microsoft, “Vbscript,” https://msdn.microsoft.com/en-us/ li-
brary/t0aew7h6.aspx.

[2] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and
classification: A survey,” pp. 55–64, 2014.

[3] Sungsuk Kim, Chang Choi, Junho Choi, Pankoo Kim, and
Hanil Kim, “A method for efficient malicious code detection
based on conceptual similarity,” in International Conference
on Computational Science and Its Applications (ICCSA), 2006,
vol. 3983, pp. 567–576.

[4] D. Wael, A. Shosha, and S. G. Sayed, “Malicious vbscript de-
tection algorithm based on data-mining techniques,” in 2017
Intl Conf on Advanced Control Circuits Systems (ACCS) Sys-
tems 2017 Intl Conf on New Paradigms in Electronics Informa-
tion Technology (PEIT), Nov 2017, pp. 112–116.

[5] B. Athiwaratkun and J. W. Stokes, “Malware classification
with lstm and gru language models and a character-level cnn,”
in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017, pp. 2482–2486.

[6] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Clau-
dia Eckert, “Deep learning for classification of malware system
call sequences,” in Australasian Joint Conference on Artificial
Intelligence. Springer International Publishing, 2016, pp. 137–
149.

[7] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas, “Malware classification with recurrent networks,”
in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 2015, pp. 1916–1920.

[8] Yao Wang, Wan dong Cai, and Peng cheng Wei, “A deep learn-
ing approach for detecting malicious javascript code,” Pro-
ceedings of Security and Communication Networks, vol. 11,
no. 9, pp. 1520–1534, 2016.

[9] Jack W. Stokes, Rakshit Agrawal, Geoff McDonald, and
Matthew Hausknecht, “Scriptnet: Neural static analysis for
malicious javascript detection,” in Proceedings of the Military
Communications Conference (MILCOM), 2019.

[10] D. Hendler, S. Kels, and A. Rubin, “Detecting Malicious Pow-
erShell Commands using Deep Neural Networks,” ArXiv e-
prints, Apr. 2018.

[11] Robust Neural Malware Detection Models for Emulation Se-
quence Learning, “Rakshit agrawal and jack w. stokes and
mady marinescu and karthik selvaraj,” in Proceedings of the
Military Communications Conference (MILCOM), 2018.

[12] Yann LeCun and Yoshua Bengio, “Convolutional networks for
images speech and time series,” 1995.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,”
in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al., “Imagenet large scale
visual recognition challenge,” International Journal of Com-
puter Vision, vol. 115, no. 3, pp. 211–252, 2015.

[15] Jonas Gehring, Michael Auli, David Grangier, and Yann N.
Dauphin, “A convolutional encoder model for neural machine
translation,” CoRR, vol. abs/1611.02344, 2016.

[16] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N. Dauphin, “Convolutional sequence to sequence
learning,” CoRR, vol. abs/1705.03122, 2017.

[17] François Chollet et al., “Keras,” https://github.com/
fchollet/keras, 2015.

[18] Martı́n Abadi et al., “TensorFlow: Large-scale machine learn-
ing on heterogeneous systems,” 2015, Software available from
tensorflow.org.

[19] H. Zhao and W. Chen, “A web page malicious script detection
method inspired by the process of immunoglobulin secretion,”
in 2010 International Symposium on Intelligence Information
Processing and Trusted Computing, Oct 2010, pp. 241–245.

[20] Anumeha Shah, “Malicious JavaScript Detection using Statis-
tical Language Model,” Master’s Projects, p. 70, 2016.

[21] Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio
Giacinto, “Lux0r: Detection of malicious pdf-embedded
javascript code through discriminant analysis of api refer-
ences,” in Proceedings of the 2014 Workshop on Artificial In-
telligent and Security Workshop, New York, NY, USA, 2014,
AISec ’14, pp. 47–57, ACM.

[22] D. Liu, H. Wang, and A. Stavrou, “Detecting malicious
javascript in pdf through document instrumentation,” in 2014
44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, June 2014, pp. 100–111.

[23] Kristof Schütt, Marius Kloft, Alexander Bikadorov, and Kon-
rad Rieck, “Early detection of malicious behavior in javascript
code,” in Proceedings of the 5th ACM Workshop on Security
and Artificial Intelligence, New York, NY, USA, 2012, AISec
’12, pp. 15–24, ACM.

[24] Wei-Hong Wang, Yin-Jun Lv, Hui-Bing Chen, and Zhao-Lin
Fang, “A static malicious javascript detection using svm,” in
Proceedings of the 2nd International Conference on Computer
Science and Electronics Engineering, 2013.

[25] Wei Xu, Fangfang Zhang, and Sencun Zhu, “Jstill: Mostly
static detection of obfuscated malicious javascript code,” in
Proceedings of the Third ACM Conference on Data and Ap-
plication Security and Privacy, New York, NY, USA, 2013,
CODASPY ’13, pp. 117–128, ACM.

[26] George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu,
“Large-scale malware classification using random projections
and neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013.

[27] Wenyi Huang and Jack W. Stokes, “Mtnet: A multi-task neu-
ral network for dynamic malware classfication,” in Proceed-
ings of Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2016, pp. 399–418.

[28] Rodrigo Carrasco-Davis, Guillermo Cabrera-Vives, Francisco
Förster, Pablo A. Estévez, Pablo Huijse, Pavlos Protopapas, Ig-
nacio Reyes, Jorge Martı́nez-Palomera, and Cristóbal Donoso,
“Deep learning for image sequence classification of astronom-
ical events,” Publications of the Astronomical Society of the
Pacific, vol. 131, no. 1004, pp. 108006, Sep 2019.

[29] Jack W. Stokes, Rakshit Agrawal, and Geoff McDonald, “Neu-
ral classification of malicious scripts: A study with javascript
and vbscript,” CoRR, 2018.


