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Abstract—Database applications are typically written using a
mixture of imperative languages and declarative frameworks for
data processing. Data processing logic gets distributed across
the declarative and imperative parts of a program. Often, there
is more than one way to implement the same program, whose
efficiency may depend on a number of parameters. In this
paper, we propose a framework that automatically generates all
equivalent alternatives to a given program using a given set of
program transformations, and chooses the least cost alternative.
We use the concept of program regions as an algebraic abstrac-
tion of a program and extend the Volcano/Cascades framework
for optimization of algebraic expressions, to optimize programs.
We illustrate the use of our framework for optimizing database
applications. We show through experimental results, that our
framework has wide applicability in real-world applications and
provides significant performance benefits.

Index Terms—query optimization; database applications; pro-
gram regions; cost-based optimization

I. INTRODUCTION

Database applications are typically written using a mixture
of imperative languages such as Java for business logic, and
declarative frameworks for data processing. Examples of such
frameworks include SQL (JDBC) with Java, object-relational
mappers (ORMs), large-scale data processing frameworks such
as Apache Spark, and Python data science libraries (example:
pandas), among others. These frameworks provide high-level
operators/library functions for expressing common data pro-
cessing operations and contain efficient implementations of
these functions.

However, in many applications, data processing operations
are often (partially) implemented in imperative code. The rea-
sons for this include modularity, limited framework expertise
of the developer, need for custom operations that cannot be ex-
pressed in the declarative framework, etc. Consequently, data
processing is distributed across the imperative and declarative
parts of the application. Often, there is more than one way to
implement the same program, and the best approach may be
chosen depending on a number of parameters.

This raises an interesting question for an optimizing com-
piler for data processing applications. Given an application
program, is it possible to generate semantically equivalent
alternatives to the program using program transformations,
and choose the program with the least cost depending on the

Fig. 1: COBRA Illustration

context? In this paper, we propose the COBRA1 framework to
achieve this, as illustrated in Fig. 1.

There has been work on rewriting data processing programs
for improved performance using program transformations [1],
[2], [3], [4], [5]. However, existing techniques fail to consider
all possible alternatives for cost-based rewriting. They either
apply the proposed transformations in a specific order [2]
or carefully craft the transformation rules so that the rule
set is confluent and terminating [4]. This is not a viable
solution for all rule sets, especially as the number/complexity
of rules increases. A brute force solution is to keep applying
all possible transformations as long as any one of them is
applicable; however, this may cause the transformation process
to never terminate, in case of cyclic transformation rules. For
example, in their work on translating imperative code to map-
reduce, Radoi et al. [5] state that their transformation rules are
neither confluent nor terminating, and use a heuristic driven
by a cost function to guide the search for possible rewrites.
However, such an approach, in general, has the disadvantage
of missing out on useful rewrites that are not considered by
the heuristic.

A similar problem has been solved for the purpose of
query optimization in databases. Graefe et al. proposed the
Volcano/Cascades framework [6], [7], which uses an AND-
OR DAG representation (details in Section III) to enumerate
all alternative rewrites for a given SQL query (relational
algebra expression) generated using transformation rules, and
to choose the best query (plan) by searching through the space
of possible rewrites. Although designed for query optimiza-

1An acronym formed from COst Based Rewriting of (database) Applica-
tions.



tion, the Volcano/Cascades framework can be used with any
algebra.

Such a framework can be used with transformations on
expressions in imperative programs, as described in [8]. Ex-
amples of such transformations amy include algebraic sim-
plifications and many peephole optimizations such as constant
folding, strength reduction, etc. However, transformations pro-
posed for optimizing data processing applications typically
involve rewriting conditional statements, loops, functions, or
even the entire program. Such transformations involving larger
program units are not amenable to direct integration into an
algebraic framework like Volcano/Cascades.

In this paper, we identify that program regions [9], which
we used for transformations in our previous work [4], provide
a natural abstraction for dividing an imperative program into
parts, which can then be optimized individually and collec-
tively using an extension of the Volcano/Cascades framework.
Program regions are structured fragments of a program such
as straight line code, if-else, loops, functions, etc. (details in
Section III). Our framework, COBRA, represents a program
as an AND-OR DAG using program regions. Program transfor-
mations add alternatives to this AND-OR DAG. COBRA can be
used for cost-based transformations in any program with well-
defined program regions. However, in this paper, we restrict
our attention to the use of COBRA for optimizing database
applications.

Our contributions in this paper are as follows:
• We describe the AND-OR DAG representation of an

imperative program with regions and discuss how the
alternatives generated using program transformations are
represented using the AND-OR DAG (Section IV).

• We illustrate the use of our framework for optimizing
database applications. To this end, we discuss an inter-
mediate representation for transformations in database
applications (Section V) building on our earlier work [4].

• We present a cost model (Section VI) to estimate the
cost of database application programs, with a focus on
the cost of query execution statements and loops over
query results.

• We built the COBRA optimizer by incorporating our
techniques into a system that implements the Vol-
cano/Cascades framework. We present an experimen-
tal evaluation (Section VIII) of COBRA on real-world
application programs, to show the applicability of our
techniques and their impact on application performance.

We present a motivating example in Section II and discuss
the necessary background in Section III. We discuss related
work in Section VII and conclude in Section IX.

II. MOTIVATING EXAMPLE

The COBRA framework can be used for optimizing pro-
grams using a variety of data access methods such as JDBC,
web services, object-relational mappers (ORM) etc. In this
section we discuss an example program that uses the Hibernate
ORM [10], to motivate the need for COBRA.

@Entity @Table(name=“orders”)
class Order{

@Column(name=“o id”);
int o id;
@ManyToOne(targetEntity = Customer.class)
@JoinColumn(name=“customer sk”)
Customer customer;
. . .
}

Fig. 2: Hibernate object-relation mapping specification

Object-relational mapping frameworks enable access to the
database using the same language as the application [1] with-
out writing explicit SQL queries. The framework automatically
generates relevant queries from object accesses and translates
query results into objects, based on a specified mapping
between database tables and application classes.

For example consider Fig. 2, which shows a schema defini-
tion in the Hibernate ORM. The class Order is mapped to the
database table orders. When Order objects are retrieved, the
framework implicitly creates a query on orders and populates
the attributes of Order. The relationship from table orders to
table customers (mapped by class Customer) is expressed as
an attribute of Order.

Objects (rows) retrieved from the database are cached upon
first access using their id (primary key). Thereafter, these
objects can be accessed inside the application without having
to query the database again. Hibernate supports lazy loading,
i.e., fetching an attribute of an object only when the attribute
is accessed; this facilitates fetching information from a related
table (such as customer in Order) only when needed. Most
ORMs also allow users to express complex queries using SQL
or object-based query languages. ORMs are widely used in
OLTP applications [1], and their use in reporting applications
is not uncommon [11]. Inefficiencies due to the usage of ORM
frameworks are also well known [12], and have been addressed
by earlier optimization techniques [1], [4] (refer related work,
Section VII).

Fig. 3a shows a sample program that uses the Hibernate
ORM and processes a list of orders along with customer
related information. The program uses an ORM API (loadAll)
to fetch all Orders objects and then processes each order inside
a loop. However, for each order, the framework generates
a separate query to fetch the related customer information,
which resides in another table. This causes a lot of network
round trips, leading to poor performance. This issue is known
as the N+1 select problem in ORMs [12].

To avoid this problem, a join query is usually suggested to
fetch the required data, while restricting the number of queries
to one. This is shown in program P1 in Fig. 3b2. P1 follows
the general rule of thumb where data processing is pushed into
the database as much as possible, thus allowing the database to

2We use a pseudo-function executeQuery that takes a query, executes it and
returns the results as a collection of objects. Also, variable types have not been
displayed for ease of presentation. Our implementation uses the actual source
code.



1 processOrders(result) {
2 result = {}; //empty collection

3 for(o : loadAll(Order.class)){
4 cust = o.customer; // requires a separate query
5 val = myFunc(o.o id, cust.c birth year, ...);
6 result.add(val);
7 }
8 }

(a) P0: Program using Hibernate ORM

1 processOrders(result) {
2 result = {};

3 joinRes = executeQuery(“select * from orders o join
customer c on o.o customer sk = c.c customer sk”);

4 for(r : joinRes){
5 val = myFunc(r.o id, r.c birth year, ...);
6 result.add(val);
7 }
8 }

(b) P1: P0 rewritten to use Hibernate SQL query API

1 processOrders(result) {
2 result = {};
3 customers = loadAll(Customer.class);
4 Utils.cacheByColumn(customers,‘c customer sk’);

// refer footnote 3
5 for(o : loadAll(Orders.class);){
6 cust = Utils.lookupCache(o.o customer sk);
7 val = myFunc(o.o id, cust.c birth year, ...);
8 result.add(val);
9 }
10 }

(c) P2: P0 rewritten to use prefetching

Fig. 3: Alternative implementations of the same program

use clever execution plans to minimize query execution time.
The join query shown in P1 may lead to duplication of

customer rows in the join result (as each customer typically
places multiple orders). For small data sizes or a few rows
when the orders fetched are filtered using a selection, this
duplication may not have a significant impact. However, for
higher cardinalities, the join result may be large and transfer-
ring the results over a slow remote network from the database
to the application may incur significant latency. In such cases,
an equivalent program P2 shown in Fig. 3c3 may be faster,
provided the tables orders and customers fit in the application
server memory. This is because P2 fetches individual tables
and performs a join at the application, thus avoiding transfer
of a large amount of data over the network.

Existing approaches for rewriting ORM applications with
SQL, such as [4], [1] apply transformations with the sole
aim of pushing data processing to the database; thus, they
transform P0 to P1. Other transformations, such as prefetching

3The pseudo-function cacheByColumn caches a query result collection
based on the value of a given column as key and lookupCache fetches a
value from the cache using a given key. The cache may be in the form a
simple hashmap or use caching frameworks such as Memcache or EhCache,
which are used by many applications for client-side query result caching.
ORM frameworks such as Hibernate provide caching implicitly.
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Fig. 4: Representing alternative query rewrites using the AND-
OR DAG

query results [13] may be used to transform P0 to P2.
However, neither P1 nor P2 is the best choice in all situations.
Using COBRA, all alternatives such as P1, P2, and others
can be generated using program transformations proposed
earlier [1], [4], [13], [3], and the best program can be chosen
in a cost-based manner.

III. BACKGROUND

In this section, we give a background of (a) the AND-OR
DAG representation for cost-based query optimization in the
Volcano/Cascades framework, and (b) program regions.

A. Volcano/Cascades AND-OR DAG

Our discussion of AND-OR DAGs is based on [14]. An
AND-OR DAG is a directed acyclic graph where each node
in the graph is classified as one of two types: an AND node,
or an OR node. The children of an OR-node can only be
AND-nodes, and vice versa. In the case of queries (relational
algebra expressions), AND nodes represent operators, and OR
nodes represent relations. For example, consider the join query
(A 1 B) 1 C, which is shown as a tree in Fig. 4a. The AND-
OR DAG representation for this query is shown in Fig. 4b.

The Volcano framework for optimization of algebraic ex-
pressions is based on equivalence rules. This framework allows
the optimizer implementor to specify transformation rules that
state the equivalence of two algebraic expressions; examples
of such rules include join commutativity (A 1 B ↔ B 1 A)
and join associativity ((A 1 B) 1 C ↔ A 1 (B 1 C)), in the
case of query optimization. Transformation rules are applied
on an expression; while new expressions are added, the old
ones are retained in the AND-OR DAG.

Each OR-node can have multiple children representing al-
ternative ways of computing the same result, while each AND-
node represents the root operator of a tree that computes the
result. For the query (A 1 B) 1 C, the AND-OR DAG after
applying commutativity is shown in Fig. 4c. The alternatives
added are shown using a dotted line connecting the OR node
to the root operator of the new expression. Thus, we obtain the
following alternatives for the root OR node: (A 1 B) 1 C,
(B 1 A) 1 C, C 1 (A 1 B), and C 1 (B 1 A). Note that
repeated application of commutativity may lead back to the
original expression, thus causing cycles in the transformation



1 processOrders(result) {
2 result = {};

3 for(o : loadAll(Order.class)){
4 cust = o.customer;
5 val = myFunc(o.o id, cust.c birth year, ...);
6 result.add(val);
7 }
8 }

Regions naming convention: Pi.Tm−n denotes a region of type
T in program Pi that starts at line m and ends at line n.

Basic block (B) – P0.B2, P0.B3, P0.B4, P0.B5, P0.B6

Sequential region (S) – P0.S4−6, P0.S2−7

Loop region (L) – P0.L3−7

Fig. 5: Program regions for program P0 from Fig. 3a

process. The Volcano/Cascades framework has efficient tech-
niques for identifying duplicates, so the transformation process
will terminate even in the presence of such cycles.

Each operator in the DAG may be implemented using one
of a few alternatives. For example, a join operator may be
implemented using a hash join, indexed nested loops join, or
a merge join. This adds further alternatives to the AND-OR
DAG (not shown in Fig. 4). The cost of any node in the AND-
OR DAG is calculated using the cost of child nodes, as shown
in the table below.

Node type Cost formula
OR node Minimum of cost of each child

(base case: single relation)
AND node Cost of operator + Sum of costs of children

The plan corresponding to the least cost at the root node of
the AND-OR DAG is the optimized plan.

In the case of query optimization, the cost assigned to a
particular node depends on factors such as the number of rows
in the relation, the type of the operator and its implementation,
presence of indexes etc. We skip further details of costing for
query optimization and refer the reader to [6], [7].

B. Program regions

A region is any structured fragment in a program with a
single entry and single exit [15]. Examples of regions include
a single statement (basic block region), if-else (conditional
region), loop (loop region), etc. A sequence of two or more
regions is called a sequential region4. Regions can contain
other regions, so they present a hierarchical view of the
program. The contained region is called a sub-region and the
containing region is called the parent region. The outermost
region represents the entire program.

For example, consider Fig. 5, which replicates the program
P0 from Fig. 3a with program regions shown alongside the

4Some approaches consider a basic block region as a sequence of state-
ments. In this paper, we consider each statement as a basic block and treat a
sequence of statements as a sequential region consisting of basic blocks. In
our implementation, we use an intermediate representation of bytecode [16],
where each statement is represented using a three-address code [17].

code (note the naming convention for regions). The outermost
region in Fig. 5 is a sequential region P0.S2−7, which consists
of a basic block P0.B2 followed by a loop region P0.L3−7.
The loop region, in turn, is composed of a basic block P0.B3

and a sequential region P0.S4−6, and so on.
Regions can be built from the control flow graph (CFG)

using rules described in [9]. We use this approach in our
implementation. Alternatively, it is possible to use an abstract
syntax tree of code written in a structured programming
language to identify program regions. Exceptions may violate
the normal control flow in a region. Currently, our techniques
do not preserve exception behavior in the program; handling
this is part of future work.

IV. AND-OR DAG REPRESENTATION
OF PROGRAMS

The Volcano/Cascades framework is well suited for op-
timizing algebraic expressions, which combine a set of in-
put values using operators to produce an output value. The
availability of sub-expressions (parts) of an expression is key
to Volcano/Cascades, as alternatives for an expression are
generated by combining alternatives for sub-expressions (OR
nodes) using operators (AND nodes). However, adapting an
algebraic framework such as Volcano/Cascades for optimiz-
ing imperative programs is not straightforward. Apart from
computing expressions, imperative programs can modify the
program stack/heap and contain operations that have side
effects (such as writing to a console). Further, real-world
programs contain complex control and data flow (due to
branching, loops, exceptions etc.).

In this section, we argue that program regions provide a
natural abstraction for parts of an imperative program. We
then discuss the representation of program alternatives using
an AND-OR DAG that we call the Region DAG.

A. Region as a State Transition
An imperative program can be considered as a specification

for a transition from one state to another. For example, the
function processOrders from program P0 (Fig. 3a) specifies
the following transition: by the end of processOrders, the join
of orders and customers is computed, myFunc is applied on
each tuple in the join result and stored in the collection result.
Alternative implementations of the program (such as P1 and
P2 from Fig. 3) are alternative ways to perform the same
transition.

The same argument can be extended to regions. Consider the
loop body from program P0 (lines 4 to 6), which is a sequential
region. The transition specified by this region is: by the end of
the region, the contents of the collection result at the beginning
of the region are appended with another element obtained by
processing the current tuple. The loop body from program P2

(lines 6 to 8) performs the same computation, however, instead
of fetching customer information using a separate query as in
P0, P2 fetches it from the cache.

We now formally define a program region as a transition,
as follows.

R : X0 → X1 (1)



seq (P0.S2−7)

P0.B2 loop (P0.L3−7)

P0.B3 P0.S4−6

seq

...

(a) Region tree

P0.S2−7

seq

P0.B2 P0.L3−7

loop

P0.B3 P0.S4−6

(b) Initial Region DAG

P0.S2−7

seq

P0.B2 P0.L3−7

loop

P0.B3 P0.S4−6

seq
(1)

P1.B3 P1.L4−7

loop

P1.B4 P1.S5−6

seq
(2)

P2.S3−4 P2.L5−9

loop(3)

P2.S6−8

(c) Expanded Region DAG

Fig. 6: Representing alternative programs using the Region
DAG

where R is a region, X0 is a state at the beginning of R and
X1 is a state at the end of R. We call X0 an input state, and
X1 an output state. Since the entire program is also a region,
the same definition extends to a program as well.

Our framework is agnostic to the definition of a state.
For example, in our discussion above, we used the values of
program variables (such as result) to represent a state. If an
application writes to the console, the contents of the console
could be included in the definition of the state. In general,
other definitions may be considered depending on the program
transformations used.

For a single statement (basic block), the transition from
the input state X0 to the output state X1 involves only the
states X0 and X1. For regions that may contain other re-
gions, the transition may involve multiple intermediate states:
(X0 → Xa1 → . . . → Xan → X1) where Xa1 . . . Xan are
the results of transitions in sub-regions. The output state of
one sub-region feeds as the input state to another sub-region
according to the control flow in the program.

Our definition of a program region as a transition allows
regions to be identified as parts of a program performing
local computations that together combine to form the entire
program, similar to sub-expressions in an algebraic expression.
In this paper, we use the term “computation in a region R”
to refer to the transition from an input state to an output state
specified by a region R.

B. Region AND-OR DAG

Region AND-OR DAG, or simply Region DAG, is an AND-
OR DAG that can represent the various alternative, but equiv-

alent programs. Given a program with regions, the program
and its alternatives can be represented using the Region DAG
as follows.

Step 1 – Region tree: Firstly, we identify regions in the
program, as described in Section III-B. The hierarchy of
regions in a program can be represented as a tree, which we
call the region tree. The region tree for the regions in Fig. 5
is shown in Fig. 6a.

The leaves of a region tree are basic block regions. Interme-
diate nodes are operators that denote the type of control flow
between sub-regions for combining them to form the parent
region. A sequential region is formed using the seq operator,
a conditional region is formed using the cond operator, a
loop region using the loop operator, and so on. Child nodes
are ordered left to right according to the starting line of the
corresponding region in the program. In Fig. 6a, we mention
the label of the parent region in parentheses along with the
operator. The region tree in COBRA is analogous to the query
expression tree in Volcano/Cascades (Fig. 4a).

Step 2 – Initial Region DAG: The next step is to translate
the region tree into an AND-OR DAG, which we call the initial
Region DAG. The initial Region DAG for the region tree from
Fig. 6a is shown in Fig. 6b. Operator nodes in the region tree
are represented as AND nodes, and leaf nodes and intermediate
results are represented using OR nodes. The initial Region
DAG is analogous to the DAG representation of a query in
Volcano/Cascades (Fig. 4b).

An OR node in the Region DAG represents all alternative
ways to perform the computation in a particular region. An
AND node represents operators to combine sub-regions into
the parent region. The initial Region DAG contains a single
alternative for each region, which is the original program. For
example, Fig. 6b represents the following alternative for the
region P0.S2−7: perform the computation in the basic block
P0.B2 and then the loop P0.L3−7, sequentially. Similarly, the
loop region has a single alternative. Other alternatives may be
generated by program transformations.

Step 3 – Program transformations: Program transformations
rewrite a program/region to perform the same computation
in different ways. In our work, we assume that we are
provided with transformations that preserve the equivalence of
the original and rewritten programs on any valid input state.
COBRA then represents these alternative programs efficiently
using Region DAG for cost-based rewriting. Our framework
does not infer equivalence of programs or of transformations.
It is up to the transformation writer to verify the correctness
of transformations. In this paper, we use the transformations
from [4], [13], with some extensions. We discuss them in
Section V.

In a Region DAG, the rewritten program/region is repre-
sented as an alternative under the OR node for that par-
ticular region. This may create new nodes in the Region
DAG. If a sub-region in the rewritten program already ex-
ists in the Region DAG, it is reused (leveraging techniques



in Volcano/Cascades for detecting duplicates and merging
nodes). We call the Region DAG after adding alternatives
from program transformations as the expanded Region DAG,
analogous to the expanded query DAG in Volcano/Cascades
(refer Fig. 4c).

For example, program transformations such as SQL transla-
tion [4] and prefetching [13] identify iterative query invocation
inside the loop region in P0, and rewrite the loop as shown
in P1 and P2 respectively (refer Fig. 3). They are represented
in the Region DAG as shown in Fig. 6c, which shows three
alternatives to perform the computation in the loop region
P0.L3−7. The newly added alternatives (nodes labeled 1 and 2)
are both sequential regions containing a loop region within and
achieve the same result as the original loop region. The loop
operator from P2 (node labeled 3) shares a basic block sub-
region (P0.B3) with the loop region from P0. The loop headers
P2.B5 and P0.B3 are the same region and the latter already
exists in the Region DAG, so it is reused. In summary, there
are three alternatives for the root node P0.S2−7, corresponding
to the programs P0, P1, and P2. Note that the AND-OR DAG
structure allows the node P0.B2 to be represented only once,
although it is part of all three programs corresponding to
alternatives for P0.L3−7.

Representing alternative programs in a Region DAG is
not dependent on an intermediate representation or the pro-
gram transformations used. Given a program/region and its
rewritten version, COBRA can represent both the original and
transformed programs using the Region DAG. This is a key
improvement of our representation over Peggy [8]. Peggy aims
to represent multiple optimized versions of a program, for
the purpose of eliminating the need for ordering compiler
optimizations. Representation of programs in Peggy is tied
to a specific intermediate representation (IR), which may
be provided by the user. Program transformations must be
expressed in this IR. COBRA, on the other hand, does not
necessitate the use of an IR, and the transformation process
can be unknown to the framework. We compare our work with
Peggy further in Section VII.

Nevertheless, COBRA supports representing programs using
an IR and expressing transformations on the IR. We discuss
one such IR for database applications next, in Section V. In
fact, since the original program is represented intact in the
Region DAG, it is possible to use multiple IRs simultaneously,
each of which may target a specific set of transformations.

Program regions are essential to representing alternatives
using the Region DAG. Limitations in the construction of
program regions (discussed in Section III-B) hinder the ap-
plicability of COBRA. Although it is possible to use COBRA
to optimize some parts of a program without well-formed
regions, this is currently not handled by our framework. We
refer the reader to [18] for details.

V. TRANSFORMATIONS USING IR

In our earlier work [4], we proposed a DAG-based inter-
mediate representation named F-IR (fold intermediate repre-
sentation) for imperative code that may also contain database

1 mySum(){
2 sum = 0;
3 cSum = new Map(); //creates a new empty map

4 for(t : executeQuery(“select month, sale amt
from sales order by month”)){

5 sum = sum + t.sale amt;
6 cSum.put(month, sum);
7 }

8 print(sum);
9 print(cSum);
10 }

Fig. 7: Program M0: Aggregations inside a loop

queries. F-IR has been used to express program transforma-
tions for rewriting database applications by pushing relational
operations such as selections, projections, joins, and aggrega-
tions that are implemented in imperative code to the database
using SQL. In this section, we first present a recap of F-IR
from our previous work [4]. Later, we describe extensions to
F-IR to overcome some of the limitations from [4]. We then
discuss the integration of F-IR into COBRA.

A. F-IR Recap

F-IR is based on regions. Variables in a region are rep-
resented using expressions only in terms of constants and
values available at the beginning of the region; any interme-
diate assignments are resolved. F-IR contains operators for
representing imperative language operations, as well as rela-
tional algebraic operators for representing database queries.
Specifically, F-IR uses the fold operator (borrowed from
functional programming) to algebraically represent loops over
collections/query results (which are called cursor loops).

For example, consider the program shown in Fig. 7, which
computes two aggregates, sum and cumulative sum, using a
loop over query results. The value of the variable sum over
the loop region is represented using fold as follows:

fold(<sum>+ Q.sale amt, 0,Q)

The first argument to fold is the aggregation function.
Angular brackets < and > denote that the value of sum
in the aggregation function is parametric and is updated in
each iteration. The second argument is the initial value of
the aggregate (sum) before the loop, in this case, 0 (this
feeds as the value of <sum> in the first iteration). The third
argument is the query Q over which the loop iterates, in this
case: select month, sale amt from sales order by month. We
use the notation Q.x to refer to column x of a tuple in Q.
Transformations in [4] identify the ‘fold with plus’ pattern
and infer an SQL query for the variable sum, as follows:

sum = executeQuery(“select sum(sale amt) from sales”);

The function fold is similar to reduce in the map-reduce
terminology and the two functions are referred to synony-
mously in some contexts. However, there are important dif-
ferences [19] that allow fold to represent loops on ordered
collections that cannot be represented by reduce. For a formal



fold

tupletuple Q

+

map put 0 {}

<sum> Q.sale amt <cSum> Q.month

Fig. 8: F-IR representation for the loop in Fig. 7
Q: select month, sale amt from sales order by month

discussion on fold, refer [4].
Not all loops can be represented algebraically. We identified

in [4] the set of preconditions (specified as constraints on inter
statement data dependencies) to be satisfied by a cursor loop
to represent it using F-IR. However, the preconditions in [4]
are restrictive as they allow only a single aggregation in a loop
to be represented using fold. We now discuss this limitation
and its impact in the context of cost-based transformations. We
extend F-IR with new operators to overcome the limitation.

B. Extensions to F-IR

Consider again the program shown in Fig. 7. The variable
cSum cannot be represented in F-IR using techniques from [4]
due to dependent aggregations: i.e., multiple aggregations in a
loop, where one aggregate value is dependent on another. In
Fig. 7, the variable cSum is dependent on sum.

In our previous work [4], the result of fold operator is a
single scalar/collection value. When multiple aggregations are
present in a loop, we considered separately the part (slice)
of the loop computing each aggregation and translated it to
SQL separately, as our goal in [4] was to translate parts of a
program to SQL where possible. For dependent aggregations
(such as cSum in Fig. 7), extracting such a slice is not possible.
Thus, the loop cannot be represented as a fold expression using
techniques from [4].

An intermediate representation of dependent aggregations in
loops is necessary for a cost-based decision of transformations.
For example, in Fig. 7, techniques from [4] would extract an
SQL query for sum (as explained in Section V-A) and leave
the computation of cSum inside the loop intact. Such a rewrite
would result in the following program:

for(t : executeQuery(“select ... from sales order by month”)){
sum = sum + t.sale amt;
cSum.put(month, sum);
}
sum = executeQuery(“select sum(sale amt) from sales);

However, this transformation degrades program perfor-
mance, as a new query execution statement (shown in italics)
is added to the program resulting in an extra network round
trip. Thus, it is necessary in this case for the entire loop to be
represented in F-IR for a cost-based decision.

In this paper, we address this limitation by extending the
fold operator in F-IR to return a tuple of expressions. To
facilitate this, we introduce two new operators, namely tuple
and project.

M0.S2−9

seq

M0.S2−3 M0.L4−7 M0.S8−9

loop seq(1)

M0.B4 M0.S5−6

assign assign

sum cSum

project0 project1

fold(3)

executeQuery (2)

Q′

Fig. 9: Region DAG for Fig. 7 after transforming to F-IR (Q′:
select sum(sale amt) from sales. The fold expression (node 3)
is as shown in Fig. 8.)

tuple: The tuple operator simply represents a tuple of ex-
pressions. It has n>1 children, each of which is an expression
in F-IR. The expressions may have common sub-expressions,
which are shared. The output of a tuple operator is the n-tuple
of outputs of each of its children.

project: Intuitively, the project operator performs the reverse
operation of tuple. It takes as input a tuple expression and an
index i, and projects the i’th individual expression from tuple.
In this paper, we represent the index i along with the project
operator. For example, project0 projects the first expression
from its child tuple.

Coupled with fold, the operators tuple and project allow
algebraic representation of cursor loops that may have aggre-
gations dependent on one another by removing precondition
P2 from [4]. The F-IR construction algorithm with modified
preconditions is formally discussed in [18]. Fig. 8 shows the
F-IR representation for the loop from Fig. 7 using fold. The
aggregation function is a tuple of expressions; one for each
aggregated variable (sum and cSum). Similarly, the initial value
passed to fold is a tuple that combines the initial values (0
and the empty map respectively) for the two aggregates. Q
denotes the query from Fig. 7. The result of fold is a tuple.
Subsequently, this F-IR expression is added to the Region DAG
for cost-based transformations. We discuss this next.

C. Integration into Region DAG

As we mentioned earlier in Section V, F-IR is based on
regions, and F-IR expressions represent values of program
variables at the end of a region in terms of values available
at the beginning of a region. Thus, an F-IR expression also
specifies a transition from an input state to an output state in
a region, where the input and output states consist of values



Rule Definition Description
T1 fold(insert, {}, Q) = Q Fold removal (insert: set insertion function)
T2 fold(?(pred, g), id, Q) ≡ fold(g, id, σpred(Q)) Predicate push into query (pred: predicate; g: some function; ?:

conditional execution (if) operator)
T3 fold(g(v, h(Q.A)), id, Q) ≡ fold(g, id, πh(A)(Q)) Push scalar functions into query (g,h: functions; A: column in Q)
T4 fold(fold(insert, id, σpred(Q2)), {}, Q1) ≡ Q1 1pred Q2 Join identification (pred: a predicate; insert: set insertion function)
T5 fold(op, id, πA(Q)) ≡ γop agg(A)(Q) Aggregation (op: a binary operation like +, scalar max; op agg:

corresponding relational aggregation operation like sum, max)
N1 fold(f(v, executeQuery(σR.A=Q.B(R))), id, Q) ≡

seq(prefetch(R,A), fold(f(v, lookup(Q.B)), id, Q))
Prefetching (prefetch: fetch query result and cache by column
locally. cacheByColumn, lookup: Refer footnote 3).

N2 fold(g, id, σpred(Q)) ≡ fold(?(pred, g), id, Q) Reverse of T2

Fig. 10: F-IR Transformation Rules (T1 to T5 are from [4])

of all program variables that are live at the beginning and at
the end of the region, respectively.

We model the construction of an F-IR expression for a region
as a program transformation that takes a region as input and
gives the equivalent F-IR expression as output. If the precon-
ditions for F-IR representation (Section V-B) are satisfied, the
F-IR expression is constructed and added as an alternative to
the corresponding region. If the preconditions fail, no F-IR
expressions are added, but other program transformations can
still be applied on the Region DAG.

Fig. 9 shows the Region DAG for program M0 from Fig. 7.
The program consists of a sequential region (M0.S2−9) con-
taining a loop region within (M0.L3−6). The F-IR expression
from Fig. 8 is used to add an alternative (node 1) to the loop
region. Using the fold expression for the loop, we first extract
the individual variable values using project, assign them to
the appropriate variables, combine the assignments using a seq
operator, and add the alternative to the OR node corresponding
to the loop.

D. Transformations

Transformations on F-IR expressions add further alternatives
to the Region DAG. In our earlier work [4], we proposed F-IR
transformations with the aim of translating imperative code
into SQL. These transformations are summarized in Fig. 10
(T1 to T5)5. (There are other transformation rules in [4], all
of which are included in our implementation.) Prefetching
is widely used in enterprise settings to mitigate the cost of
multiple invocations of the same query. To enable prefetching,
in this paper, we propose new transformations N1 and N2
(Fig. 10). Rule N1 transforms iterative lookup queries inside
a loop into a prefetch6 followed by local cache lookups. Rule
N2 transforms a selection query into a query without selection
followed by a local filter. Note that rule N1 uses a combination
of F-IR operators as well as operators for combining regions
(such as seq, loop and cond).

5γ is the relational aggregation operator. Here, we present abridged versions
of the rules, for the sake of brevity. For complete details of these transforma-
tions including ordering, duplicates, and variations of each rule, refer [4].

6In our current implementation, N1 prefetches an entire relation and all
subsequent lookups are performed locally. This can be extended to prefetch
queries that result only in a part of the relation.

We use Rule T5 to extract an SQL query for sum. As
shown in Fig. 9, this is added as an alternative (node 2) to
the OR corresponding to the expression for sum. Similarly,
alternative expressions for cSum are added after applying
other transformations (not shown in Fig. 9). Using the cost
model described in Section VI, COBRA can identify that the
alternative with node 2 incurs an extra query execution cost,
in addition to the loop computation represented by fold. After
the least cost program is found, the F-IR representation is
translated into imperative code. We refer the reader to [4] for
details on generating imperative code from F-IR.
Limitations of F-IR: As discussed earlier (Section V-A),
not all loops can be represented in F-IR. The focus of F-IR
is to represent set-oriented operations on collections/query
results using cursor loops in imperative programs. Further, F-IR
currently represents only selection (read) queries, so updates
are not part of F-IR. Expanding F-IR to support updates is part
of future work. Note that selection queries interleaved with
update queries can still be represented using F-IR, leaving the
updates intact. We refer the reader to [4], [18] for more details.

VI. COST MODEL

In this section, we discuss how to estimate the cost of a
program represented using the Region DAG, and how to find
the best alternative from many possible alternatives. We will
restrict our attention to cost estimation for individual nodes in
the Region DAG; the idea for cost-based search in the Region
DAG is similar to that in the Volcano/Cascades AND-OR DAG
(refer Section III-A). In our work, we focus on optimizing
programs for data access. Fig. 11 describes the parameters
we consider for cost estimation. The parameter amortization
factor (AFQ) estimates the number of invocations of a query
Q, to allocate the prefetching cost across each invocation.

We use a resource consumption model for cost estimation,
where network, CPU, and query execution costs are expressed
in units of time. Using the parameters from Fig. 11, the cost
of the various nodes in the AND-OR DAG is estimated as
follows.
Query execution: The cost of execution of a query Q is
defined as follows:
CQ = CNRT + CF

Q + max(NQ*Srow(Q)/BW, CL
Q − CF

Q )



Term Definition
CNRT Network round trip time between the client (where the

program is running) and the database.
CF

Q Time taken by the database since receiving the query
to send out the first row in the result.

CL
Q Time taken by the database since receiving the query

to send out the last row in the result.
NQ Cardinality of the result set for Q, i.e., the number of

rows in the result after executing Q.
Srow(Q) Size in bytes of a single row in the result set for Q.

BW Network bandwidth (bytes/sec)
AFQ Amortization factor – estimated number of invocations

of Q.
CY Cost of a program operator node in the Region DAG
CZ Cost of executing one imperative program statement

(other than query execution statement)

Fig. 11: Cost parameters

Prefetch: The cost of prefetching a relation using a query Q
is defined as follows:

Cprefetch(Q) = CQ/AFQ

Currently in our framework, we decide to prefetch a query
if (a) it is explicitly marked for prefetching as the result of
a transformation (such as N1 from Fig. 10), or (b) an entire
relation is fetched without any filters/grouping. (AFQ) may
be tuned individually for various queries depending on the
particular application’s workload.

In general, determining whether or not a relation should
be prefetched is non-trivial, as this may affect the cost of
other nodes included in a plan. This problem is similar to the
multi-query optimization problem, which aims to calculate the
best cost and plan for a query considering materialization [14]
(in our case, caching). Extending COBRA to adapt heuristics
from [14] to efficiently handle alternatives generated due to
caching, and dynamic approaches for prefetching (outlined in
the extended report [18]) are part of future work.
Basic block node: A basic block node in the Region DAG
contains imperative code. The cost of the basic block is the
sum of the cost of each statement (CZ) in the basic block. CZ

can be tuned according to the particular application.
Region operator node: Region operator nodes are rooted at
the operators seq, cond, or loop. Their cost is calculated as
follows:
Cseq = sum of the cost of each child.
Ccond = p * Ctrue + (1-p) * Cfalse + Cp

where p is the probability that the condition evaluates to true,
Cp is the cost of evaluating the condition, and Ctrue and Cfalse

are the costs of the sub-regions corresponding to p evaluating
to true and false respectively. If the condition is in terms of a
query result attribute, our framework estimates the value of p
using database statistics. Otherwise, a value of 0.5 is used.
Cloop : If the loop is over the results of a query Q, then it
may be represented using a fold expression, whose cost is
calculated as follows:

Cfold = NQ * Cf + CDb(Q)

where Cf is the cost of the fold aggregation function.
If the number of iterations is known (loop is over the

results of a query, or over a collection) but the loop cannot be
represented using fold, then the cost is calculated as K * Cbody ,
where Cbody is the cost of the loop body, and K is the number
of loop iterations. If the number of iterations cannot be known
(such as in a generic while loop), we use an approximation for
the number of loop iterations, which can be tuned according
to the application.
Other F-IR operators: We assign a static cost CY for evalu-
ating any other F-IR operator. CY can be tuned according to
the particular application.

VII. RELATED WORK

In this section, we survey related work on various fronts.
Program transformations for database applications: In our
earlier work, we have developed the DBridge system [20],
[21] for optimizing database applications using static program
analysis techniques. Various program transformations such
as batching, asynchronous query submission and prefetch-
ing [13], [3] have been incorporated in DBridge. DBridge
also contains transformations for rewriting Hibernate appli-
cations using SQL for improved performance [4]; the QBS
system [1] also addresses the same problem. However, existing
approaches assume that such transformations are always ben-
eficial. In contrast, our framework allows a cost-based choice
of whether or not to perform a transformation and to choose
the least cost alternative from more than one possible rewrites.

Note that unlike earlier techniques in DBridge [13], [3], [4],
the focus of this paper is not on the program transformations
themselves; rather we focus on representing various alterna-
tives produced by one or more transformations of imperative
code and choosing the least cost alternative. Our implementa-
tion of COBRA uses DBridge as a sub-system for generating
alternative programs by applying these transformations. In
general, COBRA can be used independently of DBridge with
any set of program transformations.
Enumeration and application of transformations: The
Peggy compiler optimization framework [8] facilitates the
application of transformations (compiler optimizations) in any
order. It uses a data structure called PEG that is similar
to the Volcano/Cascades AND-OR DAG. However, there are
significant differences from our framework.

Peggy is aimed at compiler optimizations and works on
expressions. Our framework is aimed at transformations on
larger program units such as regions or even an entire program
in addition to transformations on expressions, and can support
multiple IRs unlike Peggy (as discussed in Section IV).
COBRA also improves upon Peggy in terms of program cost
estimation. The cost model in Peggy is primitive, especially
as the cost of a loop is calculated as a function of its nesting
level and a predetermined constant number of iterations. Such
a cost model is inadequate for database applications as query
execution statements and loops over query results take the bulk



of program execution time. A more sophisticated cost model
that can use the database and network statistics, such as the
one described in this paper, is desired.
Pushing computation to the database: The Pyxis [22] system
automatically partitions database applications so that a part of
the application code runs on a co-located JVM at the database
server, and another part at the client. In contrast to Pyxis,
COBRA generates complete and equivalent programs using
program transformations on the original program and does not
require any special software at the database server.
LINQ to SQL: A number of language-integrated querying
frameworks similar to LINQ [23] allow developers to express
relational database queries using the same language as the
application, and later translate these queries into SQL [23],
[24]. Our techniques focus on automatically identifying parts
of imperative code that can be pushed into SQL, whereas [24]
require developers to completely specify these queries, albeit
in a syntax that uses source language constructs.

VIII. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of the COBRA
framework for cost-based rewriting of database applica-
tions. We implemented COBRA by extending the PyroJ op-
timizer [14], which is based on Volcano/Cascades. COBRA
leverages the region based analysis framework and program
transformations from the DBridge [21] system for optimizing
database applications. DBridge internally uses the Soot frame-
work [16] for static analysis.

For our experiments, we used two machines: a server that
runs the database (16GB RAM with Intel Core i7-3770,
3.40GHz CPU running MySQL 5.7 on Windows 10), and a
client that runs the application programs (8GB RAM with Intel
Core i5-6300 2.4GHz CPU running Windows 10, around 4GB
RAM was available to the application program). The numbers
reported in the experiments are averaged over five runs. Our
experiments aim to evaluate the following: (a) applicability of
COBRA and our cost model and (b) performance benefits due
to cost-based rewriting. Our experiments use real-world and
synthetic code samples that use the Hibernate ORM.

In Experiments 1, 2, and 3, we evaluate the performance
of program P0 and its alternatives P1 and P2 (which were
shown in Fig. 3), along with the choice suggested by COBRA.
We implemented P0 using the Hibernate ORM, and used
transformation rule N1 and a variation of transformation rule
T5 (refer Section V-C) to generate P2 and P1 respectively,
from P0. The size of each row in Order and Customer has been
chosen according to the TPC-DS [25] benchmark specification.

We ran the programs under varying network conditions and
cardinalities of the tables Order and Customer. We connected
the client and server directly with an ethernet cable and simu-
lated variations in the network using a network simulator [26].
We used the following conditions: slow remote network (band-
width: 500kbps, latency: 250ms (taken from [27])) and fast
local network (bandwidth: 6gbps, round trip time: 0.5ms).

For estimating the cost of generated alternatives using our
cost model, we focused on data transfer costs and the number

of loop iterations (size of query result set). The cost of
executing any other instruction apart from a query execution
statement in the program (Cz from Section VI) was set to
30ns, after profiling the applications to estimate the same. We
set the amortization factor to 1 (for experiments 1, 2 and 3).
We consulted the database query optimizer to estimate query
execution times, based on past executions of the queries. The
cost metrics were provided to our system as a cost catalog file.
Experiment 1: We first ran the programs using a slow remote
network. We fixed the number of rows in Customer to 73,000
and varied the number of Order rows from 100 to 1 million.
Fig. 12a shows the actual running times of these programs,
and the choice suggested by COBRA. At a lower number of
Order rows, COBRA chose the program using SQL query API
(P1), as the other two alternatives incur high latency. Program
P0 suffers from a large number of network round trips due to
iterative queries, and P2 prefetches a relatively large amount
of Customer data. However, as the number of Order rows
approaches the number of Customer rows, program P1 causes
increasing duplication of Customer data in the join result. At
this point, COBRA switched to program P2. The performance
of prefetching (P2) does not vary much for lower cardinalities
as the bulk of the time is spent on fetching the larger relation
(Customer) data. In each case, COBRA correctly identified the
least cost alternative.
Experiment 2: We use the same cardinalities as in Experiment
1, but use a fast local network. Again, COBRA estimated P1

to be the least cost alternative until the number of Order rows
approaches the number of Customer rows, and switched to
P2 after that. This is reflected in the running times of these
programs, as shown in Fig. 12b. Although P2 performs better
than P1 at high cardinality of Order in both Fig. 12b and
Fig. 12a, the performance difference is much more significant
in a slow remote network (3467s vs 6047s) than in a fast
local network (12s vs 16s). Note that the performance of
SQL query (P1) and Hibernate (P0) is comparable at high
cardinalities in fast local network. This can be understood as
follows. The overhead of a network round trip is very small in
a fast local network. Hibernate program internally caches each
Customer row once fetched, so the latency is minimized after
all Customer rows have been fetched using individual queries.
Experiment 3: In this experiment, we use a slow remote
network, fix the number of Order at 10,000 and vary the
number of Customer rows. As the results from Fig. 12c
indicate, the time taken by P1 is nearly constant (as the size
of the join result does not vary with increasing number of
Customer rows). However, the time taken by P2 increases
with the number of Customer rows as P2 prefetches the entire
Customer table. This demonstrates that unlike Fig.s 12b and
12a, it is not necessary that P1 performs better at lower
cardinalities, and P2 performs better at higher cardinalities.
COBRA correctly chose the least cost program in each case
based on its cost model.
Experiment 4: In this experiment, we used a real-world open
source application, Wilos [28], which uses the Hibernate ORM
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3.9s 0.9s 6087s 0.6s 1.9s 2.1s

Original

42.5s

Heuristic

P A P B P C P D P E P F

0.2

0.4

0.6

0.8

1

1.2

1.4

Program ID

COBRA(AF=50)

COBRA(AF=1)

Fr
ac

tio
n

of
or

ig
.p

ro
g.

tim
e

Fig. 14: Performance benefits due to COBRA

Id Description of cost-based choice #
A Nested loops with intermittent updates: Inner loop can

be translated to SQL for better performance vs overall
performance may degrade due to iterative queries

3

B Multiple aggregations inside loop: Faster aggrega-
tion/fetch only result by translating to SQL vs multiple
queries (NRT) instead of one

2

C Nested loops join: Better join algo. at the database and
fetch (large) result of SQL join vs Cache tables at
application and join locally

9

D Function that is called inside a loop can be rewritten
using SQL: overall performance may degrade due to
iterative queries if caller loop cannot be translated

7

E Collection filtered differently across different calls of a
recursive function: Multiple point look up queries vs
prefetch the whole table once and filter from the cache

9

F Different parts of a collection are used across differ-
ent callee functions: Multiple select/project queries to
fetch only required data vs prefetch all data with one
query

2

Fig. 13: Cases for cost-based optimization in a real-world
application (pattern id, description, number of cases)

framework. By manual examination of the Wilos source code,
we identified 32 code samples where cost-based transforma-
tions are applicable. These samples can be broadly classified
into six categories. Fig. 13 lists for each category, the cost-
based choice of transformations and the number of cases

identified. For more details of the code fragments, refer the
extended report [18].

We ran COBRA on a representative sample from each cate-
gory. We used a data generator to generate test data based on
the application schema, with the size of the largest relation(s)
as 1 million. In particular, the following setup was used: fast
local network, many to one mapping ratio 10:1, selectivity of
any predicate used 20%. Since we do not know the Wilos
application characteristics to estimate the amortization factor,
we evaluated COBRA with three different amortization factors
(AF=1, AF=50, and AF=∞ ) in the cost model. The results
for AF=50 and AF=∞ were only marginally different, so for
clarity, we only show the results for AF=1 and AF=50, in
Fig. 14.

The x-axis in Fig. 14 shows the program identified by its
pattern ID, and the y-axis shows the fraction of the actual exe-
cution time taken by a rewritten program in comparison to that
of the original program. We plot the following bars for each
program. Original – the original program, Heuristic – program
rewritten using the heuristic from [4] (push as much com-
putation as possible into SQL query, then prefetch the query
results at the earliest program point), COBRA(AF=50) – program
rewritten using COBRA with AF=50, and COBRA(AF=1) –
program rewritten using COBRA with AF=1. The actual time
in seconds for Original is shown above the bar. We use
transformation rules proposed by earlier techniques [13], [4]
(listed in Fig. 10).

The results from Fig. 14 suggest that performance benefits
due to COBRA are significant. In the examples considered for
this experiment, programs rewritten using COBRA gave up to
95% improvement over the heuristic optimized program, when
the cost was computed using AF=50. Even with AF=1, COBRA
outperforms the original and heuristic optimized programs in
some cases like A, as COBRA’s calculated iterative query
invocations to be costlier and chose the prefetch alternative
(refer Fig. 13 pattern A). In cases B, C, and D, COBRA chose
the same plan with AF=1 as well as AF=50, hence the bars
are identical. Note that in each case, the program rewritten
using COBRA (with AF=1 or 50) always performs at least as



well as the original/heuristic optimized program. For lack of
space, we skip a discussion on the program plans chosen by
COBRA. We refer the reader to the extended report [18] for a
detailed description of these plans.
Threats to validity: Our evaluation uses programs that use
the Hibernate ORM as part of the Spring framework [29].
Spring automatically takes care of transaction semantics based
on annotations that specify which functions are to be executed
within a transaction. Each sample that we considered in our
evaluation runs under a single transaction (as is typical of
a service function in Spring), so cache invalidation across
transactions is not a problem. Further, Hibernate contains built-
in cache management for database mapped objects. In general
for other database application programs, optimizing across
transactions may not preserve the program semantics and/or
affect the amortization factor due to stale caches. Identifying
such cases automatically using program analysis is part of
future work.

The values of parameters in our cost model have been tuned
with respect to the Wilos application, which we used in our
evaluation. However, in some cases, there was some deviation
of the estimated program execution cost from the actual cost.
We observed that this is due to multiple factors including
(a) parameters not considered in the cost model (example:
Hibernate’s cost of constructing mapped objects from the
result set), (b) fluctuating values of parameters (example: the
utilized bandwidth is a fraction of the maximum bandwidth
and varies across different query results), etc. Although our
cost model correctly predicted the least cost alternative in all
the evaluated samples despite these limitations, a more refined
cost model may be desired in general.

IX. CONCLUSION

In this paper, we proposed a framework for generating
various alternatives of a program using program transforma-
tions and choosing the least cost alternative in a cost-based
manner. We identify that program regions provide a natural
abstraction for parts of an imperative program, and extend the
Volcano/Cascades framework for optimizing algebraic expres-
sions, to optimize programs with regions. Our experiments
show that techniques in this paper are widely applicable
in real-world applications with embedded data access, and
provide significant performance improvements.

Apart from various extensions identified throughout the
paper, future work includes expanding the set of program
transformations available in COBRA. For instance, program
partitions in Pyxis [22] can be modeled as partitions of regions
in COBRA, with the location as a physical property and
enforcers to transfer data between locations (these concepts
already exist in Volcano/Cascades). Although we have focused
on data access optimizations for imperative programs in this
paper, COBRA could be used for other cost-based program
transformations with an appropriate cost model, examples
being optimization of stored procedures and automatic par-
allelization.
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