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Abstract—Combinatorial interaction testing (CIT) is an impor-
tant technique for testing highly configurable software systems
with demonstrated effectiveness in practice. The goal of CIT is to
generate test cases covering the interactions of configuration op-
tions, under certain hard constraints. In this context, constrained
covering arrays (CCAs) are frequently used as test cases in CIT.
Constrained Covering Array Generation (CCAG) is an NP-hard
combinatorial optimization problem, solving which requires an
effective method for generating small CCAs. In particular, effec-
tively solving t-way CCAG with t > 4 is even more challenging.
Inspired by the success of automated algorithm configuration
and automated algorithm selection in solving combinatorial
optimization problems, in this paper, we investigate the efficacy
of automated algorithm configuration and automated algorithm
selection for the CCAG problem, and propose a novel, automated
CCAG approach called AutoCCAG. Extensive experiments on
public benchmarks show that AutoCCAG can find much smaller-
sized CCAs than current state-of-the-art approaches, indicating
the effectiveness of AutoCCAG. More encouragingly, to our best
knowledge, our paper reports the first results for CCAG with a
high coverage strength (i.e., 5-way CCAG) on public benchmarks.
Our results demonstrate that AutoCCAG can bring considerable
benefits in testing highly configurable software systems.

Index Terms—Constrained Covering Array Generation, Auto-
mated Algorithm Optimization

I. INTRODUCTION

Nowadays, there are increasing demands for customized
software and services. Developing highly configurable systems
has attracted considerable attention in both academia and
industry. A highly configurable system provides many options,
through which users can easily customize the system [1]–
[3]. However, testing such a highly configurable system is
challenging. It is hard or even infeasible to test all possible
configurations (combinations of options) [4], [5], as the num-
ber of configurations grows exponentially with the number of
options and only certain specific configurations may lead to
system failures. For example, assuming that a software system
has 15 options with 3 possible values each, there are more
than ten million (315 = 14, 348, 907) possible configurations
in the worst case. Hence, the time required for testing all these
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configurations could be unacceptably high, which creates an
urgent need for more practical testing methods.

It is well recognized that combinatorial interaction testing
(CIT) [4]–[19] is an effective and practical way for detecting
option-combination related faults in a configurable software
system. More generally, CIT tests a moderate number of
configurations sampled from the entire configuration space
[18], thereby significantly reducing the number of required
test cases. This sampling process for CIT generates a covering
array (CA). A t-way CA covers all possible combinations
of the values of any set of t configuration options, where
t, the coverage strength, is a small integer value (usually
ranging from 2 to 5) [5], [18]. In practice, for configurable
systems, there are also hard constraints (mutual dependen-
cies and exclusiveness) among the options. The problem of
constrained covering array generation (CCAG), which aims to
find minimum-sized constrained covering arrays (CCAs) while
satisfying a given set of hard constraints, is the core problem
of CIT and is in theory NP-hard [20].

Practical algorithms for tackling the CCAG problem can be
categorized into three main classes: greedy algorithms (e.g.,
[6], [7], [11], [12], [16]), constraint-encoding algorithms (e.g.,
[9], [13]), and meta-heuristic algorithms (e.g., [8], [10], [14],
[15], [17], [18]). Greedy algorithms can handle 2-way and 3-
way CCAG rapidly, but the CCAs produced by them are often
very large and can be unacceptable in practical scenarios where
considerable time is required for testing a single configuration
[8], [14]. Constraint-encoding algorithms first encode a given
CCAG instance into a constraint optimization problem and
then solve it using a constraint solver. Although constraint-
encoding algorithms can solve 2-way CCAG, they typically
fail to tackle 3-way CCAG. In contrast, meta-heuristic algo-
rithms are able to tackle both 2-way and 3-way CCAG, and
usually produce much smaller-sized 2-way and 3-way CCAs
than the greedy algorithms. However, effectively solving t-
way CCAG (t > 4) still remains a challenge for meta-heuristic
algorithms [18], [21].

It is important to solve t-way CCAG with t > 4. Much work
(e.g., [4], [19], [22]–[24]) has provided evidence that higher



coverage strength indicates stronger fault detection capability.
The literature [22] shows that 3-way CCAG detects only
74% of faults for the widely-used traffic collision avoidance
system [25]–[27], while 4-way and 5-way CCAG can detect
89% and 100% of faults for that system, respectively. Also,
a recent work [23] shows that up to about 25% of faults
would be missed if we do not use combinatorial testing
with high coverage strength (t > 4). Another recent work
[24] demonstrates that, through extensive empirical study on
various software, the fault detection rate of t-way CCAG with
t > 4 is up to 9.54% more than that of 3-way CCAG. Actually,
for life-critical applications (e.g., aviation), even one fault can
be fatal [4], [23]. Furthermore, t-way CCAG with t > 4 can
find corner-case faults that could cause serious consequences
and are very difficult to be detected through manual testing.
For example, a recent study in LG Electronics [19] shows
that, through 4-way and 5-way combinatorial testing, LG
Electronics detected critical faults in washing machines and
refrigerators. More importantly, these faults could cost tens of
millions of dollars if they had to be fixed after sale [19].

To our best knowledge, very few work focuses on effective
solving of the challenging 4-way and 5-way CCAG problems.
For example, recently a GPU-enabled parallel CCAG algo-
rithm called CHiP [18] reports the experimental results for
4-way CCAG on a number of benchmarking instances, but
the CCA sizes reported by CHiP are remarkably large and the
runtime of CHiP is considerably long (which can be observed
in Section V and in the literature [18]).

In this paper, for the first time, we study the efficacy of auto-
mated algorithm optimization techniques for CCAG, with a fo-
cus on solving t-way CCAG with t = 4 and t = 5. Many meta-
heuristic algorithms expose parameters whose settings greatly
affect their performance [28]. For instance, in the context of
CIT, a representative, state-of-the-art meta-heuristic algorithm
called TCA [14], which is able to produce small CCAs in many
cases [14], [16], introduces a number of parameters that have
substantial impact on its performance. Automated algorithm
optimization techniques, including automated algorithm con-
figuration (e.g., [28]–[34]) and automated algorithm selection
(e.g., [35]–[40]), have been demonstrated to be effective on a
variety of NP-hard combinatorial problems such as Boolean
satisfiability (e.g., [28], [31], [35]) and minimum vertex cover
(e.g., [41]). In this paper, we conduct research on leveraging
automated algorithm optimization techniques to optimize the
existing CCAG algorithm TCA, in order to make it more
capable of solving 4-way and 5-way CCAG.

Specifically, we propose a novel, automated CCAG ap-
proach, dubbed AutoCCAG, which can automatically schedule
TCA with different configurations for solving t-way CCAG
effectively, through leveraging the automated algorithm con-
figuration and automated algorithm selection techniques.

Through extensive experiments, we present that AutoCCAG
achieves much better performance than current state-of-the-art
CCAG algorithms, including TCA [14], CASA [8] and CHiP
[18]. In particular, our comparative experiments are conducted
on a broad range of real-world application instances from pub-

lic benchmarks. Our experimental results clearly demonstrate
that AutoCCAG significantly outperforms current state-of-the-
art CCAG algorithms for 4-way and 5-way CCAG on real-
world instances. In addition, the performance of AutoCCAG
is better than or equal to that of all its state-of-the-art CCAG
competitors for 2-way and 3-way CCAG on all these instances.

Our main contributions in this paper are as follows.
• We provide clear empirical evidences that automated al-

gorithm configuration and automated algorithm selection
can push forward the state of the art in CCAG solving.

• We propose a novel, automated CCAG approach dubbed
AutoCCAG, which leverages the effectiveness of auto-
mated configuration and automated selection techniques.

• We perform extensive experiments, demonstrating that
AutoCCAG performs significantly better than existing
state-of-the-art CCAG algorithms for solving 4-way and
5-way CCAG on real-world instances.

II. PRELIMINARIES

In this section, we first introduce combinatorial interaction
testing, and then survey automated algorithm optimization.

A. Combinatorial Interaction Testing
We introduce definitions and notations related to CIT and

formally describe the CCAG problem.
a) System Under Test (SUT): The definition of a system

under test (SUT, also known as instance in this paper) is a
pair S = (P ,C ) , where P is a collection of options and C
is a collection of constraints on the permissible combinations
of values of the options in P . For each option pi ∈ P , the set
of feasible values is denoted as Vi .

To formally define the CCAG problem, we need to introduce
the definitions of tuple and test case, as described below.

b) Tuple: Given an SUT S = (P ,C ), a tuple is a set
of pairs, denoted by τ = {(pi1 , vi1 ), (pi2 , vi2 ), . . . , (pit , vit )},
which implies that option pij ∈ P takes the value vij ∈ Vij .
A tuple of size t is called a t-tuple.

c) Test Case: Given an SUT S = (P ,C ), a test case tc
is a tuple that covers all options in P . In another word, a test
case is a complete assignment to P .

In practice, the options of most software systems are subject
to hard constraints on the allowable combination of values.
Since testing with invalid test cases would waste much testing
time, it is critical to guarantee that all generated test cases are
valid. Given an SUT S = (P ,C ), a tuple or test case is valid
if, and only if, it does not violate any constraint in C. Besides,
a tuple τ is covered by test case tc if, and only if, τ ⊆ tc, that
is, the options in τ take the same values as the ones in tc.

Since all necessary notations are defined, we introduce the
concept of constrained covering array (CCA) and the for-
mal formulation of the constrained covering array generation
(CCAG) problem as below.

d) Constrained Covering Array (CCA): Given an SUT
S = (P ,C ), a t-way constrained covering array CCA(S , t)
is a set of valid test cases, such that any valid t-tuple is covered
by at least one test case in CCA, where t is called the covering
strength of CCA.



e) Constrained Covering Array Generation (CCAG):
Given an SUT S = (P ,C ) and a covering strength t, the prob-
lem of t-way constrained covering array generation (CCAG)
is to find a t-way CCA of minimum size.

In practice, meta-heuristic algorithms [8], [10], [14], [15],
[17], [18] can construct much smaller-sized CCAs than other
types of algorithms. Among existing meta-heuristic algorithms
for CCAG, TCA [14] is considered as the representative and
state-of-the-art one. TCA is a typical local search CCAG
algorithm, which starts from a (partial) CCA as its initial
solution, and iteratively improves the current solution via
making small modifications. Reported by the literature [14],
TCA can produce CCAs with much smaller sizes than existing
approaches on extensive 2-way and 3-way CCAG instances.

B. Automated Algorithm Optimization Techniques

We first describe automated algorithm configuration, and
then introduce automated algorithm selection.

1) Automated Algorithm Configuration: Actually, many
practical algorithms have hyper-parameters whose settings
considerably affect performance; this especially holds for
meta-heuristic algorithms for solving combinatorial optimiza-
tion problems [28]. The automated algorithm configuration
(also known as automated hyper-parameter tuning) technique
is to address the following question: given a configurable al-
gorithm and a set of instances, how to determine the optimized
configuration (also known as hyper-parameter settings) of the
given algorithm for solving the given set of instances? Re-
cently, there has been a growing body of automated algorithm
configuration for determining optimized hyper-parameter set-
tings [28]–[34]. Automated configuration has been successful
applied in various fields, such as data mining [42], automated
machine learning [43], and deep learning [44].

2) Automated Algorithm Selection: The automated algo-
rithm selection technique is to address the following question:
when there exist a number of base algorithms aiming at solving
the identical problem, how to select the most suitable one?
Considerable attentions have been paid to this question, result-
ing in various promising approaches [35]–[39]. Automated al-
gorithm selection has shown its effectiveness in solving many
NP-hard combinatorial problems, such as Boolean satisfiability
[35], maximum satisfiability [45], answer set programming
[46], and constraint satisfaction problem [39].

III. THE AutoCCAG APPROACH

In this section, we propose a novel, effective automated
CCAG approach called AutoCCAG, which leverages effective
automated configuration and automated selection techniques.

A. Top-level Design of AutoCCAG
The main idea of our proposed AutoCCAG approach is

to advance the state of the art in CCAG solving through
automated algorithm configuration and automated algorithm
selection. We first illustrate the top-level design of AutoCCAG
in Figure 1. There are three key components in our AutoCCAG
approach: 1) configuration optimizer; 2) promising configura-
tion generator; 3) configuration scheduling planner.
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Fig. 1. Top-level design of AutoCCAG.

1) Workflow of AutoCCAG: As illustrated in Figure 1,
AutoCCAG works as follows: Given a target, configurable
CCAG algorithm a, the configuration optimizer of AutoCCAG
utilizes automated configuration to determine the optimized
configuration for a; the promising configuration generator of
AutoCCAG aims to generate a set of promising configurations
of a with complementary strength; the configuration schedul-
ing planner of AutoCCAG leverages automated selection to
construct a scheduling plan for target CCAG algorithm a.
Finally, AutoCCAG runs target CCAG algorithm a with the
generated scheduling plan to solve a given instance, to produce
the constrained covering array for that instance.

2) Target CCAG Algorithm: As discussed before, we first
need to decide the target CCAG algorithm adopted by
AutoCCAG. As reported in the literature [14] and also observed
in our experiments (in Tables I and II), TCA [14] can produce
notably smaller-sized CCAs than other existing algorithms
on t-way CCAG (2 6 t 6 5). Also, TCA is a configurable
algorithm, and its original version has 3 configurable hyper-
parameters. One hyper-parameter is Boolean-valued, and has
two possible values: True or False. Another one is a positive
integer hyper-parameter. The remaining one is a real-valued
hyper-parameter ranging from 0 to 1. In fact, a powerful
paradigm called programming by optimization (PbO) [47],
which advocates practitioners to expand the design space of
target algorithms, has shown its effectiveness in improving
meta-heuristic algorithms for solving a variety of NP-hard
problems, e.g., Boolean satisfiability [48] and minimum vertex
cover [41]. Inspired by the success of the PbO paradigm, we
expand the design space of TCA through the PbO paradigm,



Alg. 1: Method BOAC for Configuration Optimizer
Input: TB_BOAC : time budget for BOAC;

TI : a collection of training instances;
a : the target algorithm;

Output: Cfg∗: optimized configuration of a;
1 Cfg ← the default configuration of a;
2 Perf ← the average performance of a with Cfg on TI ;
3 (Cfg∗,Perf ∗)← (Cfg ,Perf );
4 ML← a GP model trained using sample (Cfg ,Perf );
5 while time budget TB_BOAC is not reached do
6 SC ← a set of randomly sampled configurations of a;
7 if with a probability of half then
8 Cfg ← the configuration of a with the largest

expected improvement assessed by ML from SC ;
9 else

10 Cfg ← the configuration of a with the largest
variance assessed by ML from SC ;

11 Perf ← the average performance of a with Cfg on TI ;
12 if Perf is better than Perf ∗ then

(Cfg∗,Perf ∗)← (Cfg ,Perf );
13 ML is incrementally updated by adding a new sample

(Cfg ,Perf );

14 return Cfg∗

and thus make TCA incorporate more configurable algorithm
mechanisms. For each of these newly incorporated, config-
urable algorithm mechanisms, one new, Boolean-valued hyper-
parameter is introduced in TCA to decide whether this new
algorithm mechanism is activated. Hence, AutoCCAG utilizes
the PbO-based version of TCA as its target CCAG algorithm.

B. Configuration Optimizer

Since automatically configured algorithms have exhibited
state-of-the-art performance on a wide range of combinatorial
problems [28], [31], [49], it is advisable to design a configura-
tion optimizer based on automated algorithm configuration in
AutoCCAG. Hence, the first step is to investigate to what de-
gree automated algorithm configuration is effective for CCAG.

1) Details of BOAC: Bayesian optimization (BO) [50] is an
effective framework for automatically tuning hyper-parameters
of configurable algorithms [31]. The BO framework constructs
and updates a machine learning model to learn the effect
of hyper-parameter settings on target algorithm performance,
and iteratively determines a promising configuration via the
constructed machine learning model. An effective machine
learning model for BO is Gaussian process (GP) [51]. Given
a configuration of the target, configurable algorithm, GP can
evaluate its potential benefit using expected improvement (EI)
[52] and assess its diversification property using variance [53].

Based on the BO framework, we propose a new method
called BOAC (Bayesian Optimization based Automated Con-
figuration) for our configuration optimizer. BOAC utilizes GP
as its machine learning model. The BOAC method is outlined
in Alg. 1, and needs 3 inputs: 1) the time budget for BOAC,
denoted by TB_BOAC ; 2) a collection of training instances,
denoted by TI ; 3) the target algorithm to be configured, de-
noted by a. The output of BOAC is the optimized configuration
of the target algorithm a, denoted by Cfg∗.

BOAC works in an iterative manner until the time budget
TB_BOAC for BOAC is reached (Line 5 in Alg. 1). In each
iteration, BOAC obtains a new sample, i.e., a pairwise item
consisting of a configuration chosen by GP, denoted by Cfg ,
and the average performance of a with Cfg across all training
instances in TI , denoted by Perf (Lines 8, 10 and 11 in
Alg. 1)1. After obtaining the new sample, in each iteration
BOAC’s machine learning model ML would be incrementally
updated by adding a new sample (Cfg ,Perf ) (Line 13 in
Alg. 1). Then we need to specify how BOAC chooses a
promising configuration using GP in each iteration. In each
iteration, BOAC first constructs a candidate configuration set
SC , where each candidate is randomly sampled from the
whole configuration space (Line 6 in Alg. 1). Then BOAC
switches between the exploitation mode and the exploration
mode to pick a promising configuration. Since it is important
to balance exploitation and exploration [31], in our work, with
a probability of half, BOAC works in the exploitation mode: it
picks the configuration Cfg with the largest EI assessed by ML
from SC (Line 8 in Alg. 1); otherwise, BOAC works in the
exploration mode: it chooses the configuration Cfg with the
largest variance assessed by ML from SC (Line 10 in Alg.
1). Since in each iteration BOAC’s machine learning model
ML would be incrementally updated by using a new sample,
the configuration determined by BOAC would become more
effective with the number of iterations increases [54].

2) Configuration Protocol: In this paper, AutoCCAG ap-
plies our proposed algorithm optimization method BOAC to
conduct automated algorithm configuration. For automated
configuration, we use one benchmark as the training set.
Our BOAC method is utilized to minimize the size of the
generated CCA. Following the common setting of automated
configuration [55], we use a time budget of 2 days for the
configuration process of BOAC, and a cutoff time of 300
seconds per algorithm run during the configuration process
of BOAC. Once the configuration process is completed, the
configuration determined by BOAC is reported as the final
outcome of our configuration process.

C. Promising Configuration Generator

In Section III-B, we introduce how to use configuration op-
timizer to determine the optimized configuration for an config-
urable algorithm on a given collection of training instances. We
note that the obtained optimized configuration shows the best
average performance across all training instances; however,
this does not mean that the obtained optimized configuration
can achieve the best performance on each training instance. In
fact, it is recognized that, for the same configurable algorithm,
its various configurations show diverse performance when
solving different instances [56]. Hence, it is advisable to
generate a set of promising configurations with complementary
strength, and then use the automated selection technique to
leverage the complementary strength of them.

1For the first iteration, since the GP model ML has not been constructed,
the default configuration of a and the average performance of a with the
default configuration are chosen (Lines 1 and 2 in Alg. 1).



Alg. 2: Method PCG for Promising Configuration Generator
Input: IB_PCG: iteration budget for PCG;

TB_BOAC : time budget for BOAC;
TI : a set of training instances;
a : the target algorithm;

Output: PC : a set of promising configurations of a;
1 PC ← ∅;
2 while time budget IB_PCG is not reached and TI 6= ∅ do
3 Cfg∗ ← the optimized configuration of target algorithm

a selected by BOAC using TB_BOAC , TI as inputs;
4 PC ← PC ∪ {Cfg∗};
5 remove such instances, where target algorithm a with

configuration Cfg∗ can achieve or exceed best known
CCA sizes, from TI ;

6 return PC

To address this challenge, we propose a new method dubbed
PCG, which is a promising configuration generator to recom-
mend a set of promising configurations with complementary
strength. Our proposed PCG method is listed in Alg. 2, and
needs 4 inputs: 1) IB_PCG , i.e., the iteration budget for PCG
(following the practical standard [57], in this paper IB_PCG
is set to 4); 2) TB_BOAC , i.e., the time budget for BOAC;
3) TI , i.e., a collection of training instances; 4) a, i.e., the
target algorithm. The output of PCG is a set of promising
configurations, denoted by PC .

In the beginning, PCG initializes PC as an empty set
(Line 1 in Alg. 2). Then PCG works in an iterative manner
until one of the termination criteria is met. As indicated in
Alg. 2, there are two termination criteria for PCG: 1) the
iteration budget IB_PCG is reached; 2) the training instance
set TI becomes empty. In each iteration, PCG first activates
BOAC to determine the optimized configuration Cfg∗ using
TB_BOAC , TI and a as inputs (Line 3 in Alg. 2); then
PCG adds Cfg∗ into PC (Line 4 in Alg. 2). At the end of each
iteration, PCG removes such instances, where target algorithm
a with the configuration Cfg∗ found in this iteration can
achieve or exceed best known CCA sizes2, from TI (Line 5 in
Alg. 2); the main intuition is that, in the subsequent iterations
we only focus on those instances where the configurations
already in PC show moderate performance, in order to better
find those configurations with complementary strength.

In summary, the main idea of PCG is to find such configura-
tions, which can achieve better performance on those instances
where previously determined configurations show moderate
performance. As a result, PCG is able to generate a set of
promising configurations with complementary strength on all
training instances.

D. Configuration Scheduling Planner

Thanks to our proposed PCG method, for a given CCAG
algorithm a (i.e., TCA in this paper), we can obtain a set of
promising configurations PC with complementary strength on
all training instances.

2For the best known CCA size for each instance, we collect the value from
previous studies [8], [14], [15], [18].

It has been widely recognized that providing a scheduling
plan consisting of a combination of different effective config-
urations is able to achieve significantly better results than just
determining a single configuration [37]. The intuition is that
running a scheduling plan would exploit the complementary
strength among all configurations in this plan, and could
achieve more robust performance than just using a single
configuration [37]. Also, the literature [58] conducts extensive
empirical study to demonstrate that, for the Boolean satisfi-
ability (SAT) problem, which is a well-known, prototypical
NP-hard combinatorial problem, the effective configurations
for solving the SAT problem are usually not similar, result-
ing in different clusters of effective configurations in the
entire configuration space. Besides, the literature [9], [13]
demonstrates that there is a strong connection between the
CCAG problem and the SAT problem (the CCAG problem
can be encoded into the SAT problem), so it is possible that
there might be different clusters of effective configurations for
solving the CCAG problem. Hence, an advisable solution is
to provide a scheduling plan which consists of a bunch of
configurations with different time budgets rather than a single
configuration with the whole time budget. Then we need to
address the following challenge: given a new instance and the
cutoff time for solving the new instance, how to select suitable
configurations from PC and allocate suitable time budget for
each selected configuration?

In order to address this challenge, we propose a novel
method named CSP, which is a configuration scheduling
planner based on the automated selection technique.

1) Marginal Contribution: Before introducing the details
of our CSP method, we introduce an important concept called
marginal contribution [59], which can measure the contribu-
tion of each configuration underlying the whole scheduling
plan. Since the methods for computing marginal contribution
for various problems are different, we utilize a logarithmic-
based method for computing marginal contribution in the
context of CCAG solving, which is described as follows.

Given a set of TCA’s promising configurations PC , notation
size(PC ) denotes the performance (i.e., the averaged size of
resulting CCAs on all training instances) achieved by an ideal
configuration selector which leverages the complementary
strengths of the TCA’s configurations in PC . The absolute
marginal contribution (amc) for each configuration b ∈ PC
is calculated below:

amc(b) = ln
size(PC\{b})
size(PC)

(1)

After obtaining the absolute marginal contribution for each
configuration b ∈ PC , the relative marginal contribution
(rmc) for each configuration b ∈ PC is calculated below:

rmc(b) =
amc(b)∑

c∈PC amc(c)
(2)

2) Details of CSP: Our CSP method is outlined in Alg.
3, and provides a scheduling plan based on the marginal
contribution calculation. The time budget assigned to our CSP
method is the whole given cutoff time.



Alg. 3: Method CSP for Configuration Scheduling Planner
Input: tmc: cutoff time for solving instance i;

PC : a set of promising configurations of the target
algorithm found by SPC;

Output: listmc : optimized configuration schedule plan;
1 listtmp ← [ ];
2 foreach configuration b ∈ PC do
3 calculate rmc(b) according to Equation 2;
4 listtmp .append([b, rmc(b)]);

5 sort listtmp by rmc in a descending order;
6 listmc ← [ ];
7 foreach pairwise tuple [b, rmc(b)] in listtmp do
8 listmc .append([b, rmc(b) · tmc]);

9 return listmc ;

As described in Alg. 3, the procedures of our CSP method
are described as follows: For each configuration b underlying
the given set of promising configurations PC , the relative
marginal contribution for configuration b (i.e., rmc(b)) is
computed according to Equation 2. Then all configurations
are sorted by their rmc values in a descending order. The
scheduling plan generated in this stage consists of all config-
urations whose rmc values are greater than 0, and the time
budget allocated to each component algorithm is proportional
to its rmc value.

Finally, through the above procedures, CSP constructs the
final scheduling plan listmc . After the final scheduling plan
listmc is obtained, our AutoCCAG approach runs the target
CCAG algorithm with the final scheduling plan listmc to solve
a given instance, and thus generates the constrained covering
array for that instance.

IV. EXPERIMENTAL DESIGN

In this section, we describe the experimental design of this
work in detail. In particular, we first introduce the benchmarks
used in the experiments. Then we present the research ques-
tions of this paper. After that, we describe the competitors.
Finally, we introduce the experimental setup.

A. Benchmarks

Since the literature [14] utilizes two benchmarks (i.e.,
Real-world and Synthetic) to evaluate the performance
of TCA, we therefore adopt these two benchmarks in our
experiments. Both benchmarks are readily available online.
Moreover, we include an additional real-world application
benchmark entitled IBM into our experiments.

In our experiment, a benchmark is a collection of CCAG
instances, where each CCAG instance consists of two files,
i.e., the model file and the constraint file. More details about
benchmarks are available online3. We briefly describe the
Real-world, IBM and Synthetic benchmarks below.
Real-world. This benchmark includes 5 real-world in-

stances and has been intensely studied in literature [8], [10],
[14], [15], [18], [22], [60], [61]. These instances are derived

3https://github.com/chuanluocs/AutoCCAG

from Apache, an influential open-source web sever applica-
tion; Bugzilla, a widely used web-based bug tracker; GCC,
a well-known compiler collection from the GNU community
containing compilers and libraries for multiple programming
languages; SPIN-S and SPIN-V, the simulator- and verifier-
variants of SPIN, a widely-used model checking tool. This
benchmark was first presented by Cohen et al. [60]4.
IBM. This real application benchmark is comprised of 20

practical instances, originally introduced in the literature [62],
and is available online5. These instances are generated aiming
to provider better service for IBM customers, and cover a
broad range of real-world application fields, including health
care, insurance, network management, storage, etc.
Synthetic. This benchmark contains 30 synthetic in-

stances that were generated to resemble the characteristics of
real-world software systems in Real-world. These synthetic
instances were originally described by Cohen et al. [61]4.

The Synthetic benchmark is used as the training set
required by AutoCCAG. In this paper, AutoCCAG is trained
by solving 3-way CCAG on all instances in the Synthetic
benchmark. The Real-world and IBM benchmarks are
adopted as the testing set and are used to evaluate the practical
performance of AutoCCAG and other state-of-the-art CCAG
algorithms. Due to the page limit, we only list the results
of AutoCCAG and its competitors for solving 4-way and 5-
way CCAG on Real-world and 10 hardest instances in
IBM in Tables I–IV. The complete results of AutoCCAG and
its competitors for solving 4-way and 5-way CCAG on all
instances in the IBM benchmark are available online3 (where
the results on all instances in the Real-world and IBM
benchmarks for 2-way and 3-way CCAG can be also found).

B. Research Questions

To evaluate the effectiveness of AutoCCAG, we aim to
answer the following research questions (RQs). In the context
of CCAG solving, previous meta-heuristic solvers can achieve
good performance for 2-way and 3-way CCAG, but effectively
solving 4-way and 5-way CCAG still remains a challenge [18],
[21]. Hence, in this paper, we focus on advancing the current
state of the art in 4-way and 5-way CCAG solving.

RQ1: Can the use of automated configuration improve
the state of the art in 4-way and 5-way CCAG solving?

In this RQ, we evaluate the efficacy of our proposed
configuration optimizer BOAC for 4-way and 5-way CCAG.
We would like to explore if the performance of the state-of-
the-art CCAG algorithm TCA can be improved through BOAC.
In particular, we first utilize BOAC to find the optimized
configuration for the original version of TCA, resulting in
the original version of TCA with the optimized configuration,
dubbed TCA-opt. Then we conduct experiments to demonstrate
whether TCA-opt shows performance improvement over TCA.

RQ2: Can automated selection be leveraged to improve
the state of the art in 4-way and 5-way CCAG solving?

4http://cse.unl.edu/~citportal/public/tools/casa/benchmarks.zip
5https://researcher.watson.ibm.com/researcher/files/il-ITAIS/

ctdBenchmarks.zip



TABLE I
COMPARING AutoCCAG WITH TCA-opt, TCA, CASA AND CHiP FOR 4-WAY CCAG ON THE REAL-WORLD AND IBM BENCHMARKS. THE RUN

TIME IS MEASURED IN SECOND.

Instance AutoCCAG TCA-opt TCA CASA CHiP

min (avg) time min (avg) time min (avg) time min (avg) time size time
Apache 772 (789.2) 8068.3 838 (838.0) 9652.3 – (–) >10000 – (–) >10000 838 86169
Bugzilla 167 (167.8) 428.4 168 (169.6) 637.6 171 (172.4) 896.7 274 (280.7) 931.0 176 20821
GCC 374 (379.2) 8477.7 444 (444.0) 8199.0 – (–) >10000 – (–) >10000 444 103177
SPIN-S 308 (308.0) 44.1 308 (308.0) 121.6 311 (317.6) 331.7 355 (362.1) 862.6 339 12853
SPIN-V 1113 (1117.0) 911.5 1562 (1562.6) 937.6 1637 (1655.3) 981.9 – (–) >1000 1166 33773

Healthcare2 159 (166.6) 757.7 169 (171.4) 376.6 171 (173.3) 463.1 184 (186.8) 298.6 177 905
Healthcare3 723 (729.1) 768.1 757 (763.4) 851.6 770 (773.1) 928.0 1127 (1159.4) 955.3 851 29062
Healthcare4 1317 (1320.4) 906.7 1475 (1494.3) 987.1 1763 (1791.2) 997.2 2492 (2605.8) 944.0 1536 36719
Insurance 75361 (75361.0) 165.4 75486 (75489.1) 992.1 76273 (76310.5) 997.4 474131 (613700.6) 972.0 75764 213365
NetworkMgmt 5610 (5610.0) 233.8 5610 (5610.0) 337.7 5610 (5610.1) 561.1 6008 (6045.9) 975.5 5610 207136
ProcessorComm1 485 (487.8) 452.2 489 (491.7) 461.2 491 (495.3) 633.2 571 (589.1) 902.0 544 11187
ProcessorComm2 574 (575.1) 595.7 585 (587.0) 517.3 592 (595.6) 876.5 850 (869.9) 961.3 837 7942
Services 6404 (6407.8) 807.7 6409 (6414.1) 853.4 6419 (6431.3) 961.1 7198 (7312.1) 953.7 6855 441412
Storage4 5486 (5494.0) 951.9 6077 (6084.0) 993.8 6774 (6805.1) 999.0 9393 (9500.5) 942.1 5671 86073
Storage5 10982 (11010.8) 821.8 13161 (13163.1) 971.0 14067 (14104.0) 993.1 – (–) >1000 13292 36930

In this RQ, to study the effectiveness of automated selection,
we conduct comparisons between AutoCCAG and TCA-opt.
Actually, TCA-opt, which runs the original version of TCA
with a configuration selected by BOAC, does not leverage the
effectiveness of automated selection.

RQ3: How does AutoCCAG compare against state-of-
the-art algorithms for 4-way and 5-way CCAG?

In this RQ, AutoCCAG is compared against three state-of-
the-art CCAG algorithms, i.e., TCA [14], CASA [8] and CHiP
[18], for solving 4-way and 5-way CCAG.

RQ4: Can AutoCCAG show state-of-the-art performance
for 4-way and 5-way CCAG with a shorter cutoff time?

In this RQ, AutoCCAG is evaluated to solve 4-way and
5-way CCAG instances with a half of the cutoff time. We
compare the results of AutoCCAG using a half of the cutoff
time against the results of TCA-opt using the full cutoff time,
to demonstrate the efficiency of AutoCCAG.

C. Competitors

In this paper, AutoCCAG is compared with 3 state-of-the-art
CCAG algorithms, i.e., TCA [14], CASA [8] and CHiP [18].

TCA [14] is a state-of-the-art two-mode meta-heuristic algo-
rithm. Reported in the literature [14], TCA outperforms a num-
ber of CCAG algorithms including CASA [8], Cascade [12]
and ACTS [11] on many real-world and synthetic instances.

CASA [8] is a high-performance simulated annealing CCAG
algorithm6. Reported in the literature [8], CASA outperforms
a greedy construction algorithm mAETG [61] on a number of
real-world and synthetic instances.

CHiP [18] is a recently-proposed, effective hybrid parallel
CCAG algorithm, which can use vast amount of parallelism
provided by graphics processing units. As reported in the
literature [18] and claimed by the authors of CHiP [18], CHiP
reports the first and state-of-the-art results for solving 4-way
CCAG on the Real-world and IBM benchmarks.

6http://cse.unl.edu/~citportal/

We note that HHSA [15] is an effective CCAG algorithm for
2-way and 3-way CCAG. Since the implementation of HHSA
available online7 does not support solving t-way CCAG with
t > 4, we do not include HHSA into our comparisons for 4-
way and 5-way CCAG. The results of comparing AutoCCAG
with HHSA for 2-way and 3-way CCAG are available online3,
and AutoCCAG can find smaller-sized or equal-sized CCAs
than HHSA on all instances for 2-way and 3-way CCAG.

D. Experimental Setup

All experiments in this paper were conducted on a com-
puting server with 2.50GHz Intel Xeon E7-8890 v3 CPU and
1.0TB memory, running GNU/Linux. Because meta-heuristic
algorithms are usually randomized, we performed 10 indepen-
dent runs per instance for each algorithm. For solving 4-way
CCAG, the cutoff time of each algorithm run is set to 1,000
CPU seconds, following the experimental setup of TCA [14].
Since no CCAG algorithm can report feasible solutions for
4-way CCAG on the ‘Apache’ and ‘GCC’ instances within
1,000 CPU seconds, in our experiments the cutoff time of
each algorithm run for solving 4-way CCAG on the ‘Apache’
and ‘GCC’ instances is set to 10,000 CPU seconds. It is
recognized that solving 5-way CCAG is much more difficult
than solving 4-way CCAG, and solving 5-way CCAG requires
vast computing time [21]. Thus, for 5-way CCAG, the cutoff
time of each algorithm run is set to 10,000 CPU seconds.

In our experiments (especially in Tables I–IV), for TCA,
if there is no specific description, it is evaluated using the
original version with the default configuration. For CASA, it is
evaluated using the configuration recommended by its authors
[8]. For CHiP, we do not have the access to its source code,
and only its binary executable is available8. We tried to run
the binary executable of CHiP on all instances for solving 4-
way CCAG using the cutoff time of 1,000 seconds (the same

7http://www0.cs.ucl.ac.uk/staff/Y.Jia/projects/cit_hyperheuristic/
downloads/Comb_Linux_64.tar.gz

8https://github.com/susoftgroup/CHiP



TABLE II
COMPARING AutoCCAG WITH TCA-opt, TCA, CASA AND CHiP FOR 5-WAY CCAG ON THE REAL-WORLD AND IBM BENCHMARKS. THE RUN TIME

IS MEASURED IN SECOND.

Instance AutoCCAG TCA-opt TCA CASA CHiP

min (avg) time min (avg) time min (avg) time min (avg) time size time
Apache – (–) >10000 – (–) >10000 – (–) >10000 – (–) >10000 – –
Bugzilla 560 (561.5) 8200.2 688 (688.9) 9665.4 788 (794.5) 9922.2 1194 (1480.7) 7787.6 – –
GCC – (–) >10000 – (–) >10000 – (–) >10000 – (–) >10000 – –
SPIN-S 1174 (1174.0) 860.2 1174 (1174.0) 2908.4 1174 (1174.0) 2987.9 1222 (1228.8) 9589.3 – –
SPIN-V 5941 (6060.4) 8991.6 8202 (8202.0) 3376.0 – (–) >10000 – (–) >10000 – –

Healthcare2 517 (520.9) 6926.7 517 (521.0) 6422.9 521 (523.7) 6352.7 558 (574.2) 4524.8 – –
Healthcare3 3197 (3207.5) 8229.9 3934 (3938.2) 9944.8 4214 (4243.6) 9973.2 9908 (12729.9) 9572.7 – –
Healthcare4 6885 (6904.5) 9594.7 8184 (8184.0) 9527.0 9353 (9380.3) 9624.7 57417 (57417.6) 6155.1 – –
Insurance 452575 (452779.8) 9912.4 491558 (491561.7) 9900.7 496934 (497147.8) 9946.2 – (–) >10000 – –
NetworkMgmt 24664 (24679.9) 9875.5 24665 (24680.2) 9874.4 24705 (24721.2) 9915.8 28209 (28382.9) 9737.4 – –
ProcessorComm1 2037 (2038.7) 5987.4 2041 (2043.6) 7643.3 2042 (2044.7) 8157.0 2586 (2630.7) 9829.3 – –
ProcessorComm2 2506 (2508.9) 5938.1 2583 (2588.3) 9600.1 2808 (2886.8) 9990.1 4293 (4895.8) 9620.5 – –
Services 32869 (32887.9) 9315.2 33208 (33243.9) 9890.9 36510 (36616.9) 9998.0 42928 (43319.7) 9592.2 – –
Storage4 34005 (34027.1) 9882.3 39222 (39228.3) 9939.4 43552 (43632.1) 9959.8 192964 (264817.2) 9296.9 – –
Storage5 65854 (66047.4) 9561.7 78317 (78318.2) 9457.1 85304 (85411.2) 9728.6 – (–) >10000 – –

cutoff time adopted by AutoCCAG), but in our experimental
environment CHiP cannot report feasible solutions for almost
all instances. Actually, this is not surprising; the experimental
results in the literature [18] report that, for solving 4-way
CCAG, on the majority of instances, CHiP requires more than
tens of thousands (and even more than hundreds of thousands)
of seconds and needs vast amount of parallelism provided by
graphics processing units to obtain feasible solutions. As a
result, the experimental results of CHiP for solving 4-way
CCAG are taken from the literature [18]. Also, the binary
executable of CHiP does not support solving t-way CCAG
with t > 4, so in Table II we mark ‘–’ for the results of CHiP
for solving 5-way CCAG.

For each algorithm on each instance, we report the smallest
size (‘min’) and the averaged size (‘avg’) of the CCA found
by the respective algorithm over 10 runs. In addition, for each
algorithm on each instance, we report the running time (‘time’)
required for finding the optimized CCAs averaged over 10
runs, and all running times were measured in CPU seconds.
If an algorithm failed to find a CCA during all 10 runs, we
report the results as ‘– (–)’. In Tables I–IV, for each instance,
we use boldface to indicate the best results with regard to
CCA size in our comparisons.

Moreover, in Tables I–IV, for each instance, we individually
compare the performance of AutoCCAG against that of each
competitor; we conduct Wilcoxon signed-rank tests to check
the statistical significance of the results and calculate the
Vargha-Delaney effect sizes [63] for each pairwise comparison
between AutoCCAG and each of its competitors. For each
instance, if a) all the p-values of Wilcoxon signed-rank tests at
95% confidence level are smaller than 0.05, and b) the Vargha-
Delaney effect sizes for all pairwise comparisons (between
AutoCCAG and each of its competitors) are greater than 0.71
(indicating large effect sizes) [63], [64], we consider the per-
formance improvement of AutoCCAG over all its competitors
statistically significant and meaningful, and mark the results of
AutoCCAG using underline. In Table I, the experimental results

of CHiP are taken directly from the literature [18], which were
obtained by only performing one run of CHiP per instance.
Therefore, we do not conduct statistical test to compare the
performance of our AutoCCAG approach with that of CHiP.
For our BOAC method, following the literature [65], we adopt
the ARD Matérn 5/2 kernel as its GP kernel and use the hyper-
parameter settings recommended in the literature [65].

V. EXPERIMENTAL RESULTS

In this section, we report the experimental results, to show
both the effectiveness and the efficiency of AutoCCAG.

A. RQ1: Performance Improvement for 4-way and 5-way
CCAG by Automated Configuration

We utilize BOAC to find the optimized configuration for
the original version of TCA, resulting in TCA-opt (i.e., the
original version of TCA with the optimized configuration).
That is to say, for solving a given CCAG instance, TCA-opt
runs the original version of TCA with the single, optimized
configuration. The comparative results of TCA-opt and TCA
for 4-way and 5-way CCAG on the Real-world and IBM
benchmarks are reported in Tables I and II, respectively. We
note that the full results are available online.3 As can be clearly
seen from Tables I and II, on both metrics of ‘smallest size’
and ‘averaged size’, the performance of TCA-opt is better than
or equal to that of TCA on all instances.

The experimental results in Tables I and II demonstrate that
the state of the art in 4-way and 5-way CCAG solving can be
considerably advanced using automated configuration.

B. RQ2: Performance Improvement for 4-way and 5-way
CCAG by Automated Selection

The major difference between AutoCCAG and TCA-opt is
that AutoCCAG runs the PbO-based version of TCA with
a scheduling plan (consisting of multiple high-performing
configurations of the PbO-based version of TCA), while TCA-
opt runs the original version of TCA with a single, optimized



TABLE III
COMPARING AutoCCAG (WITH THE CUTOFF TIME OF 500 SECONDS)
AGAINST TCA-opt (WITH THE CUTOFF TIME OF 1,000 SECONDS) FOR
4-WAY CCAG ON THE REAL-WORLD AND IBM BENCHMARKS. THE

RUN TIME IS MEASURED IN SECOND.

Instance AutoCCAG (500 sec) TCA-opt (1,000 sec)

min (avg) time min (avg) time
Apache – (–) >500 – (–) >1000
Bugzilla 167 (167.9) 388.2 168 (169.6) 637.6
GCC – (–) >500 – (–) >1000
SPIN-S 308 (308.0) 44.1 308 (308.0) 121.6
SPIN-V 1119 (1124.1) 472.8 1562 (1562.6) 937.6

Healthcare2 161 (168.0) 344.3 169 (171.4) 376.6
Healthcare3 728 (731.8) 397.2 757 (763.4) 851.6
Healthcare4 1331 (1335.6) 476.9 1475 (1494.3) 987.1
Insurance 75361 (75361.0) 165.4 75486 (75489.1) 992.1
NetworkMgmt 5610 (5610.0) 233.8 5610 (5610.0) 337.7
ProcessorComm1 485 (488.7) 381.5 489 (491.7) 461.2
ProcessorComm2 575 (576.5) 298.7 585 (587.0) 517.3
Services 6406 (6408.8) 484.3 6409 (6414.1) 853.4
Storage4 5518 (5523.5) 481.3 6077 (6084.0) 993.8
Storage5 11041 (11053.3) 452.8 13161 (13163.1) 971.0

configuration. Hence, TCA-opt does not leverage the effec-
tiveness of automated selection. The comparative results of
AutoCCAG and TCA-opt for 4-way and 5-way CCAG on
both Real-world and IBM benchmarks are summarized
in Tables I and II, respectively. According to Tables I and
II, the results present that, when compared to TCA-opt, our
AutoCCAG approach is able to consistently achieve better or
equal performance on all instances in terms of the metrics of
‘smallest size’ and ‘averaged size’.

The experimental results in Tables I and II provide evidence
that automated selection can significantly push forward the
state of the art in 4-way and 5-way CCAG solving.

C. RQ3: Comparison among AutoCCAG and State-of-the-art
CCAG Algorithms for 4-way and 5-way CCAG

Related to this RQ, we conduct experiments on extensive
real-world applications instances to compare our AutoCCAG
approach against existing state-of-the-art CCAG algorithms, in
order to show the effectiveness of AutoCCAG.

The experimental results of AutoCCAG and its state-of-the-
art competitors (i.e., TCA, CASA and CHiP) for 4-way and
5-way CCAG on the Real-world and IBM benchmarks
are presented in Tables I and II, respectively. It is clear that,
AutoCCAG performs much better than all its competitors for
solving 4-way and 5-way CCAG on these two benchmarks.

For solving 4-way CCAG, on the metric of ‘smallest size’,
AutoCCAG performs much better than all its state-of-the-art
competitors on 14 out of 15 instances presented in Table I;
for the remaining instance (i.e., ‘NetworkMgmt’), AutoCCAG,
TCA and CHiP can find the CCA with the same smallest
size of 5,610 (besides, CASA performs worse than AutoCCAG,
TCA and CHiP on this instance), but the run time required by
AutoCCAG (233.8 sec) is much less than TCA (561.1 sec) and
CHiP (207,136 sec). Also, on the metric of ‘averaged size’,
AutoCCAG performs much better than all its state-of-the-art
competitors on all 15 instances presented in Table I.

TABLE IV
COMPARING AutoCCAG (WITH THE CUTOFF TIME OF 5,000 SECONDS)
AGAINST TCA-opt (WITH THE CUTOFF TIME OF 10,000 SECONDS) FOR

5-WAY CCAG ON THE REAL-WORLD AND IBM BENCHMARKS. THE
RUN TIME IS MEASURED IN SECOND.

Instance AutoCCAG (5,000 sec) TCA-opt (10,000 sec)

min (avg) time min (avg) time
Apache – (–) >5000 – (–) >10000
Bugzilla 566 (567.8) 4531.8 688 (688.9) 9665.4
GCC – (–) >5000 – (–) >10000
SPIN-S 1174 (1174.0) 860.2 1174 (1174.0) 2908.4
SPIN-V 6429 (6809.1) 3231.8 8202 (8202.0) 3376.0

Healthcare2 521 (522.9) 3605.9 517 (521.0) 6422.9
Healthcare3 3210 (3221.5) 4476.7 3934 (3938.2) 9944.8
Healthcare4 6973 (6994.0) 4928.8 8184 (8184.0) 9527.0
Insurance 456781 (457835.1) 4999.8 491558 (491561.7) 9900.7
NetworkMgmt 24773 (24788.6) 4963.9 24665 (24680.2) 9874.4
ProcessorComm1 2038 (2040.0) 4560.3 2041 (2043.6) 7643.3
ProcessorComm2 2506 (2511.3) 3582.7 2583 (2588.3) 9600.1
Services 32987 (33031.0) 4694.4 33208 (33243.9) 9890.9
Storage4 34207 (34261.6) 4966.9 39222 (39228.3) 9939.4
Storage5 66857 (66966.8) 4992.9 78317 (78318.2) 9457.1

For solving 5-way CCAG, except two instances (i.e.,
‘Apache’ and ‘GCC’) where no CCAG algorithm can report
feasible solutions within the cutoff time, on both metrics of
‘smallest size’ and ‘averaged size’, AutoCCAG achieves much
better performance than all its state-of-the-art competitors on
12 out of 13 instances presented in Table II; for the remaining
instance (i.e., ‘SPIN-S’), AutoCCAG and TCA find the CCAs
with the smallest and averaged sizes of both 1,174 (besides,
CASA performs worse than AutoCCAG and TCA on this
instance), but the run time required by AutoCCAG (860.2 sec)
is much less than TCA (2,987.9 sec).

The experimental results in Tables I and II provide evidence
that our AutoCCAG approach performs much better than all
its competitors and dramatically pushes forward the state of
the art in 4-way and 5-way CCAG solving.

D. RQ4: Evaluating AutoCCAG with a shorter cutoff time for
4-way and 5-way CCAG

In order to analyze the efficiency of AutoCCAG, we conduct
more experiments to study the performance of AutoCCAG with
a shorter cutoff time for solving 4-way and 5-way CCAG. In
the experiments related to this RQ, AutoCCAG is evaluated to
solve 4-way and 5-way CCAG instances with a half of the
standard cutoff time.

The results of AutoCCAG (with a half of the standard cutoff
time, i.e., 500 seconds for 4-way CCAG and 5,000 seconds
for 5-way CCAG) and TCA-opt (with the full cutoff time,
i.e., 1,000 seconds for 4-way CCAG and 10,000 seconds for
5-way CCAG) for solving 4-way and 5-way CCAG on the
Real-world and IBM benchmarks are reported in Tables
III and IV, respectively. From Table III, for solving 4-way
CCAG, on both metrics of ‘smallest size’ and ‘averaged size’,
AutoCCAG achieves better or equal performance compared to
TCA-opt on all instances. Also, from Table IV, for solving
5-way CCAG, on both metrics of ‘smallest size’ and ‘aver-
aged size’, AutoCCAG achieves better or equal performance



compared to TCA-opt on all instances but two. As shown
in Table II, for those two instances (‘Healthcare2’ and ‘Net-
workMgmt’), in terms of ‘smallest size’ and ‘averaged size’,
AutoCCAG with the full cutoff time achieves better or equal
performance compared to TCA-opt with the full cutoff time.

The experimental results in Tables III and IV provide
evidence that AutoCCAG with even a half of cutoff time
can perform much better than TCA-opt with full cutoff time
for solving 4-way and 5-way CCAG, which indicates that
AutoCCAG requires much less run time to perform better than
TCA-opt on solving the majority of CCAG instances.

E. Threats to Validity

There are three potential threats to validity of our evaluation:
Cutoff time: A potential threat to validity in our experi-

ments is the cutoff time we set for each algorithm for solving
4-way CCAG. Following the existing work [14], we set the
cutoff time to 1,000 seconds. According to the results reported
in Table I, AutoCCAG can find CCAs for all instances except
two (‘Apache’ and ‘GCC’), which indicates that the cutoff time
is reasonable. Nevertheless, the cutoff time might not be long
enough for all experiments. To reduce this threat, we conduct
additional experiments to run AutoCCAG and its competitors
to solve ‘Apache’ and ‘GCC’, with the cutoff time of 10,000
seconds. The results in Table I show that AutoCCAG is still
able to take much less computation time to find much smaller-
sized CCAs compared to all competing CCAG algorithms on
these 2 instances. For solving 5-way CCAG, the cutoff time
for each algorithm run is set to 10,000 CPU seconds as the
5-way CCAG problem is more challenging and requires more
computations. In our future work, we will design methods for
recommending optimal cutoff time for the CCAG problem.

General t-way coverage: Although in this paper we only
show the effectiveness of AutoCCAG through experiments on
4-way and 5-way CCAG, in fact, AutoCCAG is able to deal
with general t-way CCAG as well. For example, AutoCCAG
is able to deal with 2-way and 3-way CCAG. Due to limited
space, we do not report our empirical results for 2-way and
3-way CCAG in this paper, but they are available online.3

Actually, on the metrics of ‘smallest size’ and ‘averaged size’,
the performance of AutoCCAG is better than or equal to that
of all its state-of-the-art competitors (i.e., TCA, CASA, HHSA
and CHiP) on all instances in the Real-world and IBM
benchmarks for solving 2-way and 3-way CCAG. Further-
more, AutoCCAG supports other coverage criteria such as 6-
way coverage. We will evaluate the effectiveness of AutoCCAG
in t-way coverage (t > 6) in our future work.

Training set: According to Section IV-A, the training set
used in our experiments is the Synthetic benchmark, which
consists of 30 instances, and a potential threat to validity of
our experiments is the small training set. As introduced in
Section III, GP is the main machine learning model underlying
AutoCCAG, and supports small training set [66]. Besides, a
recent study [41] shows that using a small training set can
achieve the state-of-the-art performance in solving the problem

of minimum vertex cover, a well-known NP-hard combi-
natorial optimization problem. Furthermore, as described in
Section IV-A, the Synthetic benchmark resembles the
Real-world benchmark, and there is no explicit relationship
between the Synthetic benchmark and the IBM benchmark.
However, according to Tables I and II, AutoCCAG (trained on
the Synthetic benchmark) performs best on all instances
in the IBM benchmark (which covers extensive applications),
indicating the generality of AutoCCAG.

VI. RELATED WORK

Combinatorial interaction testing (CIT) is an important
research topic in software engineering, and has been well
explored for the last two decades. For the general information
(e.g., theoretical work and practical achievement), interested
readers can refer to the book written by Kuhn et al. [67] and
the survey summarized by Nie and Leung [20].

Practical algorithms for solving CCAG can be classified
into three main categories: greedy algorithms, meta-heuristic
algorithms and constraint-encoding algorithms. Greedy algo-
rithms can rapidly generate a CCA in some scenarios where
the metric of size is not the primary objective. Popular greedy
algorithms can be categorized into two main classes: one-
test-at-a-time (OTAT) algorithms and in-parameter-order (IPO)
algorithms. The well-known algorithm AETG is the first one
using the OTAT strategy [6]. Bryce et al. proposed a generic
framework of the AETG-like algorithm [68]. Afterwards a
number of variations of AETG were proposed [12], [16], [69]–
[71]. The IPO algorithms extended horizontally and vertically
to cover the tuples [7], [72]. Many variations of the IPO
algorithms were also proposed (e.g., [73], [74]).

Meta-heuristic algorithms work in an iterative manner:
during the search process, those algorithms aim at seeking
a CCA with a particular size k; once a k-sized CCA is found,
then the algorithms will try to seek a CCA with the size
smaller than k. Meta-heuristic algorithms include tabu search
[14], [70], [75]–[78], simulated annealing [8], [15], [79]–[81],
genetic algorithm [82], [83], etc. Actually, besides CCAG,
meta-heuristic algorithms have exhibited success in solving
various NP-hard problems [84]–[88].

Based on simulated annealing CCAG algorithms [60], [61],
Garvin et al. proposed the one-sided narrowing and t-set
replacement techniques [8], [10], resulting in an influential
CCAG algorithm called CASA [8], which reduces runtime and
finds smaller-sized CCAs. Jia et al. proposed a CCAG algo-
rithm named HHSA [15], which uses hyper-heuristic search
and dynamically applies different strategies during the search.
Lin et al. proposed effective meta-heuristic CCAG algorithms
dubbed TCA [14] and FastCA [77], which use tabu search
to reduce the number of uncovered valid tuples, in order to
improve the performance for solving CCAG. Recently, Mercan
et al. presented an effective, parallel CCAG algorithm called
CHiP [18], which can use vast amount of graphics processing
units to implement the parallelism.

In addition, there is another way to tackle this problem.
Banbara et al. [9] and Yamada et al. [13] encoded the CCAG



problem into the SAT problem and then use powerful con-
straint solvers to handle the resulting SAT-encoded instance.
Yamada et al. proposed a constraint-encoded algorithm called
Calot [13], which shows effectiveness for solving 2-way
CCAG. More particularly, it can prove the optimality for 2-
way CCAG on a number of instances [13]. However, solving
t-way CCAG (t > 3) still remains a challenge for constraint-
encoding algorithms.

VII. CONCLUSION

In this paper, we propose a novel, automated CCAG ap-
proach dubbed AutoCCAG, which is able to leverage the pow-
erful automated configuration and automated selection tech-
niques for solving the challenging CCAG problem. Extensive
experiments on a broad range of real-world instances demon-
strate that our AutoCCAG approach significantly outperforms
its state-of-the-art CCAG competitors for solving 4-way and
5-way CCAG on public, real-world application benchmarks.
Also, the performance of AutoCCAG is better than or equal to
that of all its state-of-the-art CCAG competitors for solving
2-way and 3-way CCAG on these public benchmarks.

The testing benchmarks used in our experiments and the
detailed experimental results (including the experimental re-
sults of all CCAG algorithms for solving 2-way, 3-way, 4-
way and 5-way CCAG on all testing instances) are available
at https://github.com/chuanluocs/AutoCCAG.
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