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Abstract

Slides are commonly used to present information and tell
stories. In academic and research communities, slides are
typically used to summarize findings in accepted papers for
presentation in meetings and conferences. These slides for
academic papers usually contain common and essential topics
such as major contributions, model design, experiment de-
tails and future work. In this paper, we aim to automatically
generate slides for academic papers 1. We first conducted an
in-depth analysis of how humans create slides. We then mined
frequently used slide topics. Given a topic, our approach ex-
tracts relevant sentences in the paper to provide the draft slides.
Due to the lack of labeling data, we integrate prior knowledge
of ground truth sentences into a log-linear model to create
an initial pseudo-target distribution. Two sentence extractors
are learned collaboratively and bootstrap the performance of
each other. Evaluation results on a labeled test set show that
our model can extract more relevant sentences than baseline
methods. Human evaluation also shows slides generated by
our model can serve as a good basis for preparing the final
presentations.

Introduction
Slides are commonly used to present information and tell
stories. In academic and research communities, slides are
typically used to summarize findings in accepted papers for
presentation in meetings and conferences. Automatically gen-
erating slides from papers aiming to reduce authors’ time and
efforts in slide creation would improve the authors’ productiv-
ity. Slides for academic papers usually contain common and
essential topics such as major contributions, model design,
experiment details and future work. Given a paper, we aim to
generate a set of draft slides covering the essential topics in
academic presentations. In this way, we hope to offer paper
authors a quick start slide creation experience rather than
require them to create slide decks from scratch.

The task of generating slides for academic papers is very
challenging and remains under-investigated. Early propos-
als (Masao and Kôiti 1999; Yasumura, Takeichi, and Nitta
2003; Sravanthi, Chowdary, and Kumar 2009) are mainly
rule-based extractive methods with simple heuristics. They
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1code and data will be released soon

Paper (truncated)

(Abstract) Summarization based on text extraction is inherently limited, but 

generation-style abstractive methods have proven challenging to build. In this work, 

we propose a fully data-driven approach to abstractive sentence summarize. (…)

(Introduction) To test the effectiveness of this approach we run extensive 

comparisons with multiple abstractive and extractive baselines, (…) Our approach 

outperforms a machine translation system trained on the same large-scale 

dataset and yields a large improvement over the highest scoring system in the 

DUC-2004 competition. 

(Related Work) Most of these models utilize recurrent neural networks (RNNs) for 

generation as opposed to feedforward models. We hope to incorporate an RNN-

LM in future work.

(Conclusion) We combine this probabilistic model with a generation algorithm which 

produces accurate abstractive summaries. As a next step we would like to further 

improve the grammaticality of the summaries in a data-driven way, as well as 

scale this system to generate paragraph-level summaries.

Figure 1: An academic paper example. Sentences relevant to
two topics Contribution and Future Work are in different
paper sections. Given the full paper, we retrieve relevant
sentences for each topic to create the draft slides.

seldom report empirical evaluation results. Recently, some
statistical learning approaches (Hu and Wan 2015; Wang,
Wan, and Du 2017) have been proposed. They collect<paper,
slide> pairs and use the alignments between slide contents
and paper to learn the importance of phrases or sentences
in the paper. They then design some heuristics to group sen-
tences of high-importance as the final slides. We observe two
major limitations in previous works. First, they do not con-
sider slide topics during generation. The content in one slide
should address one topic (e.g., paper contribution). Previous
works extract sentences according to the sequential section
order in a paper. The extracted sentences are grouped into
slides based on predefined constraints without considering
the topics of slides. Second, the slide datasets for training are
small and not publicly available. Large and publicly avail-
able resources of academic paper slides are rare on the Web
and difficult to collect. As far as we could find, the largest
dataset (Hu and Wan 2015) only contains 1,000 pairs of slide
and paper for training.

In this paper, we introduce a topic-aware paper to slide
generation approach based on sentence selection. Take Fig-
ure 1 for example. Given the topic “Contribution” as a query,
we extract relevant sentences (highlighted in red) in the paper
to provide the slide describing paper contribution. Similarly,
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we can generate slides concerning “Future Work” and other
topics to obtain a presentation draft. In the next section, we
will conduct a slide analysis and show how we mine the
frequently used topics in academic presentations.

To deal with no available training data, we propose a
simple and effective framework. We adapt mutual learn-
ing (Zhang et al. 2018) in the unsupervised setting with two
sentence extractors in different views. Our first extractor is
a neural-based model that aims to capture the distributional
semantics of sentences. The second extractor is a log-linear
model with predefined features. Due to the lack of labeling
data, we integrate prior knowledge of both task-specific and
general pre-trained model signal into the log-linear classifier
to initiate the training. Specifically, we create a pseudo-target
distribution using the log-linear model with heuristic weights,
assuming sentences that meet more priors are more likely
to be relevant. During mutual learning, two extractors learn
collaboratively by teaching each other and bootstrap their
performances.

We evaluate our approach on a labeled set containing 100
papers. Experimental results show that our method outper-
forms existing baselines by extracting more topic-relevant
sentences. Human evaluation also confirms the quality of our
generation outputs to serve as a presentation basis.

To summarize, our contributions include:
• We conduct an in-depth slide analysis, and have mined

frequently covered topics into the slide generation process.
• We adapt mutual learning in the unsupervised setting,

where we provide a general and flexible framework for
integrating prior knowledge to initiate the training. Experi-
ment results demonstrate that our approach is simple and
effective.

Task Overview
We first conduct an analysis between papers and slides, then
introduce our task formulation and test set.

Slide Analysis
Slide topics are important for understanding what to extract
from papers. We aim to analyze the topics covered in aca-
demic presentations. By collecting and checking 50 presenta-
tions (1,127 slides in total) with their corresponding papers,
we answer the following questions:

Q1 (Topic Popularity): What are the frequently cov-
ered topics in academic presentations? To categorize the
topics, we calculate the frequency of slide titles and manu-
ally merge titles under the same topic. For example, slides
titled “our contributions” or “this work” are categorized into
the topic “Contribution”. Table 1 shows the topics that are
commonly seen across presentations.

Q2 (Extraction Coverage): For slides of each topic,
how many textual contents are extracted from the cor-
responding papers? The feasibility of extraction-based sys-
tems depends on whether slide contents are extracted from
their corresponding paper or external resources. To calculate
the extraction coverage, we first create alignments from slide
contents (bullet per unit) to paper sentences. To speed up the
alignment process, we first retrieve the 5 most similar sen-
tences for each slide bullet based on text similarity. Then we

manually verify if the alignment is correct2. Overall, 85.16%
of the slide bullets can be aligned to corresponding sentences
in the paper, which confirms the feasibility of the extraction-
based approaches. From Table 1, we can see that topics such
as “Baseline” and “Future Work” have very high extraction
coverage, while slide contents for “Task Background” are
more likely to be generated from external resources with
lower extraction rate.

Q3 (Extraction Distance): For all bullets in one slide,
are the aligned sentences nearby in the paper? As we
mentioned that previous works (Hu and Wan 2015; Wang,
Wan, and Du 2017) extract sentences according to paper sec-
tion orders, it is important to see if this assumption is valid
that contents in the actual author-generated slides follow sim-
ilar orders. Given a slide containing text bullets with each
aligned to a paper sentence, we define the extraction distance
as the average pairwise-distances of the aligned sentences:

avg(
∑
k

∑
l=k+1

|posak
− posal

|) (1)

where ak is the aligned paper sentence for the kth bullet in a
slide, and posi = i

N is ith sentence position in a paper with
N sentences. Shorter extraction distance indicates contents
within a slide are extracted from nearby sentences in a paper
(e.g., within a paragraph or a section). From the 4th column in
Table 1, we can see that some slide topics have larger extrac-
tion distances than others. For example, “Contribution” has
large extraction distance, which indicates sentences for this
topic might be extracted from different sections in the paper
(e.g., abstract, introduction or conclusion). This observation
further motivates our approach by retrieving topic-relevant
sentences given slide topic as a query, instead of sequentially
extracting sentences in the paper.

Slide Topic Popularity Ext Cov. Ext Dist.
(#text bullets)

Task Background 100% 70.23%(1,154) 0.074

Related Work 86% 82.14%(1,034) 0.158

Contribution 90% 87.14%(995) 0.693

Approach 100% 74.39%(70) 0.481

Dataset 84% 89.12%(310) 0.298

Baseline 88% 90.17%(255) 0.121

Result 100% 72.33%(101) 0.248

Conclusion 76% 76.25%(258) 0.799

Future Work 72% 93.68%(186) 0.011

Table 1: Statistics of our slide topic analysis. Topics with
high popularity and extraction coverage are ideal to generate
the slide draft via extractive approach.

Task Formulation and Dataset
Based on the above observations, in this paper we view the
slide generation task as sentence selection given slide topics

2We only consider slide bullets with more than 3 words.
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as the query. Given a slide topic T and a paper P with N
sentences {S1, S2, ..., SN}, the goal is to select topic-relevant
sentences.

We start with slide topics with both high popularity (Q1)
and extraction coverage (Q2). According to the statistics
shown in Table 1, we select four topics for experiments:
{Contribution, Dataset, Baseline, Future Work}. For other
topics such as “Approach” and “Result”, we plan to generate
the related slides with rule-based approach, since they contain
mostly equations, figures or tables that are not in our current
consideration.

Since datasets of papers and slides in previous works are
not publicly available, we use the ACL Anthology Reference
Corpus (Bird et al. 2008) as the unlabeled corpus of papers
for our unsupervised learning.

ACL Anthology Reference Corpus: It contains 22,878
publications in the ACL Anthology up to December 2015.
The corpus provides the original PDF format as well as the au-
tomatically extracted text with logical structure (e.g., section
information) via ParsCit (Councill, Giles, and Kan 2008).

Testset Annotation: We evaluate our approach via (1)
performance of relevant sentence selection from papers; (2)
comparison with human-generated slides. We select 100 pa-
pers from the ACL corpus, which we found corresponding
presentations on the Web. Two annotators with rich research
experience are asked to annotate relevant sentences in the
papers for each of the four slide topics3. All topics achieve
high inter-annotator agreements (Kappa > 0.85) regarding
relevance of sentences. We use the union sets of their an-
notations as the final ground truth sentences for evaluation.
On average, there are 3.54 relevant sentences per paper per
topic.

Approach
Input all sentences in a paper, our goal is to select sentences
that are relevant to a slide topic. Our learning paradigm is
based on mutual learning with two models updating collabo-
ratively. In this section, we will first introduce the two models
and then describe the learning algorithm. Overview of our
approach is shown Figure 2.

Neural Sentence Selection Model

Our neural sentence selection model is based on the work
of Zhou et al. (2018), coupled with a hierarchical document
encoder and a sentence selector of pointer network (Vinyals,
Fortunato, and Jaitly 2015).
Paper Encoder: It encodes the sentences in two levels,
namely sentence level and document level. Given a paper
P = (S1, S2, ..., SN ) with N sentences, the sentence-level
encoder first constructs a basic representation s̃j for each
sentence Sj containing words (xjn1

, xjn2
, ..., xjnj

). It is imple-
mented as a single-layer biRNN with GRU (Cho et al. 2014).
It reads words one-by-one from the sentence, producing a

3Our dataset and code will be publicly available. More details
are shown in the supplementary file.

sequence of hidden states:
−→
h j

i = GRU(φin(xji ),
−→
h j

i−1), (2)
←−
h j

i = GRU(φin(xji ),
←−
h j

i+1), (3)

where φin maps each input word xji to a fixed-dimensional
vector. We concatenate the last forward and first backward
GRU hidden states to get the basic sentence representation
s̃j = [

−→
h j

nj
,
←−
h j

1]. In the document level, we use another
biRNN to read sentences in a paper. It then produces hidden
states:

−→s j = GRU(s̃j ,
−→s j−1), (4)

←−s j = GRU(s̃j ,
←−s j+1), (5)

and we can get the final sentence representation sj =
[−→s j ,

←−s j ].
Sentence Selector: At each decoding time step t, the selec-
tor receives the hidden state qt−1 of the previous selected
sentence. The probability of sentence Si being selected is
calculated as:

p(Si|θ) = softmax(Wh · tanh(Wqqt +Wssi)) (6)
qt = GRU(st−1, qt−1) (7)
q0 = tanh(Wms1 + bm) (8)

where Wh,Wq,Ws,Wm, bm are learnable, and θ is the
model parameters.

Log-Linear Classifier with Prior Knowledge
While on one hand the neural sentence selection model cap-
tures sentence semantics, on the other hand there are useful
priors that give hints of ground truth sentences. Especially in
the unsupervised setting, the integration of prior knowledge
is key for the model to learn in good direction.

Inspired by the knowledge integration approaches in neural
machine translation (Zhang et al. 2017; Ren et al. 2019), we
encode the prior knowledge as features within a log-linear
model. The sentence selection distribution is calculated as:

q(Si|γ) =
exp(γ · φ(Si, T ))∑
k exp(γ · φ(Sk, T ))

(9)

where φ(Si, T ) is the feature vector of sentence Si given
topic T , and γ is the feature weights.

From the slide analysis in the previous section and the
features used in previous works, we adopt (1) task-specific
features; (2) general signals from existing pre-trained model
as follows:
• Keywords. For sentences relevant to each slide topic, we

have observed some textual patterns. We design sets of
keywords for each topic. If a sentence contains a keyword,
this feature value is set to 1, otherwise 0.

• Belonging Section. Sentences of some slide topics tend
to appear in certain paper sections. For example, “Dataset”
are always in the experiment-related sections. Similar to
keyword feature, we design sets of section keywords for
each topic. If a sentence’s belonging section contains a
section keyword, the feature value is set to 1, otherwise 0.
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𝐾𝐿(𝑝||𝑞) 𝐾𝐿(𝑞||𝑝)

Log-Linear 

Classifier

Neural Sentence 

Selection Model

1 2

Paper

(sent 1) The task of named entity…

(sent 2) In this paper we propose…

…

(sent n) We achieve state-of-the-art…

Slide Topic

Contribution

Draft Slide (sentence per bullet)

• In this paper we propose…

• We achieve state-of-the-art…

• …

Figure 2: Overview of our topic-aware learning approach.

• Sentence Position. Similar to Hu and Wan (2015); Wang,
Wan, and Du (2017), we argue that the sentence position in
a paper is also important. For example, sentences related
to “Future Work” are more likely to appear at the end of
the paper. We use the normalized position posi = i

N for
sentence i as the feature value.

• BERT-QA Signal. To leverage the knowledge learned
from the recent large pre-trained model, we incorporate
the signal from the current state-of-the-art BERT-QA
model (Devlin et al. 2019) (fine-tuned on SQUAD (Ra-
jpurkar et al. 2016)) as a feature. We convert the sentence
selection task to a QA problem for BERT. Given a slide
topic such as “Contribution”, we input the question “what
are the contributions in this paper?” and retrieve the text
span predicted by BERT. The feature value is set to 1 for
the sentence containing the BERT output span.

More feature implementation details are described in the
Supplementary.

Learning Algorithm
For each topic, we train two extractors iteratively to retrieve
topic-relevant sentences in the paper. Our learning paradigm
is inspired by mutual learning (Zhang et al. 2018), where
several networks are trained collaboratively by teaching each
other to bootstrap the performance in supervised settings.

In our case, without labeling data, the pseudo target dis-
tribution and training data are critical to initiate the training.
As shown in Algorithm 1, our training consists of two stages.
In the first stage, we create a seed subset from the large unla-
beled corpus. We keep the papers containing topic-specific
keywords (mentioned in subsection ), which are assumed to
have ground-truth topic-relevant sentences. For target distri-
bution, we assign heuristic weights to the log-linear model
and use its output as pseudo ground truth to guide the train-
ing. This is based on the assumption that sentences, which
meet more priors, are more likely to be relevant. We train
the two classifiers (i.e., neural-based model and log-linear
model) alternately. For the neural sentence selection model,
we minimize the KL loss function:

Lneural = DKL(p(Si|θ) || q(Si|γ)) (10)

For the log-linear model, the KL loss function is:

Llog linear = DKL(q(Si|γ) || p(Si|θ)) (11)

Two classifiers are updated iteratively until converge to each
other.

In the second stage, we try to exploit more unlabeled data
to augment the training. In each epoch, we randomly sample
a batch of unlabeled papers as extra training data. The target
distribution is updated with the model predictions.

Algorithm 1 Training paradigm based on mutual learning

Require: Unlabeled papers U , neural-based model C1, log-
linear model C2

1: Create seed subset U ′ with keyword filtering
2: Initialize pseudo-target distribution with log-linear

model weights γ;
3: while Lneural not converges do
4: Update C1 with Lneural, U ′;
5: Update C2 with Llog linear, U ′;
6: end while
7: for timestep t = 1, · · · , T1 do
8: Sample a batch of unlabeled papers Ut

9: Update U ′ = U ′ + Ut;
10: Use C1 to label U ′;
11: Update C2 with pseudo-labeled U ′;
12: Use C2 to label U ′;
13: Update C1 with pseudo-labeled U ′;
14: end for

Experiment
Evaluation Metrics
We evaluate the system performance using three metrics.
Given a topic, we calculate: 1) accuracy: the percentage of
test cases that have at least one correct sentence retrieved; 2)
sentence-level classification precision/recall; 3) BLEU (Pa-
pineni et al. 2002): a widely used evaluation method in ma-
chine translation and text generation, to evaluate the content
overlap between model outputs and reference sentences in
the paper.

Baselines
For slide generation from academic papers, the most recent
systems (Hu and Wan 2015; Wang, Wan, and Du 2017) are
not publicly available for comparison, and they require some
feature engineering which is difficult for re-implementation.
Similar to these systems, we consider several publicly avail-
able baselines related to summarization:
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• LexRank (Erkan and Radev 2004): A graph-based method
that computes sentence importance based on the eigenvec-
tor centrality in a graph. The weight of edges represents the
cosine similarity between sentences. We limit the number
of its extracted sentences to 15% of the paper text length,
as done by Wang, Wan, and Du (2017).

• SumBasic (Nenkova and Vanderwende 2005): A
frequency-based summarizer that seamlessly integrates
content selection and re-ranks depending on the previous
choice of content by updating the probabilities of words.
We limit the number of its extracted sentences similar to
the LexRank baseline.

• RSA-TFIDF, RSA-word2vec (Baumel, Eyal, and El-
hadad 2018): The state-of-the-art query-focused abstrac-
tive summarizer which injects query-sentence relevance
into the pre-trained seq2seq summarization model (See,
Liu, and Manning 2017). We input the topic word as query
and output maximum 250 words as in its original setting.

• BERT-QA: We also compare with a QA baseline. Given
an input of a paper and a question for each slide topic, we
output the sentence where BERT-QA predicted text span is
in. This is the same as the feature we used in the log-linear
classifier described in previous section.
All sentences in the paper are used as input for all models.

Since the first two traditional extractive baselines are not
query-focused, their outputs are assumed not to be specifi-
cally related to the target slide topic. Therefore, we further
train two enhanced baselines (+selected selections) which
only take sentences in specific sections as constrained input.
For each slide topic, we select the sections using the “Belong
Sections” feature in the log-linear classifier.

Implementations

Model Parameters. Our vocabulary size is set to 1,000,000
most frequent words. Hidden size of word embedding,
sentence-level encoder, and document-level encoder in neural
sentence selection model are set to 50, 256, and 256, respec-
tively. For the log-linear classifier, we assigned weights γ
with 0 on the position feature and 1 on the other features. We
show the parameters of baselines in the Supplementary File.
Model Training. Since there are a few other documents be-
sides academic papers in the corpus (e.g., volume catelogs),
we apply a heuristic rule to only keep those with larger than
50 and less than 500 sentences as academic papers in the
training. We initialize the model parameters randomly us-
ing a Gaussian distribution with Xavier scheme (Glorot and
Bengio 2010). The word embedding matrix was initialized
using pre-trained 50-dimension GloVe vectors (Pennington,
Socher, and Manning 2014). We use Adam (Kingma and
Ba 2015) as our optimizing algorithm. The learning rate for
Adam optimizer α is set to 0.001. We use dropout (Srivastava
et al. 2014) as regularization with probability p = 0.3 after
the sentence level encoder and p = 0.2 after the document
level encoder. The training process stops when the loss of
two classifiers converges. Maximum training epochs are set
to 20.
Model Inference. We use decode step = 1 and retrieve the
top K = 1, 3 sentences with highest probabilities as outputs.

Result Analysis
Overall results are shown in Table 2. We report the results
of both our neural-based model and log-linear model. As we
can see, the two models perform comparably. In most topics,
our models perform better than baseline approaches.
Baseline Performances. LexRank achieves a high accuracy
of 0.806 in topic “Contribution”, but performs much worse
on other topics. We observe that it prefers to extract front sen-
tences of the papers (mainly in the abstract and introduction
sections), where contents related to “Contribution” are more
likely to appear. Even with the heuristically selected sec-
tion as constrained input, the two traditional extractive base-
lines, LexRank and SumBasic, do not improve too much. The
query-focused baselines RSA-TFIDF and RSA-word2vec do
not perform as well as in the DUC 2005 (Dang 2005), since
there might exist some gaps of query types and document
domains. BERT-QA is a strong baseline. It demonstrates the
rich knowledge embodied in BERT which is pre-trained with
large-scale corpus.
Performance of different topics. Among the topics, our
model performs the best in “Contribution” and “Future
Work”, as it retrieves relevant sentences for over 86.7% and
71.8% of papers in the test set, respectively. Both of our
models (i.e., neural-based and log-linear models) obtain the
best scores on precision and BLEU. For our models, as well
as other systems, topic “Baseline” is the most challenging.
Approximately, only 20% of test cases have been solved by
retrieving sentences describing baselines. Through our anal-
ysis, we observe that sentences describing “Baseline” are
usually short, containing only model names and references.
Our models might have wrongly learned the textual pattern,
due to factors such as sentences containing reference (e.g.,
“Reinforcement learning has been widely used in NLP (Liang,
2005).”).
Effect of Prior Knowledge and Mutual Learning. To
check the of validity of our prior knowledge, we use two
features (Belong Section and BERT-QA) as end-to-end fil-
tering hard rules to directly retrieve relevant sentences. For
example, using Belonging Section feature, we retrieve all
sentences in the sections of which section name contains the
keyword for “Contribution” as output. Results are shown in
Table 2, “Rule@Belonging Section ” and “BERT QA” re-
spectively. We can see that both features have considerable
performances, which demonstrates the effectiveness of prior
knowledge. Additionally with mutual learning, our models
further bootstrap the performance with a large margin. This
indicates that mutual learning can well utilize the prior knowl-
edge and contribute to the performance gain.

Performance Curve
To better understand our learning paradigm, we plot the accu-
racy curves of our neural sentence selection model in Figure 3.
For topic “Baseline”, we can see a steady performance im-
provement during mutual learning. As for “Contribution”,
our model already obtains a relatively high accuracy in the
first epoch, since pseudo labels provided by BERT-QA and
keyword priors are representative of the ground truth.

When we start to exploit more unlabeled data (epoch 10),
our model learns at a stable pace and achieves the best per-
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Topic Contribution Dataset Baseline Future Work

acc p r BLEU acc p r BLEU acc p r BLEU acc p r BLEU

LexRank 0.806 0.056 0.387 0.063 0.220 0.009 0.113 0.015 0.363 0.019 0.183 0.026 0.211 0.008 0.121 0.013
LexRank (selected sections) 0.622 0.178 0.211 0.221 0.088 0.041 0.049 0.053 0.225 0.036 0.112 0.051 0.099 0.030 0.053 0.036
SumBasic 0.459 0.024 0.124 0.048 0.253 0.010 0.098 0.022 0.237 0.010 0.099 0.022 0.141 0.006 0.083 0.012
SumBasic (selected sections) 0.357 0.100 0.077 0.145 0.066 0.033 0.027 0.051 0.188 0.030 0.083 0.037 0.028 0.010 0.015 0.016
RSA-TFIDF - - - 0.135 - - - 0.152 - - - 0.071 - - - 0.076
RSA-word2vec - - - 0.155 - - - 0.104 - - - 0.069 - - - 0.093
BERT QA (sent1) 0.459 0.500 0.087 0.613 0.297 0.310 0.105 0.311 0.188 0.205 0.062 0.176 0.380 0.415 0.205 0.412
BERT QA (sent3) 0.633 0.378 0.185 0.404 0.484 0.206 0.207 0.218 0.313 0.108 0.104 0.099 0.549 0.243 0.318 0.207
Rule@Belonging Section 0.949 0.133 0.739 0.133 0.352 0.049 0.281 0.083 0.413 0.024 0.473 0.046 0.380 0.030 0.318 0.042

Log-linear (sent1) 0.786 0.786 0.149 0.843 0.330 0.330 0.117 0.324 0.200 0.200 0.068 0.183 0.620 0.620 0.333 0.637
Log-linear (sent3) 0.857 0.769 0.210 0.765 0.396 0.271 0.140 0.280 0.263 0.180 0.100 0.158 0.634 0.577 0.341 0.599

Neural (sent1) 0.796 0.796 0.150 0.853 0.330 0.330 0.117 0.309 0.213 0.213 0.072 0.207 0.634 0.634 0.341 0.661
Neural (sent3) 0.867 0.714 0.219 0.714 0.440 0.280 0.183 0.253 0.313 0.164 0.124 0.155 0.718 0.495 0.394 0.581

Table 2: Overall performance on the 4 selected slide topics. “Neural” means our neural sentence selection model. “Log-linear”
means our log-linear classifier. “-” indicates the system is not applicable on the metric.

Figure 3: Accuracy curve of our neural-based model for topic
“Baseline” and “Contribution” on test set.

formance in epoch 14. From the two figures, we can see our
model’s robustness to the noise of increasing unlabeled data.

Discussion on Initialization
In this subsection, we delve into the initialization of the
log-linear classifier, which is crucial to our unsupervised
approach. Since we encode priors in the log-linear classifier
to create pseudo target distribution, a reasonable initialization
will provide a good training direction, and vice versa. We
show the ablation results using different log-linear feature
weight initialization in Table 3. From the table, we find that
all three priors encoded in the log-linear model are useful,
especially keywords and BERT-QA. It shows the possibility
to extend our approach to other domains utilizing both task-
specific feature and general pre-trained model signal.

Using only section feature results in a huge performance
drop on all metrics, which stress the importance of prior

Features acc p r BLEU

All 0.634 0.634 0.341 0.661
-keyword only 0.577 0.577 0.311 0.608
-BERT-QA only 0.563 0.563 0.303 0.609
-section only 0.155 0.155 0.083 0.185

Table 3: Results of our neural-based model using different
initialization feature weights of log-linear classifier for topic
“Future Work”.

designs for initialization.

Human Evaluation
To further verify the quality of our generation outputs, we
conduct the following human evaluation. For each of the four
slide topics, we randomly choose 10 relevant slides generated
by original authors from the test set. This sums up to total 40
evaluation cases. We pair up the human generated slides with
our neural-based model’s output slides. Three students with
rich experiences in academic research were asked to rate the
slides from 1 (low) to 5 (high) in three aspects: (1) relevance:
how relevant are the slides describing the given topic; (2)
coverage: how many topic-relevant contents in papers have
been covered by the slides; (3) overall: how well do the
slides by our model serve as a basis for preparing the final
presentations. From the evaluation results shown in Table 5,
we can see that our model outputs are rated as less relevant
than author-generated slides, since not all sentences retrieved
by our model are topic-relevant. In terms of coverage, our
model outputs (average score 3.52) are comparable to the
original author-generated slides (average score 3.99). And
the overall rating of our model is 3.54 (above average score
3), which shows its potential to serve as draft slides.

The example in Table 4 shows that our model correctly
retrieves 3 out of 4 ground truth sentences. More examples
are shown in the Supplementary. Meanwhile, we observe two
future directions to improve our slide generation approach:
1) simplicity; the author-generated slide (Figure 4) contains
more abstract phrases and diagrams than our sentence-level
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Ground truth

• The contributions of this paper are threefold.
• First, we propose a new unified representation of the meaning of an arbitrarily-sized piece of text, referred to
as a lexical item, using a sense-based probability distribution.
• Second, we propose a novel alignment-based method for word sense disambiguation during semantic comparison.
• Third, we demonstrate that this single representation can achieve state-of-the-art performance
on three similarity tasks, each operating at a different lexical level: (1) surpassing the highest scores on the SemEval-2012
task on textual (...)

Our model output

• The contributions of this paper are threefold.
• First, we propose a new unified representation of the meaning of an arbitrarily-sized piece of text, referred to
as a lexical item, using a sense-based probability distribution.
• Second, we propose a novel alignment-based method for word sense disambiguation during semantic comparison.

Table 4: A case study for “Contribution”. Bold contents are covered by author-generated slide in Figure 4.

Relevance Coverage Overall

Author 4.33 3.99 -
Ours 3.56 3.52 3.54

Table 5: Human evaluation results on slides generated by
original authors and our model.

outputs. 2) slide structure; currently we treat each retrieved
sentence as a bullet in the slide without considering any
hierarchical relations.

Figure 4: Author-created slide of the example in Table 4.

Related Work
Slide Generation for Academic Paper. Meshram and
Phalke (2015) summarizes a review of slide generation ap-
proaches before 2015. Previous works are mostly extraction-
based by scoring sentences in the paper. Yasumura, Takeichi,
and Nitta (2003) calculates tf-idf term weights in the paper.
Sentences with higher weights are selected for each section
as form the final slides. PPSGen (Hu and Wan 2015) as-
sumes sentences that contain more similar contents in the
corresponding slides have higher scores. It trains an SVR
model (Vapnik 1998) on 1,000 training paper and slide pairs
to learn sentence importance in a paper. Then it selects sen-
tences that maximize predefined objectives with constraints
using Integer Linear Programming. Similarly, Wang, Wan,

and Du (2017) learns phrase-level importance with 100 train-
ing pairs and optimizes heuristic objectives to generate slides
with hierarchical relationship. The above approaches gener-
ate presentations in sequential order with the paper sections,
without explicitly considering topics in the slide.

There exists other works that consider query-specific
slide generation. One of the earliest slide generation ap-
proaches (Masao and Kôiti 1999) detects topics in a docu-
ment based on word frequencies and semantic dependencies.
For each topic, it retrieves text-similar sentences to generate
the slides. SlidesGen (Sravanthi, Chowdary, and Kumar 2009)
selects key phrases in the model and experiment sections as
topic inputs to a query-specific summarizer QueSTS (Sravan-
thi, Chowdary, and Kumar 2008). QueSTS constructs a text
graph where an edge exists between two sentence nodes if
they are similar. For each query, it searches the graph for rel-
evant sentences. However, no empirical results are reported
in most early publications.

Query-Focused Summarization. Topic-aware slide gen-
eration can be also viewed as query-focused summarization
task. This task was first introduced in DUC 2005 (Dang 2005).
Current state-of-the-art methods are mainly unsupervised.
Feigenblat et al. (2017) designs six query-related features
and uses the Cross Entropy method to learn a global sen-
tence selection policy. Later work (Erera et al. 2019) builds
a section-based summarization system for academic papers
using this method. Litvak and Vanetik (2017) uses Minimum
Description Length (MDL) principle to select query-related
frequent word sets. Baumel, Eyal, and Elhadad (2018) in-
troduces an abstractive approach to consider query relevance
into a pre-trained summarizer.

Conclusion
In this paper, we present a topic-aware paper to slide genera-
tion approach. With an in-depth analysis, we have mined fre-
quently used slide topics. We design two sentence extractors
and adapt mutual learning to update two models collabora-
tively. Due to the lack of labeling data, we integrate priors
into the log-linear model to create pseudo-target distribution
for initialization. Experiment results show that our model
consistently outperforms baselines. Human evaluation also
indicates our generated slides provide a good basis for prepar-
ing the final presentation. In the future, we plan to generate
abstractive slides and explore more signals for training.
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