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Abstract

The rapid growth of the World Wide Web in recent years has caused
a significant shift in the composition of Internet traffic. Although
past work has studied the behavior of TCP dynamics in the context
of bulk-transfer applications and some studies have begun to investi-
gate the interactions of TCP and HTTP, few have used extensive
real-world traffic traces to examine the problem. This interaction is
interesting because of the way in which current Web browsers use
TCP connections: multiple concurrent short connections from a sin-
gle host.

In this paper, we analyze the way in which Web browsers use TCP
connections based on extensive traffic traces obtained from a busy
Web server (the official Web server of the 1996 Atlanta Olympic
games). At the time of operation, this Web server was one of the
busiest on the Internet, handling tens of millions of requests per day
from several hundred thousand clients. We first describe the tech-
niques used to gather these traces and reconstruct the behavior of
TCP on the server. We then present a detailed analysis of TCP’s loss
recovery and congestion control behavior from the recorded trans-
fers. Our two most important results are: (1) short Web transfers lead
to poor loss recovery performance for TCP, and (2) concurrent con-
nections are overly aggressive users of the network. We then discuss
techniques designed to solve these problems. To improve the data-
driven loss recovery performance of short transfers, we present a
new enhancement to TCP’s loss recovery. To improve the congestion
control and loss recovery performance of parallel TCP connections,
we present a new integrated approach to congestion control and loss
recovery that works across the set of concurrent connections. Simu-
lations and trace analysis show that our enhanced loss recovery
scheme could have eliminated 25% of all timeout events, and that
our integrated approach provides greater fairness and improved star-
tup performance for concurrent connections. Our solutions are more
general than application-specific enhancements such as the use of
persistent connections in P-HTTP [13] and HTTP/1.1 [7], and
addresses issues, such as improved TCP loss recovery, that are not
considered by them.

1. Introduction

The rapid growth of the World Wide Web in recent years has caused
a significant shift in the composition of Internet traffic. Today, Web
traffic forms the dominant component of Internet backbone traffic.
For example, [2] reports that Web traffic constituted 50% of the
packets and bytes traversing a busy backbone link. Therefore, there
is significant value in understanding Web traffic characteristics and
its implications for network performance and protocol design.

Web data is disseminated to clients using the HyperText Transfer
Protocol (HTTP) [5], which uses TCP [15] as the underlying reliable
transport protocol. The characteristics of Web traffic are significantly
different from those generated by traditional TCP applications such

as FTP and Telnet. Current Web transfers are typically shorter than
FTP transfers, and often several logically separate transfers are
active at any given time (for example, separate transfers for the text
and the inlined images constituting a Web page). This, coupled with
the single, reliable byte-stream abstraction provided by TCP, has
resulted in two distinctive characteristics of HTTP: (i) each TCP
connection initiated by HTTP tends to be short because a separate
connection is used to transfer each component of a page, and (ii)
Web browsers often launch multiple simultaneous TCP connections
to a given server to reduce user-perceived latency.

Unfortunately, these transfer characteristics are poorly suited to cur-
rent TCP mechanisms. The short duration of connections gives TCP
limited opportunity to probe the network and adapt its congestion
control parameters to the characteristics of the network. The use of
multiple, concurrent connections by Web clients could exacerbate
network congestion.

A solution that has been proposed in the literature is to have a single,
long-lived TCP connection onto which several logical data streams
are multiplexed by the application. Examples include persistent-con-
nection HTTP (P-HTTP) [13], Session Control Protocol (SCP) [14]
and persistent connections in HTTP/1.1 [7]. While these schemes do
help improve performance, they have drawbacks. They are specifi-
cally tied to a single application and/or application-level protocol
(HTTP). Also, by multiplexing data streams onto a single TCP con-
nection, they introduce undesirable coupling between the streams
that might otherwise be independent.

The performance problems mentioned above and the limitations of
existing solutions motivate our work. We analyzed a large packet-
level trace of TCP connections to a busy server to determine exactly
what the performance limitations were. We then designed new trans-
port-level mechanisms to address these performance problems. Since
these mechanisms are application-independent, they benefit all appli-
cations that use TCP. We used simulations to evaluate the perfor-
mance benefits of these mechanisms. We are currently in the process
of implementing these in a real network stack.

The goal of the trace analysis is to answer the following questions.
We divide them into two categories: those concerning the behavior
of individual TCP connections, and those concerning the combined
behavior of concurrent connections used by Web browsers.

Single Connection Behavior:

1. Loss recovery: How effective are TCP’s fast retransmission and
recovery mechanism in avoiding timeouts?

2. Receiver bottleneck: How often is a TCP receiver’s advertised
window size the limiting factor for performance?

3. Ack compression: How often does ack compression [11,18]
occur and how does it impact the packet loss rate?
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Parallel Connection Behavior:

1. Throughput: How does the throughput seen by a client vary
with the number of connections it has open to a server?

2. Congestion control: How does a set of parallel connections as a
whole respond to congestion-induced packet losses?

3. Loss behavior: How are packet losses distributed across multi-
ple parallel connections as a function of the congestion win-
dows of the individual connections?

To answer these questions, we analyze a very large data set —
packet-level traces of millions of TCP connections collected from
the official Web server for the 1996 Atlanta Olympic games. Over a
3-week period, the traces included approximately 1.5 billion TCP
packets from 700,000 distinct hosts from all over the world.

Our analysis of the traces yield the following answers to the ques-
tions raised above:

• Existing loss recovery techniques are not effective in dealing with
packet losses and new techniques must be developed to handle
them. Almost 50% of all losses require a coarse timeout to
recover. Fast retransmissions recover from less than 45% of all
losses. The remainder of losses are recovered during slow start
following a timeout.

• Future network implementations should increase their default
socket buffer size to avoid the receiver window from becoming a
bottleneck. The socket buffer size limited the throughput of
approximately 14% of all observed connections.

• Ack compression is an observed phenomenon and can be corre-
lated with subsequent packet losses.

• A client using a collection of parallel connections to connect to a
server is a more aggressive user of the network than one that
uses a single TCP connection. Throughput is positively corre-
lated with the number of parallel connections. Further, the set of
parallel connections is less responsive to congestion-induced
losses than a single connection.

• Of a group of parallel connections, ones with small outstanding
windows could experience a larger number of losses than their
share of the total outstanding window would warrant. This
means that it may be harder to initiate a new connection than to
keep an existing connection going.

Based on these results, we propose new TCP mechanisms to over-
come or eliminate these observed problems. These mechanisms are
completely compatible with existing TCP on-the-wire protocol and
only require modifications to the sender-side TCP implementation.
Therefore, current Web servers (and other TCP senders) can benefit
from these mechanisms while leaving Web clients untouched. This
facilitates incremental deployment in the Internet. Our proposed
mechanisms fall into two classes — those designed to improve the
performance of individual TCP connections and those designed to
improve the performance of multiple concurrent TCP connections.
The major enhancements we propose are:

• Enhanced TCP loss recovery: An improved loss recovery tech-
nique which improves the effectiveness of TCP fast retransmis-
sion when window sizes are small. With this modification, 25%
of the timeout events observed in the trace could have been
avoided.

• Integration across concurrent connections: An integrated
approach to congestion control and loss recovery across multiple
simultaneous TCP connections between a pair of hosts. This

allows (unmodified) applications to open as many TCP connec-
tions as they wish to another host without adversely affecting
either their own performance or that of others.

The rest of this paper is organized as follows. Section 2 describes the
details of the traffic collection site, data collection, and post-process-
ing. Section 3 presents the results of the traffic analysis. Section 4
presents our modifications to TCP to improve the performance of
individual connections, and Section 5 presents our modifications to
improve the performance of concurrent TCP connections. Section 6
presents our conclusions and pointers to future work.

2. Data Collection and Web Server Setup

This section briefly describes the details of the trace collection and
the post-processing we performed on the packet traces. In a related
paper that used the same data [4] we describe the setup in more
detail.

2.1  Data Collection Site and Methodology

The server complex consisted of a cluster of IBM RS/6000 machines
connected via a 16 Mbit/sec token ring network, running the Reno
version of TCP [15]. This complex was connected to the internet at
each of the 4 US Network Access Points (NAPs). A WWW request
entering the server complex passed through a load-balancing con-
nection router [1, 17] that sent it across the token ring network to a
single server node. After fetching the appropriate web object, the
server node transmitted it across an internal ATM network and
through the Internet to the clients. Note that this is an asymmetric
topology — web requests and responses traversed different network
links.

Our trace collection machine was on the token ring network connect-
ing the server nodes, capturing all traffic on port 80 (the HTTP port).
This traffic consisted of the HTTP request as well as all TCP
acknowledgements for the HTTP transfers. We also modified the
server nodes to indicate when a TCP retransmission occurred by
sending a packet to our trace collection machine. Using this informa-
tion combined with the techniques described in the next section, we
were able to reconstruct the dynamics of the TCP connections.

The following tables and figures summarize a variety of interesting
information about the collected data. Table 1 describes various statis-
tics about our trace data while Table 2 contains data about activity at
the site during the Olympics. More details about these traces and a
study of the stability of wide-area network performance based on
them can be found in [4].

Trace Statistic Value

Packets captured 1,540,312,422

Packets dropped 7,677,854

Average packet drop percentage 0.498%

Distinct client addresses 721,417

Total Bytes Collected ~189 GB

TABLE 1.  Trace Statistics

Site Statistic Value

Total server hits during Olympics 190,000,000

Max hits/day 16,955,000

TABLE 2.  Site Statistics



2.2  TCP Emulation Engine

We post-processed the packet traces to generate a one-record sum-
mary of the progress of each TCP connection, including the times
and sequence numbers of acknowledgments as well as the server-
side retransmission notifications. We then organized the connection
summaries into a database that allowed us to cluster together connec-
tions from a single client and compare the TCP performance of dif-
ferent clients at different times.

In order to faithfully reproduce the state of the sender-side imple-
mentation of TCP-Reno, we wrote a TCP emulation engine that took
the captured acknowledgments as input and reproduced the evolution
of the sender-side state variables (e.g., congestion window, round-
trip time estimate, maximum packet sequence transmitted, etc.). The
captured acknowledgments are sufficient for this because the change
in any sender-side state variable is triggered by the reception of an
acknowledgment or the expiration of a timer.

In essence, the engine is an implementation of a subset of the func-
tions of a TCP sender at user-level, driven by the sequence of
acknowledgment traces. If the evolution of the sender’s state were
completely driven by the arrival of acks (as is usually the case if a
connection experiences no losses), it is possible to reconstruct it with
complete accuracy. We handled the complications due to timer
events by using a number of heuristics, in addition to estimating the
round-trip time as done by the TCP sender.

We validated our engine by comparing the times at which it pre-
dicted a retransmission event with the actual times that retransmis-
sions occurred, as reported by the modified server nodes and
captured by the trace collector. When completed, the engine pre-
dicted the number of coarse timeouts, fast retransmissions, and slow-
start retransmissions to within 0.75% of the correct number (even
assuming that no retransmission notifications were lost by the packet
capture process). As a result, all the window size calculations are
also accurate to within this bound plus the underlying loss rate in the
packet capture process (about 0.5% on average).

In summary, the TCP emulation engine is a tool that emulates the
evolution of a TCP sender’s state with a very high degree of accu-
racy. The emulation engine, combined with the collected traces,
allow us to analyze how TCP connections as used by Web browsers
behave in today’s Internet.

3. Analysis

In this section, we present the results from our analysis of the real-
world behavior of TCP connections. We first consider single-connec-
tion behavior (analyzing TCP connections independent of each
other), analyzing how well the different TCP loss recovery mecha-
nisms work in practice and looking for the presence of receiver bot-
tlenecks and ack compression. We then analyze the effects that
multiple simultaneous connections have on the network, focusing on
the loss recovery behavior and congestion window evolution of par-
allel connections. In all the graphs that have error bars, the error bars
represent a confidence interval of plus or minus one standard error.

3.1 Single Connection Behavior

Table 3 summarizes the results of the analysis of single connection
behavior. In the rest of this section, we discuss the performance and
behavior of retransmissions, loss recovery, receiver-advertised win-
dow sizes, and ack compression.

3.1.1  Retransmissions and Loss Recovery

We classify the retransmissions of lost segments in TCP Reno into
three categories — fast retransmissions, which are triggered when a
threshold number of duplicate acknowledgments (three in TCP
Reno) are received by the sender, timeouts, which are retransmis-
sions triggered by the expiration of a timer before the arrival of an
acknowledgment for the missing segment, and slow-start retransmis-
sions, which are retransmissions performed by the sender immedi-
ately after a timeout, for subsequent packets that were presumed lost
in the window. There are typically two situations that result in coarse
timeouts. In TCP Reno, the loss of multiple segments in a window
usually leads to a coarse timeout. A coarse timeout also occurs when
the number of duplicate acknowledgments is insufficient to trigger a
fast retransmission.

Running the TCP emulation engine against the observed acknowl-
edgment trace showed that timeouts and the subsequent slow-start
retransmissions are the predominant mechanism for loss recovery in
TCP Reno. Specifically, over a 3 hour trace involving 1,650,103 con-
nections and 285,979 individual retransmission events, we found that
49.3% of all retransmissions were due to timeouts, 43.8% were the
result of a TCP fast retransmission, and 6.9% were the result of slow
start retransmissions. That is, 56.2% of all retransmissions occurred
soon after a coarse timeout.

We also characterized the state of the sender at the time a loss
occurred into slow-start periods and congestion avoidance periods,
to determine if either mode shows inherently different behavior from
the other. Both congestion avoidance and slow-start have similar fre-
quencies of loss: 82,181 (7%) out of 1159588 packets were lost in
congestion avoidance and 354566 (5%) out of 6662050 packets were
lost in slow-start.

From this analysis, we can see that existing loss recovery techniques
are not effective in dealing with packet losses and new techniques
must be developed to handle them. The more sophisticated data-
driven loss recovery mechanisms are not being used and that there is
a heavy dependence on the timeouts for loss recovery. In Section 4.1,
we discuss the effectiveness of the standard TCP Selective Acknowl-

Trace Statistic Value %

Total connections 1650103

With packet re-ordering 97036 6

With receiver window as bottleneck 233906 14

Total packets 7821638

During slow-start 6662050 85

# of slow-start pkts lost 354566 5

During congestion avoidance 1159588 15

# of congestion avoidance pkts lost 82181 7

Total retransmissions 857142

Fast retransmissions 375306 44

Slow-start retransmissions 59811 7

Coarse timeouts retransmissions 422025 49

Avoidable with SACKs 18713 4

Avoidable with enhanced recovery 104287 25

TABLE 3. Summary of Analysis Results (percentages are
relative to the category above it)



edgment (SACK) option in reducing the number of timeouts, and
describe an enhancement to the loss recovery procedure to signifi-
cantly improve its performance.

3.1.2  Receiver-advertised window

Assuming that the source always has data to send, the amount of data
transmitted by TCP at any time is primarily governed by the mini-
mum of two parameters: the sender’s congestion window, which tries
to track the available bandwidth in the network, and the receiver’s
advertised window, which handles flow control. The maximum pos-
sible value for the latter parameter is equal to the socket buffer size
chosen by the application when the connection is established. An
excessively small value of this parameter could result in sub-optimal
end-to-end performance if the receiver’s advertised window is con-
sistently smaller than the sender’s congestion window.

Figure 1 shows the cumulative distribution function of receiver
advertised window for transfers to 32000 hosts (over 1650103 con-
nections) during a 3-hour period. The CDF shows distinct upswings
at window sizes of 4 KB, 8 KB, 16 KB, etc., values that are com-
monly used by receivers.

For each connection, we compared the receiver advertised window
with the congestion window size (as computed by the TCP engine),
and determined that in approximately 14% (233906 connections) of
all connections the latter grew to be larger than the former, i.e., the
receiver advertised window limited the amount of data the TCP
sender could have outstanding. In these cases, the Web client (the
receiver) could potentially have obtained a higher throughput had it
employed a larger socket buffer (and consequently advertised a
larger window).

From this analysis, we make the following recommendation. Future
network implementations should increase their default socket buffer
size to avoid the receiver window from becoming a bottleneck.
Default values of 4 KB are often too small.

3.1.3  Ack Compression

Ack compression [18] occurs when the spacing between successive
acknowledgments is compressed while they are in transit between
the receiver and sender. The acknowledgments then arrive at the
sender at a higher rate than they were generated by the receiver. This
disturbs the ack-clocking nature of TCP [10], causing the sender to
transmit a burst of packets. This burst of packets is undesirable as it
increases the likelihood of overflowing a queue at a network router,

leading to packet loss. We wanted to determine the degree to which
acknowledgments are compressed in the network and to quantify the
negative effect that this has on TCP senders. We did this analysis in
two different ways.

Method 1: Ack Bandwidth Ratio [11]

In this method, we calculate the ack bandwidth for TCP windows for
all connections in the trace. The ack bandwidth with respect to a
starting acknowledgment A is defined as the number of outstanding
bytes at the time A was received divided by the time to receive the
ack for the last outstanding byte. Each individual ack bandwidth
sample is then compared to the median ack bandwidth for all win-
dows in the connection. This ratio (ack bandwidth)/(median ack
bandwidth) allows us to quantify the degree to which acks are com-
pressed.

Figure 2 shows the results of this analysis. The x-axis is the (quan-
tized) ack bandwidth ratio, and the y-axis is the probability that the
next window contained a packet loss. We make two important obser-
vations. First, the probability of loss increases sharply for small val-
ues of ack bandwidth ratio. But beyond a point, it flattens out
because the network has already been placed into a state of conges-
tion.

Method 2: Dynamic Comparison of Data and Ack Bandwidths

The second method takes into consideration the flow of both data
and acks. Consider a window of data transmitted by the sender. The
data bandwidth during the window is computed by dividing the
amount of data sent by the time to transmit the window1. Similarly,
the ack bandwidth is computed by dividing amount of data acknowl-
edged by the time difference between the first and last acks. We
define the ack compression factor as the ratio of the ack bandwidth to
the data bandwidth during the same window. Note that because acks
are used to clock out data, this ratio is the same as the ratio of the ack
bandwidths of consecutive windows.

Figure 3, which is analogous to Figure 2, shows the impact of ack
compression factor during a window on the packet loss rate during
the next window. We observe that the loss probability grows while
the ack compression factor increases up to about 3, and then levels
off.

1.  Note that the data bandwidth could well exceed the quantity window
size/RTT if the data is sent out as a burst.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

Figure 1. Cumulative distribution function (CDF) of receiver
advertised window size.
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Thus we see that both the ack bandwidth ratio and the ack compres-
sion factor can serve as good indicators of packet losses induced by
ack compression. However, one significant advantage of the latter is
that it can easily be computed in a real TCP implementation. Unlike
the ack bandwidth ratio (which is derived from [11]), the ack com-
pression factor does not require computing the median.

From this analysis, we see that ack compression is an observed phe-
nomenon and can be correlated with subsequent packet losses.
Therefore, a TCP sender would benefit by keeping track of the sever-
ity of ack compression (for instance, by dynamically computing the
ack compression factor) and taking corrective action (such as slow-
ing down its data rate) when there is a significant danger of packet
loss.

3.2  Parallel Connection Behavior

In this section, we study the effect that multiple, simultaneous con-
nections (parallel connections) have on end-to-end performance and
the network. We first investigate how throughput varies with the
number of parallel connections (the degree of parallelism). We then
investigate how a group of parallel connections react to a loss. We
look at the number of parallel connections that experience a loss
when one of the parallel connections experiences a loss, and the
resulting combined congestion window size after a loss. We look at
how losses are spread (in time) across parallel connections and how
they are spread out as a function of the number of unacknowledged
bytes (the outstanding window), over all parallel connections.

3.2.1  Throughput analysis

We analyze the traces to determine if there is any significant correla-
tion between the throughput seen by a client host and the number of
simultaneous connections (n) it has open to the server. This is impor-
tant because if there is a positive correlation, then it provides a mech-
anism that allows applications to obtain more than their “fair share”
of bandwidth on a network path’s bottleneck link.

For each host, we divide the entire duration of its interactions with
the server into periods during which n is constant. A transition from
one period to the next happens either when a connection terminates
(n decreases by 1) or when a new connection starts up (n increases
by 1). During each such period, we compute the throughput as the
ratio of the total number of useful bytes transferred during the period
by all the connections put together to the duration of the period. We

only consider periods with at least 5 KB transferred so that the
throughput numbers are more meaningful. After considering at all
such periods, we compute the coefficient of correlation between
throughput and the number of simultaneous connections. We only
compute this for hosts for which we have at least 10 pairs of
(throughput, n) samples.

By aggregating the coefficients of correlation for all hosts, we obtain
the cumulative distribution function (CDF), which is shown in
Figure 4. It is clear from the figure that there is a substantial positive
correlation. There is a positive correlation for about 90% of the hosts
and a coefficient of correlation larger than 0.5 for about 45% of the
hosts. Thus, clients do help themselves by opening more simulta-
neous connections.

3.2.2  Congestion control analysis

The apparent benefit that an individual client derives by launching
many simultaneous connections in parallel comes at the cost of
degraded congestion control behavior. To demonstrate this, we ana-
lyze the pattern of losses seen across the connections from each indi-
vidual client.

Consider a period of time when a client host has n simultaneously
open connections. Suppose that one of the n connections experiences
a packet loss. We use this event to mark the beginning of a loss
epoch. We record the amount of outstanding data that each of the
connections has at this point in time. The time when the outstanding
data of all the connections has been acknowledged marks the end of
the loss epoch. For each loss epoch, we record the number of simul-
taneously open connections, the outstanding window size of each
connection and the distribution of packet loss events across the con-
nections. We aggregate this data across all hosts.

Of the set (of size n) of connections that are active during a loss
epoch, only the subset (of size m) that actually experiences a loss
during a loss epoch cuts down the individual congestion windows in
response. Assuming that all the TCP connections have the same con-
gestion window size at the start of the epoch and that each TCP con-
nection that experiences a loss halves its window, the effective
multiplicative decrease in a host’s total transmission window is (1 -
m/2n). From Figure 5, we see that typically half the total number of
open connections see a loss during a loss epoch, i.e., m is approxi-
mately n/2. So the effective multiplicative decrease factor is 3/4,

Figure 3. The probability of packet loss in the next window versus
the Ack Compression Factor
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Figure 4. CDF of the coefficient of correlation between throughput
and the number of simultaneous connections. The CDF is obtained

by aggregating across all hosts.
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which represents a much more aggressive behavior than halving the
window. The basic reason for this is that only a subset of connections
is notified of congestion occurring along path shared by all the con-
nections.

We complement this back-of-the-envelope calculation with bounds
on the actual multiplicative decrease factor. In order to compute
these bounds, we use our knowledge of the individual congestion
windows at the start of the loss epoch coupled with one of two
extreme assumptions about how the set of connections that experi-
ence a loss during a loss epoch respond. To obtain an upper bound,
we assume all do fast retransmissions and halve their windows. To
obtain a lower bound, we assume that all undergo a retransmission
timeout and drop their windows down to 1 segment. For each case,
we compute the ratio of the combined congestion window after and
before the loss event to obtain a bound on the effective multiplicative
decrease factor. These bounds are shown as a function of the degree
of parallelism in Figure 6 (the curves labelled “Parallel Fast Recov-
ery” and “Parallel Coarse Timeouts”). As a baseline comparison, we
also compute the congestion window size ratio that would result if
the connections were treated as a single unit and (a) a fast retrans-
mission, or (b) a coarse timeout occurred. These are shown by the
“TCP Fast Recovery” and “TCP Coarse Timeouts” curves in the fig-
ure. The effective multiplicative decrease factor (backoff in response

to congestion) of a system using parallel connections is typically in
the range 0.6 to 0.75 for various degrees of parallelism. This is
clearly significantly more aggressive than normal TCP which backs
off by a factor of 0.5 or less.

Furthermore, the rate a set of n parallel connections increase their
aggregate window is n times that of a single connection because each
connection increments its window by 1 segment per RTT.

In short, our throughput and congestion control analyses show that a
client using several parallel connections to connect to a server is a
more aggressive user of the network than one that uses a single TCP
connection. This increases the chances that the network gets into a
congested state and stays there, which adversely affects overall net-
work performance.

3.2.3  Loss distribution analysis

Now we turn to the question of how packet losses during a loss
epoch are distributed across the parallel connections as a function of
their individual window sizes. In the interest of space, we only pro-
vide a brief summary here; a more detailed analysis can be found in
[3].

For each connection, we normalized the size of its outstanding win-
dow (ownd) by dividing by the sum of the outstanding windows of
all the parallel connections. For each loss epoch, we recorded the
normalized ownds of the individual connections and whether or not
they experienced a loss during the epoch. We aggregated this infor-
mation across a 4-hour long trace with over 100,000 loss epochs.
The main result we obtained was that of a group of parallel connec-
tions, ones with small outstanding windows (less than 20% of the
total ownd) could experience a larger number of losses than their
share of the total outstanding window would warrant. Thus a new
connection that starts up while other transfers are in progress might
suffer an unfairly large number of losses.

3.3  Key Results of Trace Analysis

Our analysis of the behavior of individual and parallel connection
behavior has led to the following important results:

• Existing loss recovery techniques are not effective in avoiding
timeouts when packet losses occur and new techniques must be
developed to handle them.

• A client using a collection of parallel connections between a cli-
ent and server is a more aggressive user of the network than an
application that uses a single TCP connection.

In the remainder of the paper, we present sender-side modifications
to TCP to solve these problems. In Section 4, we present an
enhanced loss recovery scheme to improve the performance of indi-
vidual connections. In Section 5, we present a new integrated con-
nection approach to congestion control and loss recovery to improve
the performance of parallel connections.

4. Improving Single Connection Performance

In this section, we describe techniques designed to improve the loss
recovery performance of TCP transfers.

4.1  Enhanced Loss Recovery

As mentioned in Section 3.1, over 55% of all retransmissions on the
Olympic Web server happened after one or more coarse timeouts
kept the link to the client idle for periods from hundreds of millisec-
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onds to seconds. Our analysis showed two main reasons for the
occurrence of these timeouts:

1. Fast retransmit followed by a timeout: The TCP Reno sender
was unable to recover from multiple losses within the same
transmission window. This situation can be recognized by the
occurrence of a fast retransmission shortly before the coarse
timeout.

2. Insufficient duplicate acknowledgments: Either the number of
outstanding packets was too small, or most of the packets in the
window were lost, preventing the sender from receiving enough
acknowledgment information to trigger a retransmission.

The use of TCP selective acknowledgments (SACKs) has often been
suggested as a technique to improve loss recovery and avoid time-
outs unless there is genuine persistent congestion in the network [6].
However, windows are often too small for this alone to help. A
detailed analysis of the trace data showed that out of the 422,025
coarse timeouts over a 3-hour period, SACKs could have helped
avoid at most 18,713 (4.43%) of them. In other words, current
approaches to TCP Reno enhanced with SACKs do not really avoid
most timeouts. It is clear that an alternative technique is needed to
recover from the bulk of these losses. However, in general, it is
incorrect to retransmit packet prior to the arrival of at least three
duplicate acknowledgments because packets can be reordered in the
network.

During the same 3-hour period, approximately 403,312 (95.6%)
coarse timeouts occurred as a result of insufficient acknowledgment
information (i.e., an insufficient number of duplicate acknowledg-
ments arrived to trigger a retransmission). Of these timeouts, no
duplicate acknowledgments arrived at all for 70% of them. In these
situations the network is most likely experiencing severe congestion.
The best solution is for the sender to wait for a coarse timeout to
occur before transmitting any packets. For the remaining timeouts
(about 25% of them, in which at least a single duplicate acknowledg-
ment arrives), we propose that a single new segment, with a
sequence number higher than any outstanding packet, be sent when
each duplicate acknowledgment arrives. When this packet arrives at
the receiver, it will generate an additional duplicate acknowledg-
ment. When this acknowledgment later arrives at the sender, it can
be assured that the appropriate segment has been lost and can be
retransmitted. We call this form of loss recovery enhanced or “right-
edge” recovery. This scheme is orthogonal to SACKs and can be
effectively combined with SACK information from the receiver for
better overall performance.

4.1.1  Simulation Results

An ns [12] based simulation, using the topology shown in Figure 7,
was performed to test the enhanced loss recovery algorithm. A sig-
nificant amount of additional cross traffic was generated to force the
transfers through the router to cope with frequent losses and small
congestion windows. This was done to recreate situations that occur
in the traces in a controlled fashion and not to simulate any existing
or typical network topology. The simulation tests consisted of a sin-
gle TCP transfer from node S to node R for a duration of 10 seconds.
Each test used a different variant of TCP sender protocol on node S.

Figure 8 shows the simulated sequence plots for TCP with SACK
and our enhancement to TCP-NewReno (TCP-Reno with certain
fixes described in [9]) with right-edge recovery. As indicated by the
large gaps in the sequence plot, the SACK transfer experiences many
more coarse timeouts than the transfer using right-edge recovery.
These coarse timeouts usually happen because there aren’t enough
duplicate acks to trigger fast retransmission. When the right-edge
recovery algorithm is used, the sender transmits a new packet in
response to each of these duplicate acknowledgments. These cause
the receiver to generate additional duplicate acknowledgments,
which trigger fast retransmission at the sender. By eliminating the
coarse timeouts, the sender using right-edge recovery performs the
transfer more than twice as fast as a standard transmitter.

5. Improving the Performance of Multiple TCP
Connections

In this section, we present the design and implementation of an inte-
grated congestion control and loss recovery scheme that enables the
use of multiple parallel TCP connections without resulting in more
aggressive congestion behavior. In addition, this scheme enables bet-
ter loss recovery and startup performance for new connections.

5.1  Integrated Congestion Control/Loss Recovery

The motivation for integrated congestion control and loss recovery is
to allow applications to use a separate TCP connection for each
transfer (just as they do today), but to avoid the problems mentioned
in Section 3.2 by making appropriate modifications to the network
stack. We divide TCP functionality into two categories: that having
to do with the reliable, ordered byte-stream abstraction of TCP, and
that pertaining to congestion control and data-driven loss recovery.
The latter is done in an integrated manner across the set of parallel
connections. We call this modified version of TCP, TCP-Int.

By opening n separate TCP connections for a transfer, an application
has n logically independent reliable byte-streams available for use.
The flow control for each connection happens independently of the
others, so the delivery of data to the receiving application also hap-
pens independently for each connection.

At the same time, congestion control is integrated across the TCP
connections. There is a single congestion window for the set of TCP
connections between a client and a server that determines the total
amount of outstanding data the set of connections can have in the
network. When a loss occurs on any of the connections, the com-

Figure 7. Topology for simulation tests.
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bined congestion window is halved, thereby achieving the same
effect as when a single, persistent TCP connection is used. In addi-
tion, because the congestion window is shared across connections,
new connections do not have to undergo slow-start to estimate the
correct congestion window. This leads to improved startup perfor-
mance for additional connections.

Data-driven loss recovery is also integrated across the set of TCP
connections. When a packet is lost on one connection, the successful
delivery of later packets on other connections allows the sender to
reliably detect the packet loss without resorting to a timeout, thereby
improving performance.

We briefly discuss how TCP-Int is different from alternative solu-
tions proposed in the literature. Most of these involve the application
multiplexing several data streams onto a single TCP connection.
This is different from TCP-Int that operates within the network stack
and permits the use of multiple TCP connections. We present a more
detailed discussion in Section 5.2.

One notable exception among these alternative solutions is [16],
which proposes the sharing of information, such as the congestion
window size and the round-trip time estimate, across TCP connec-
tions. While this is similar to TCP-Int in some respects, there are
many differences, including the lack of integrated loss recovery and
the retention of a per-connection congestion window. Furthermore, it
does not describe an implementation nor evaluate the potential
improvement in performance.

5.2  Alternative Solution: Application-level Multiplexing

Application-level solutions avoid the use of multiple parallel TCP
connections, and the resulting problems, by multiplexing several
data streams onto a single TCP connection. Since TCP only provides
a single, seamless byte-stream abstraction, these application-level
solutions include framing schemes for demarcating the individual
data streams. Examples of these include Persistent-connection HTTP
(P-HTTP) [13], Session Control Protocol (SCP) [14] and the MUX
protocol [8]. Significant reduction in the latency of Web accesses
using P-HTTP are reported in [13].

Despite the performance benefits, application-level solutions have
drawbacks:

1. They require existing applications to be rewritten or at least
relinked. Moreover, this is necessary both at the server and the
client.

2. They do not allow multiplexing of transfers initiated by more
than one application.

3. Multiplexing over a single TCP connection introduces undesir-
able coupling between data transfers that are logically indepen-
dent.

We discuss these in more detail in the context of HTTP/1.1.

5.2.1  HTTP/1.1 with Persistent Connections

The HTTP/1.1 protocol [7], which has recently been standardized,
recommends the use of persistent connections. So it seems likely that
persistent connections will find wide support in future client and
server software. Therefore, the first point made in Section 5.2 about
applications having to be rewritten is not an issue. However, the
other two drawbacks remain valid.

The new HTTP protocol does not integrate other applications’ TCP
connections (such as FTP or other TCP connections initiated by
helper applications). We believe that this is symptomatic of a larger

problem. If in the future HTTP is replaced by a different protocol,
special efforts would have to be made again (in terms of framing for-
mat, etc.) to ensure that the same drawbacks do not recur. In contrast,
our solution works regardless of the application-level protocol.

The third drawback mentioned in Section 5.2 also affects persistent
connections in HTTP/1.1. As an example, consider the simultaneous
transfer of several images over a persistent connection. Because TCP
provides an ordered byte-stream abstraction, the loss of a data packet
of one image can stall the delivery of data of the other images to the
receiving application such as a Web browser. Clearly, this is undesir-
able.

5.3  TCP-INT Implementation

We now describe an implementation of integrated congestion control
and loss recovery scheme that only modifies the TCP at the sender.
For each host with which a single machine is corresponding with, the
TCP/IP stack creates a structure (Figure 9) to store information
about any communication. This new structure enables the desired
shared congestion control and loss recovery by providing a single
point of coordination for all connections to a particular host. The
chost structure contains the standard TCP variables associated with
the maintenance of TCP congestion windows (cwnd, ssthresh and
count). The structure also introduces some new variables to aid in
congestion control (ownd, decr_ts) and other variables to support
integrated loss recovery (pkts[]). In the following subsections, we
describe how the various TCP routines use and update this new
information.

New send data routine: When a connection desires to send a packet,
it checks to see if the number of bytes already in the “pipe” from the
sender (ownd) is greater than the desired size of the “pipe” (cwnd).
If not, the connection prepares the packet to be sent by adding an
entry to the tail of the list of outstanding packets. This entry contains
the sequence number size and timestamp of the transmitted packet.
When the packet is sent, the connection increments the ownd by the
size of the packet. We use round-robin scheduling across the connec-
tions though it is not an essential requirement.

New recv ack routine: When a new ack arrives, the sender increases
the cwnd variable as appropriate. Also upon the arrival of a new ack,
the sender removes any packets from the pkts[] list that have reached

struct chost {
Address addr // address of host
int cwnd; // congestion window for host
int ownd; // total bytes in pipe to host
int ssthresh; // slow start thresh for host
int count; // count of pkts for cwnd increase
Time decr_ts; // time of last window decrease
Packet pkts[]; // pkts sent in order of xmission

// these are pkts in the “pipe”
TCPConn conn[];// set of tcp connections to host

}

struct packet {
TcpConn *conn; // connection that sent pkt
int seqno; // seqno
int size; // size of pkt
Time sent_ts; // time sent
int later_acks;// # of acks for later

// pkts on any conn
}

Figure 9. New structures necessary for shared congestion windows
and shared error recovery.



the receiver. The sender decrements the ownd variable by the size of
packets removed from the list.

Upon arrival of any ack, new or duplicate, the sender uses the ack
timestamp2 to increment the later_acks field of any packet that was
for sure transmitted earlier than the one just acknowledged. The
sender then traverses the list of packets in the “pipe” from oldest to
most recent to identify any candidates for retransmission. In a simple
situation where the delayed acknowledgment algorithm is not being
used, a retransmission candidate can be identified by the following
rules:

1. The later_acks field is greater than 3. This is used to avoid
unnecessary retransmission as a result of network reordering of
packets, and

2. The packet is the lowest sequence number, unacknowledged
packet on a connection, and

3. The connection associated with the packet does not have a
pending retransmission.

The presence of delayed acknowledgments complicates these rules
by effectively reordering the transmission of acknowledgments.
Receivers implementing delayed acknowledgments must acknowl-
edge the receipt of at least every other packet or at most 200 ms after
the receipt of a packet. This necessitates the following additional
rules to identify lost packets:

4. A candidate for retransmission must also have one other packet
on the same connection with 3 or more later acks. This com-
pensates for the requirement of only acknowledging every other
packet, or

5. The packet being acknowledged is well over 200ms more
recent than the possibly lost packet. In our simulation, we use
200 * 2 ms to provide a conservative bound. This is based on
the requirement to acknowledge a packet at least 200 ms after
its reception.

The sender retransmits the single oldest lost packet and marks the
connection as having a retransmission pending. The sender then

2.  In absence of the timestamp option, the ACK sequence number com-
bined with transmission order of all packets can be used to perform the
same actions.

adjusts the congestion window, cwnd, to perform the appropriate
congestion control following a loss.

Finally, the sender uses the ownd and cwnd variables to identify if
additional packets can be introduced into the “pipe”. If there is space
for new packets, the sender chooses a connection to transmit packets.
The choice of connection is done via a round-robin algorithm across
all connections to the same host.

5.4  Simulation Results: One Client Host Case

In this section, we describe results from an ns simulation designed to
examine integrated congestion control and loss recovery across
simultaneous TCP connections.

The first test used the topology in Figure 7. The router’s buffer size
was set to 3 packets. This is small enough to force transfers to have
small congestion windows and experience frequent losses. Once
again, the topology and parameters were chosen to recreate situa-
tions that frequently occur in our traces, and not to mimic an actual
network. In this test, the transmitting node performs 4 TCP transfers
to the receiver. The transfers start at 0, 2, 4 and 6 seconds and all end
at 10 seconds. The actual choices of the values 0, 2, 4, and 6 are not
important, just that the start times of each connection are staggered
in time.

Figure 10 shows the sequence plot for the test using a SACK-based
sender. It shows that typically only one connection performs satisfac-
torily at any one time. For example, at time 2 seconds, the connec-
tion starting up experiences several early losses and is forced to
recover them via coarse timeouts. In fact, this connection does not
send a significant amount of data until 4 seconds later (at time 6 sec).
Over the 10 second period, the connection starting at time 2 sec. and
time 6 sec. account for a minuscule (< 10%) fraction of the total
bytes transferred. Such unfairness and unpredictable performance
(due to coarse timeouts) are undesirable from an application’s view-
point because connections carrying critical data could get slowed
down while others carrying less important data do better.

Figure 11 shows the sequence plot for the same test with the senders
using TCP-INT. Integrated loss recovery helps this TCP variant
avoid coarse timeouts. Integrated congestion control allows the dif-
ferent connections to each obtain an equal share of the total band-
width. Although the total number of bytes transferred here is actually
slightly less than in the case with the TCP-SACK protocol, the per-
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Figure 10. Four TCP-SACK transfers through a router with buffer
size 3. Transfers start at 0, 2, 4 and 6 seconds.
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Figure 11. Four TCP-INT transfers through a router with buffer
size 3. Transfers start at 0, 2, 4 and 6 seconds.

Transfer 1
Transfer 2
Transfer 3
Transfer 4



formance of the transfers is much more consistent and predictable.
Also, new connections can build on the slow-start window growth
already achieved by existing connections and cut down the timed
needed for completion.

Next, we discuss our second test that involved competing connec-
tions from more than one host.

5.5  Simulation Results: Multiple Client Hosts Case

We now investigate how the bottleneck link bandwidth is shared by
connections initiated from more than one host. Our test used the net-
work topology shown in Figure 12. At time 0, a single TCP transfer
starts from node S to each of nodes R1 and R2. Some time later (in
this case, fifteen seconds), a second transfer starts between node S
and R2. In addition, a significant amount of additional cross traffic
was generated across the shared bottleneck link. This was intended
to make the simulation more realistic.

In the case where node S uses standard TCP, congestion control is
performed on a per-connection basis and so each connection receives
approximately the same share of the bottleneck link bandwidth. As a
result, node R2 receives approximately twice the bandwidth of node
R1 after the second connection starts up. Figure 13 shows the same
test using TCP-INT. After the second connection from node R2
starts, each of the transfers from R2 receive approximately half the
bandwidth of the transfer on node R1. This is because congestion

control is performed on a per-host basis. Therefore, each host
receives an equal share of the bottleneck link bandwidth.

However, there are situations where an unequal distribution of band-
width may be desirable. For example, a proxy host that launches
connections of behalf of several end-clients should probably receive
a larger share of the bandwidth than another individual client host
that is communicating (directly) with the same server. We are able to
achieve this using TCP-INT by modifying the window growth/
shrinkage process, while still performing integrated loss recovery
just as before. The basic idea is to manage the overall congestion
window as though the set of TCP connections to the proxy host were
operating independent of each other. We discuss this in more detail
in [3].

Figure 14 shows the result for the same test as before with the con-
gestion control policy on node R2 modified so that each of its con-
nections (B and C) receives the same share of the bottleneck
bandwidth as connection A of node R1. Connections B and C con-
tinue to benefit from integrated loss recovery.

6. Conclusions

In this paper, we have presented a detailed analysis of TCP behavior
from a busy Web server. Our analysis has focused on two main areas:
examining the performance of individual TCP connections that carry
HTTP payloads, and examining the detrimental effects of how Web
browsers use parallel TCP connections on overall network perfor-
mance. We found that:

• Existing loss recovery techniques are not effective in dealing with
packet losses and new techniques must be developed to handle
them. Almost 50% of all losses required a coarse timeout to
recover. Fast retransmissions recovered from less than 45% of all
losses. The remainder of losses were during slow start following
a timeout.

• Future network implementations should increase their default
socket buffer size to avoid the receiver window from becoming a

Figure 12. Topology for simulation tests.
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Figure 13. Three TCP-INT transfers from two hosts through a single
bottleneck router. Connection A originates from the first host and

starts at time 0. Connections B & C originate at the second host and
start at time 0 and 15 sec respectively.
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bottleneck. The socket buffer size limited the throughput of
approximately 14% of all observed connections.

• Ack compression is an observed phenomenon and can be corre-
lated with subsequent packet losses. Our analysis indicates that a
dynamic comparison of data and acks bandwidths is an effective
indicator of ack compression, and is also easy to implement in
the TCP layer. One area of future work is the investigation of
mechanisms, such as traffic shaping, to combat the adverse
effects of ack compression.

• A client using a collection of parallel connections between a cli-
ent and server is a more aggressive user of the network than an
application that uses a single TCP connection. Throughput is
positively correlated with the number of active connections.
When multiple connections are concurrently active and one of
them experiences a loss, only half of the remaining ones on aver-
age experience a loss. The combined congestion window of a
group of parallel connections does not decrease as much as the
congestion window of a single connection after a loss epoch.

• Of a group of parallel connections, ones with small outstanding
windows could experience a larger number of losses than their
share of the total outstanding window would warrant. This
means that it may be harder to initiate a new connection than to
keep an existing connection going.

We then proposed sender-side TCP modifications that improve the
performance of TCP loss recovery and the use of parallel connec-
tions from individual clients. To reduce the occurrence of timeouts,
we presented an enhanced loss recovery scheme that improves per-
formance when window sizes are small and when insufficient dupli-
cate acknowledgments arrive for multiple losses in a window.
Analysis of the trace data shows that over 25% of the coarse timeouts
could be avoided by this scheme, resulting in significant perfor-
mance improvements. Simulation results shows that under test cir-
cumstances this can lead to a dramatic reduction in the number of
coarse timeouts. To address the problem of parallel connections from
individual clients, we presented an integrated approach to congestion
control and loss recovery that allows a TCP sender to aggregate
simultaneous connections from individual clients and treat them as a
single unit. Simulation results show that our approach achieves
much-improved start-up behavior, loss recovery, and bandwidth
sharing amongst the parallel connections from a number of hosts.

We are currently implementing our enhanced loss recovery and inte-
grated connection techniques and examining their performance in
real-world busy server environments. In addition, as a part of our
data collection, we also used traceroute to collect network topology
information for a large fraction of the clients that visited the Web
server. We plan to use this topology information to examine the pos-
sibility of extending the integrated congestion control and loss
recovery methods to share information across connections from
nearby hosts as well as from connections originating from the same
host, expanding on the results presented in [4].
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