
DIY: Assessing the Correctness of Natural Language to SQL
Systems

Arpit Narechania
Georgia Institute of Technology

Atlanta, USA
arpitnarechania@gatech.edu

Adam Fourney
Microsoft Research
Redmond, USA

adamfo@microsoft.com

Bongshin Lee
Microsoft Research
Redmond, USA

bongshin@microsoft.com

Gonzalo Ramos
Microsoft Research
Redmond, USA

goramos@microsoft.com

i

ii iii iv

D

A

B

C

Figure 1: TheDIY technique implemented in aQA shell. (A) Query input, (B) AnnotatedQuestionView shows the questionwith
important tokens highlighted, (C) Answer on Production Database View shows the query result on the production database
(DB), and (D) Debug View. (i) Detect Entities View shows the mappings between the question and the query, (ii) Sample Data
View shows a small-but-relevant subset (sample testing DB) of the production DB, (iii) Explainer View provides step-by-step
explanations of the query, and (iv) Answer on Sample Data View shows the query result on the sample testing DB.

ABSTRACT
Designing natural language interfaces for querying databases re-
mains an important goal pursued by researchers in natural language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI ’21, April 14–17, 2021, College Station, TX, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8017-1/21/04. . . $15.00
https://doi.org/10.1145/3397481.3450667

processing, databases, and HCI. These systems receive natural lan-
guage as input, translate it into a formal database query, and execute
the query to compute a result. Because the responses from these
systems are not always correct, it is important to provide people
with mechanisms to assess the correctness of the generated query
and computed result. However, this assessment can be challeng-
ing for people who lack expertise in query languages. We present
Debug-It-Yourself (DIY), an interactive technique that enables users
to assess the responses from a state-of-the-art natural language to
SQL (NL2SQL) system for correctness and, if possible, fix errors.
DIY provides users with a sandbox where they can interact with
(1) the mappings between the question and the generated query,

https://doi.org/10.1145/3397481.3450667

IUI ’21, April 14–17, 2021, College Station, TX, USA Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos

(2) a small-but-relevant subset of the underlying database, and (3)
a multi-modal explanation of the generated query. End-users can
then employ a back-of-the-envelope calculation debugging strat-
egy to evaluate the system’s response. Through an exploratory
study with 12 users, we investigate how DIY helps users assess the
correctness of the system’s answers and detect & fix errors. Our
observations reveal the benefits of DIY while providing insights
about end-user debugging strategies and underscore opportunities
for further improving the user experience.

CCS CONCEPTS
• Human-centered computing → Natural language inter-
faces; User interface management systems; • General and
reference → Verification.

KEYWORDS
natural language interface, human computer interaction, database
systems

ACM Reference Format:
Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos. 2021.
DIY: Assessing the Correctness of Natural Language to SQL Systems. In
26th International Conference on Intelligent User Interfaces (IUI ’21), April
14–17, 2021, College Station, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3397481.3450667

1 INTRODUCTION
Current advances in machine learning make it possible for many
systems to let their users express and fulfill their goals through
natural language (NL) in what are known as natural language inter-
faces (NLIs). A particular family of these systems, NLIs for querying
databases, have been studied by researchers in natural language
processing [12, 17, 19], databases [3, 14, 15, 26, 29, 30, 40, 48], and
HCI [11, 18, 21, 31, 32, 34, 37, 42]. Systems employing these NLIs
receive a natural language (NL) question as input, translate it into
a formal database query and execute the query on the underlying
database to compute an answer. Existing systems present these
responses using a combination of the computed answer, the gener-
ated query, any associated meta-data (e.g., mappings between the
question and the generated query), easy-to-understand explana-
tions of the aforementioned artifacts (using, for example, NL and
visualizations), and UI control augmentations (e.g., drop-downs)
that facilitate fixing errors and disambiguation.

These systems present challenges for users who may be familiar
with the domain but are not fluent in the database query language.
In particular, assessing the correctness of an answer that is output
from an NLI can be challenging. For example, in a system that
answers questions about a cars database (Figure 2a), a user asks
a question “Which car makers are American?” The system first
translates it into a SQL query (Figure 2b), and then runs it on the
database to compute the answer—Ford, Chrysler (Figure 2c). An
expert on cars might suspect the answer to be correct based on
their knowledge, but it might not be so. In this case, the question
contains “American,” which is syntactically similar to “america” of
the continents.Continent column and semantically similar to
“usa” of the countries.CountryName column. Just based on the
computed answer, it is challenging for users to infer if this NL

ambiguity was successfully resolved. Displaying the generated SQL
query can help make these issues clear, but will only benefit users
fluent in the query language.

In this paper, we present Debug-It-Yourself (DIY; Figures 1 and 4),
an interactive technique that enables users without specialized
knowledge of a query language (e.g., SQL) to assess the responses
of a state-of-the-art NL2SQL system for correctness. Specifically,
DIY lets users inspect for, isolate, and if possible, fix errors in the
system’s output. DIY’s intended users include domain experts with
limited databases experience and information workers who are not
familiar with writing complex database queries.

Our work builds upon past research exploring how to explain
queries and answers using natural language [9, 22, 23, 33, 35] and
visualizations [1, 2, 8, 25], as well as past work that utilizes multi-
modal interactive widgets to communicate and resolve ambigui-
ties [11, 26, 31, 32, 34]. Our approach differs from prior work by its
use of the data itself as a means to explain the query and the query
execution process. DIY presents users with a sandbox where they
interact with (i) a small-but-relevant subset of the underlying pro-
duction database, which we refer to as the sample testing database;
(ii) mappings between the entities in the question and the generated
query; and, (iii) multi-modal explanations of the execution of the
generated query on the sample testing database.

Figure 3 shows DIY applied to our earlier scenario (Figure 2).
DIY first identifies relevant tables and columns from the query
and samples a few relevant records from the underlying production
database (Figure 3a). The query is then broken into three subqueries
that are sequentially executed on the sample testing database. Each
subquery explains one or more SQL clauses: FROM,JOIN (Figure 3b),
WHERE (Figure 3c), and SELECT (Figure 3d), respectively using NL
and tabular visualizations. Figure 3d is also the final answer when
the query is executed on the sample testing database.

The sample data and sandbox environment allow users to employ
different back-of-the-envelope calculation debugging strategies to
assess the correctness of the query. For example, users can experi-
ment by modifying the sample testing database (e.g., edit a cell’s
value) that updates the subsequent steps including the answer. Ex-
perimenting with the sample testing database can build trust in the
system’s interpretation of the original question and its output on
the production database. If a problem is detected, DIY also presents
users with the means to fix errors and resolve ambiguities by al-
lowing them to adjust the mappings between the question and the
generated query. The adjusted query is automatically applied to
the sample testing database and can eventually be applied to the
production database.

We use DIY as a design probe in a user study with 12 partici-
pants from a large technology company to investigate how it helps
users assess the system’s answers and isolate and fix errors. Our
observations reveal how DIY helped participants assess the correct-
ness of a state-of-the-art NL2SQL system while providing insights
about different debugging strategies. We discuss opportunities for
improving the user experience, as well as the remaining challenges
and open questions. Our contributions include:

(1) Generation of a small but relevant subset of the database to
effectively demonstrate the execution of a SQL query.

https://doi.org/10.1145/3397481.3450667

DIY: Debug-It-Yourself IUI ’21, April 14–17, 2021, College Station, TX, USA

continents
Cont-

Id
Conti-

nent
1 america
2 europe
3 asia
4 africa
5 australia
… …

countries
Country-

Id
Country-

Name
Conti-

nent
1 usa 1
2 germany 2
3 france 2
4 italy 2
5 japan 3
… … …

car_makers
Id Maker Country-

Id
1 Citroen 3
2 Ford 1
3 Daimler 2
4 BMW 2
5 Chrysler 1
… ... …

model_list
Id Model Maker-

Id
1 citroen 1
2 plymouth 5
3 mercury 2
4 mercedes 3
5 bmw 4
… … …

car_names
Id Make Model-

Id
1 ds pallas 1
2 satellite 2
3 duster 2
4 zephyr 3
5 benz 300 4
… … …

cars_data
Id Horse-

power
Weight Edispl Accel-

erate
Year

1 115 3090 133 17.50 1970
2 150 3436 318 11 1970
3 95 2833 198 15.5 1973
4 85 3070 200 16.70 1978
5 77 3530 183 20.10 1979
… … … … …

(a) The cars database (production database);→ depicts the Foreign Key - Primary Key relationships; [. . .] imply more rows.

SELECT car_makers . Maker FROM car_makers
JOIN c o u n t r i e s ON c o u n t r i e s . Country Id= car_makers . Country Id
WHERE c o u n t r i e s . CountryName= ' usa ' ;

(b) Generated SQL query for the “Which car makers are American?” question

car_makers
Maker

Ford
Chrysler

(c) Answer on production database

Figure 2: An example natural language to SQL (NL2SQL) scenario.

countries
Country-

Id
Country-
Name

1 usa
2 germany
3 france

car_makers
Maker Country-

Id
Citroen 3
Ford 1
Daimler 2

Consider the following sample data.

(a) sample testing database.

countries
Country-

Id
Country-
Name

1 usa
2 germany
3 france

car_makers
Maker Country-

Id
Ford 1
Daimler 2
Citroen 3

For each record in countries, choose each
corresponding record in car_makers
where countries.CountryId equals
car_makers.CountryId.

(b) Explain FROM,JOIN

countries
Country-

Id
Country-
Name

1 usa
2 germany
3 france

car_makers
Maker Country-

Id
Ford 1
Daimler 2
Citroen 3

Keep those records whose
countries.CountryName is equal
to usa.

(c) Explain WHERE

car_makers
Maker

Ford

Choose
car_makers.
Maker.

(d) SELECT

Figure 3: A query explained using the DIY technique.

(2) Generation of multi-step multi-modal explanations of the
execution of a SQL query using natural language and tabular
visualizations.

(3) Debug-It-Yourself (DIY), an interactive technique leveraging
the above contributions for end-user debugging NL2SQL sce-
narios that helps users assess for correctness and potentially
fix errors by themselves.

(4) A design probe that incorporates DIY and and its evaluation
with 12 participants conducted to understand DIY’s helpful-
ness in assessing the correctness of NL2SQL scenarios.

2 RELATEDWORK
2.1 NL input and system output
Natural language is often ambiguous and underspecified, leading to
interpretation errors. NaLIR [26] reveals these issues by mapping
entities from the input query to the entities in the database schema
and presenting them to the user using NL and dropdowns. Su et
al.’s system [36] converts a Seq2Sql model API output into NL, aug-
mented with GUI widgets that support error-fixing and disambigua-
tion using fine-grained user interaction. DataTone [11] leverages

mixed-initiative interaction through dropdown menus called “Am-
biguity Widgets” to resolve ambiguities in the input query. Subse-
quent works leverage and extend these widgets: Eviza [31] handles
quantitative magnitudes and time & space through range sliders;
Evizeon [16] targets textual feedback, employing compact and inter-
active visualizations within the text; Orko [34] incorporates range
sliders and interactive tooltips; and NL4DV [28] is a library that
application developers can use to manage ambiguity in their appli-
cations. Inspired by all these works, DIY uses dropdown-menus to
present ambiguities to the user for interactive disambiguation.

Visualizations have been used to explain a SQL query and its
execution. QUEST [2] connects matching entities from a query’s
input to a database structure. QueryVis [25] automatically generates
diagrams of SQL queries that capture their logical intent. Berant et
al.’s cell-based provenance model explains the execution of a SQL
query using provenance-based highlights on tabular visualizations
(e.g., highlighting relevant cells that match a WHERE condition) [1].
DIY differentiates from these approaches by presenting multiple
tabular visualizations that explain one SQL construct at a time (e.g.,
a WHERE clause), highlighting relevant elements along the way.

IUI ’21, April 14–17, 2021, College Station, TX, USA Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos

2.2 NL2SQL and SQL2NL
Semantic parsing of NL to SQL has recently surged in popularity
thanks to the creation of dataset benchmarks such as WikiSQL [48],
Spider [45], SParC [46], and CoSQL [44]. These dataset and as-
sociated benchmarks have led to the development of many deep
learning models that address semantic parsing [4, 5, 7, 13, 20, 24,
27, 39, 41, 43, 47]. RAT-SQL [39] stands out by achieving state-of-
the-art performance on the Spider dataset; hence we use it as our
underlying NL2SQL engine to explore ways to help people assess
the correctness of their NL2SQL interactions.

Research has also explored methods to translate SQL queries to
natural language (SQL2NL). In the context of an NL2SQL system,
this can be used to allow the “DMBS to talk back in the same
language” as the users, allowing users to verify if their question
was interpreted correctly [33]. Several SQL2NL strategies have
been explored: Kokkalis et al. [22] and Elgohary et al. [9] employ
a template-based approach while Su et al. [35] employ a grammar
based approach. DIY leverages a template-based approach to explain
the steps in the execution of an underlying SQL program.

In summary, our work leverages advances in NL2SQL and
SQL2NL, and is further inspired by past interactive multi-modal
techniques for resolving ambiguities. It builds on these ideas by
applying them to a small but relevant sample testing database, pro-
viding a minimal example that demonstrates the query’s behavior.

3 DIY: DEBUG-IT-YOURSELF
In this section we first enumerate our design goals, then present
two example scenarios that illustrate how users can use DIY to
assess and debug NL2SQL outputs. We then discuss the generation
of sample testing databases, as well as generation of multi-modal
explanations. Finally, we provide brief implementation details.

3.1 Design Goals
Our development of the DIY technique was driven by three key
design goals. We compiled these goals based on a combination
of reviewing design goals and system implementations of prior
NLIs for visualization [11, 32] and databases [1, 26], and our own
hypotheses of what will improve the overall user experience.
DG1. Explain the system’s response to the question. DIY’s
users are not required to be fluent with database query language.
Our goal is to design a system that explains how the system com-
putes responses in an understandable manner for these users. This
goal translates to explaining the query using a combination of
natural language (NL) and visualizations.
DG2. Facilitate isolating errors. User-specified NL may include
incorrect or partial references to the underlying data attributes
which can lead to errors and ambiguities when translated into for-
mal language (SQL). It was thus important to help users isolate these
errors. Therefore, we convey the mappings between the entities in
the question and the generated query to the user.
DG3. Facilitate fixing errors. In addition to isolating, our goal
was to allow users to fix errors and resolve ambiguities upon discov-
ery. This facilitates human-machine collaboration and avoids para-
phrasing on the human’s part. We therefore augment the question-
query mappings with user interface controls that facilitate fixing
errors and disambiguation.

3.2 Assessing and Debugging with DIY:
Example Usage Scenarios

With the above design goals in mind, we designed DIY and embed-
ded it into a QA shell (Figure 1). In the following two scenarios, we
illustrate how DIY can help users assess the generated queries and
answers for correctness and detect & fix errors.

3.2.1 Scenario 1, Fixing the Mapping: Chris, an automotive en-
thusiast without much knowledge on SQL, loads a cars database
(Figure 2a) and asks “What is the mean acceleration, minimum horse-
power, and maximum displacement among all cars?” (Figure 5). On
reviewing the system’s response, Chris notices that even though
the system correctly identified the three superlatives (mean, mini-
mum, and maximum) and attribute keywords (acceleration, horse-
power, and displacement), it applied all superlative operators only
to the Horsepower attribute. Convinced that the result is not cor-
rect, Chris expands the Debug View to repair the output. From
the Detect Entities View, Chris notices the incorrect mappings,
and selects the correct attributes from the respective drop-downs
([cars_data.Accelerate] and [cars_data.Edispl]). Based
on these new mappings, the system automatically updates the sam-
ple data, and produces a new answer for inspection.

Next, Chris wants to verify if the superlatives were interpreted
correctly. Chris sorts the records by Horsepower by clicking on
the Horsepower column in the Sample Data View and verifies that
the first (i.e., smallest) record matches the computed value in the
Answer on the Sample Data View. After checking theMax operation
in a similar way, Chris is convinced that the system now correctly
performs the query. It is at this point that Chris notices a system
alert indicating that the mapping changes have only been applied to
the sample testing database, and that they must [Apply] or [Reject]
them. Chris chooses to apply the changes and the Debug View
closes. The answer on the Production Data updates accordingly.

3.2.2 Scenario 2, Checking the System Strategy: Being curious
about the European automobile industry, Chris now asks the sys-
tem, “Which countries in Europe have more than 2 car manufactur-
ers?” (Figure 6).While checking the answer—Germany, France—they
wonder based on prior knowledge why Italy was not included. To
investigate this, Chris expands the Debug View and inspects the
Detect Entities View. After confirming that the existing mappings
are correct, Chris checks how the query is being executed on the
sample testing database by reading through the four steps shown
in the Explainer View: Step 1 joins the three tables; Step 2 removes
non-European countries; Step 3 groups the rows by countryId;
and Step 4 first counts the number of rows per countryId and
then removes those groups that have less than or equal to 2 rows
(indicated by gray color and strike-through).

To verify the system’s strategy, Chris decides to test it by ma-
nipulating the sample data. In the car_makers table of the sample
testing database, they add a new row for the German car manu-
facturer “opel.” On inspecting the updates to the subsequent steps,
Chris confirms that “germany” now has three records, is no longer
removed by step 4, and thus appears in the final answer for the
sample data (step 5). Satisfied that Italy was likely excluded for hav-
ing fewer than 3 records, Chris closes the Debug View [] without
making or applying further changes.

DIY: Debug-It-Yourself IUI ’21, April 14–17, 2021, College Station, TX, USA

Explanation2

SQL1
SQL2
:
:

SQLN

NL question

NL2SQL
Model

DIY technique in a QA Shell

Answer on
Production DB

Answer on Sample Testing DB

Sample
Testing DB

Production DB

Formal Database (DB)
Query (SQL)

Mappings between
NL question & DB :

Explanation1

ExplanationN

Z

Z

Figure 4: Overview of the DIY technique in a QA shell.

Clicking Apply updates the
Answer on Production database

All superlatives are
applied to Horsepower.

Sort by
Horsepower to
verify the MIN

operation.

Fix the incorrect mappings.

Figure 5: Scenario 1: DIY being used to correct a misclassified NL2SQL scenario.

3.3 Generating the Sample Data
DIY’s key element and contribution is the use of a sample testing
database to provide a sandbox for simplified inspection, testing
and debugging. To generate the sample testing database, we clone
the production database schema and show only those tables and
columns that are part of the generated query. We then apply one of
the following two strategies to populate each sample table with five
records (we chose five based on feedback from pilot studies and UI

design considerations with respect to visual clutter; currently this
limit and sampling criteria are pre-configured).

3.3.1 Smart Constraints: To generate a small-but-relevant sample,
the system first lists the entities and expressions in the query. Based
on these, it identifies smart constraints that the data sampling algo-
rithm must satisfy. For example, consider the SQL query: (SELECT
Id FROM cars_data WHERE Horsepower>200). The expression
(WHERE Horsepower>200) leads to a constraint requiring that at

IUI ’21, April 14–17, 2021, College Station, TX, USA Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos

Add a new row

“germany” shows
up in the answer
on sample data

Figure 6: Scenario 2: DIY being used to understand and verify a complex NL2SQL scenario.

least one of the sample rows has Horsepower>200 so that the final
result set is non-empty. We also add a second constraint requiring
that at least one row has Horsepower≤200. This ensures that both
sides of the boundary condition are represented so that, when the
relevant subqueries are executed on the sample testing database, the
subanswers create before-after scenarios that help to visualize the
effects of specific operations. Table 1 catalogs the sample constraints
that we considered and implemented for various SQL constructs.
We implemented those constraints that had primitive entities, for ex-
ample, a simple WHERE clause, (WHERE Horsepower>200) comprises
{“Horsepower”, ‘>’, 200}. On the other hand, both a subquery (e.g.,
WHERE Horsepower>(SELECT AVG(Horsepower))) and a HAVING
construct (e.g., HAVING AVG(Price)>2000) require an additional
computation step using a SQL engine. We did not implement these
types of constraints.

3.3.2 Human-in-the-loop: For any generated query, it is not always
possible to satisfy all smart constraints. This can be due to: (i) Practi-
cality: Records that satisfy all constraints may not be common, and
the database may not be structured to support efficient sampling
of certain constraint combinations. In such cases, collecting five
records may require a linear scan of the entire production database,
and this may be too computationally costly to be practical in an
interactive setting; (ii) Feasibility: satisfying certain constraints may

be impossible. For example, the positive constraint for the question
“How many car makers have their headquarters on Mars?” will
be car_makers.Headquarter=“Mars” which cannot be satisfied. In
such scenarios, the system generates partially-relevant sample data.
Users can then optionally modify the tables in the sample testing
database to add records or to modify existing records to make them
more relevant.

3.4 Generating Multi-modal Explanations
To break the SQL query into subqueries, we consider the order of
execution of different SQL clauses. Each step generates a virtual
table that is used as the input to the following step. If a certain clause
is not specified in a query, the corresponding step is skipped. DIY
considers only the forms of SQL queries output from the underlying
NL2SQL model (Listing 1). This is a subset of all valid SQL queries
(e.g., it excludes the clauses TOP and WITH).

3.4.1 Logical Order of Execution of a SQL query: As shown in List-
ing 1, the FROM clause and the subsequent JOINs are executed first
to determine the working set of data. Next, the WHERE constraints
are applied to the individual rows, discarding the rows that do not
satisfy the constraints. The remaining rows are then grouped based
on common values as specified in the GROUP BY clause. If the query
has a HAVING clause, it is then applied to the grouped rows — the

DIY: Debug-It-Yourself IUI ’21, April 14–17, 2021, College Station, TX, USA

Table 1: Smart Constraints: A catalog of constraints to generate a sample testing database that can effectively explain the
execution of the SQL query. IEU∗ stands for INTERSECT,EXCEPT,UNION SQL keywords. SoI stands for Status of Implementation.

SQL Entity Constraint Operation SoI

SELECT Choose all columns mentioned in the SELECT clause. ✓
FROM Choose all tables mentioned in the FROM clause. ✓
JOIN Choose records from each to-be-joined table such that the joined state has at least one record. ✓
GROUP BY Choose records such that the grouped-by columns have duplicate values. ✓
HAVING Choose records such that the grouped-by state satisfies the HAVING expression(s). ×

WHERE Choose records such that at least one satisfies the WHERE condition, and at least one fails. ✓
DISTINCT Choose records such that the grouped-by column has duplicate values. ✓
LIMIT Choose records such that the result set has enough records to apply the LIMIT operation. ✓

IEU∗ Choose records such that the execution of the subqueries have intersecting subanswers. ×

Subquery Choose records such that the execution of this subquery produces a non-empty final result set in the query. ×

Functions Aggregation functions (COUNT, SUM) ×

Operators Wildcards (*, %), LIKE ×

(6) SELECT (7) DISTINCT select_list
(1) FROM left_table
(2) join_type JOIN right_table

ON join_condition
(3) WHERE where_condition
(4) GROUP BY group_by_list
(5) HAVING having_condition
(8) ORDER BY order_by_list
(9) LIMIT count (10) OFFSET count
(12) left_SQL IEU∗ right_SQL
(11) right_SQL ;

Listing 1: General form of a SQL query,
with step numbers assigned according to
the order in which the different clauses are
logically processed. left_SQL & right_SQL
represent SQL queries with Steps 1-10. IEU∗

stands for INTERSECT, EXCEPT, UNION.

(I) left_SQL
(a) SELECT * FROM JOIN ;
(b) SELECT * FROM JOIN WHERE ;
(c) SELECT * FROM JOIN WHERE GROUP BY ;
(d) SELECT * FROM JOIN WHERE GROUP BY HAVING ;
(e) SELECT select_list FROM JOIN WHERE GROUP BY HAVING ;
(f) SELECT DISTINCT select_list FROM JOIN WHERE GROUP BY HAVING ;
(g) SELECT DISTINCT select_list FROM JOIN WHERE GROUP BY HAVING ORDER BY ;
(h) SELECT DISTINCT select_list FROM JOIN WHERE GROUP BY HAVING ORDER

BY LIMIT OFFSET ;
(II) right_SQL

(III) left_SQL IEU∗ right_SQL ;

Listing 2: Sequence of subqueries generated by DIY at each step of the
Explainer View for a general SQL query represented in Listing 1. The
underlined text shows the difference with the previous subquery.

groups that do not satisfy the constraints are discarded. Next, the
expressions in the SELECT clause are computed. This may include
columns, or aggregation of functions, or subqueries. If a DISTINCT
keyword is present, duplicate records are discarded. Likewise, if an
ORDER BY clause is present, the rows are sorted accordingly. Finally,
the rows that fall outside the range specified by LIMIT and OFFSET
clauses are discarded, leaving the final result set.

3.4.2 NL explanations: We follow a heuristics-based approach to
generate NL explanations for each step in the Explainer View.
One notable aspect of these explanations is that they explain
the difference between the current and the previous subquery.
For example, consider two consecutive subqueries: (i) (SELECT *
FROM cars_data) and (ii) (SELECT * FROM cars_data WHERE
Horsepower>200). The generated NL explanation for subquery (i)
is “Choose all columns from the cars_data table.” and for subquery (ii)
is, “Keep those records whose Horsepower is more than 200.” We hy-
pothesize that this approach can help users to not only understand
each step but also enable them to detect and isolate specific errors.
Table 2 shows the complete list of templates that are currently being
used to explain each subquery.

3.4.3 Tabular Visualizations: An interactive tabular visualization
complements each NL explanation displaying the result after the
corresponding subquery is executed on the sample testing database.
Table headers communicate the table names and column names of
data values. Each table is treated as the input to the following step.
For example, observe steps 2, 3, and 4 in Figure 6. Step (2), explains
the WHERE clause, and the rows that do not satisfy the corresponding
constraints are faded out and striked-through. Similarly, Step (3),
explains the GROUP BY clause, and the grouped records are visually
grouped and indicated accordingly.

3.5 Implementation Details
We use RAT-SQL [39], an NL2SQL semantic parsing framework
with state-of-the-art performance as our backend. It uses relation-
aware self-attestation and encodes the names of columns and tables,
as well as the values of data, into a common dense representation.

We implemented the DIY technique as well as the QA shell using
the ReactJS framework (https://reactjs.org) making API requests to
the RAT-SQLmodel over HTTP REST.We instantiated andmanaged

IUI ’21, April 14–17, 2021, College Station, TX, USA Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos

Table 2: NL Explanation templates. Each template scales to multiple instances (e.g., two WHERE clauses) using punctuations (e.g.,
’,’) and conjunctions (e.g., ’and’).

SQL keyword Natural Language Template

FROM Choose columns from the {table} table.
FROM + JOIN For each record in {table1}, choose each corresponding record in {table2} where {column1} {operator} {column2}.
WHERE Keep those records whose {column} {operator} {value}.
GROUP BY Group records with the same {column} together.
HAVING Keep those groups where {aggregation} of {records/column} {operator} {value}.
SELECT Choose the {column}.
DISTINCT Keep unique records.
ORDER BY Sort the records by {column} in the {orderType} order
LIMIT Choose the first {N} record(s).
INTERSECT Choose all records that are common to the answers of Step {M} and Step {N}.
EXCEPT Choose all records from the answer of Step {M} that are not in the answer of Step {N}.
UNION Combine all records from the answer of Step {M} and the answer of Step {N}.

databases in an instance of the SQLite database in the user’s web
browser using the sql.js library (https://sql.js.org).

4 USER STUDY
After developing the DIY prototype and receiving an approval
from our ethics board, we conducted an exploratory user study
and design probe with 12 participants. With this study, we aim to
understand how users utilize DIY to assess the generated results for
correctness, and detect and fix errors in NL2SQL scenarios. In the
following sections we describe the participants, detail the high-level
procedure, and present the specific study tasks. We then present
and discuss our findings.

4.1 Participants, Procedure, and Tasks
We recruited 12 participants (4 female, 7 male, 1 preferred not to
say). They worked for a large technology company in different
roles including UX Designers, Design Researchers, Site Reliability
Engineers, Data Scientists, Cloud Solution Architects, Program
Managers, and Research Interns. We compensated each participant
with a $25 Amazon Gift card.

Due to the COVID-19 pandemic, we leveraged numerous Inter-
net collaboration tools to conduct the study remotely. Participants
were asked to complete a brief online demographics questionnaire,
and to connect with the experimenter using the Microsoft Teams
teleconferencing software. Participants were then quickly briefed
about the study, and were presented with a 5 minute tutorial video
that demonstrated the features of DIY. Following the video, the
experimenter provided participants access to the study environ-
ment by sharing the study computer’s screen and granting input
control. Participants were then asked to complete 8 tasks of varying
difficulty using DIY, and to think out loud while interacting with
the system. Participants were free to ask questions at any time,
and the experimenter occasionally asked questions to probe par-
ticipants’ strategies. The study ended with a debriefing in which
participants completed a system usability score (SUS) [6] ques-
tionnaire, discussed their overall experience with the system, and
provided suggestions for improvements. The entire session took
90 minutes to complete. All sessions were screen-recorded, and
transcripts were later generated using automated software.

The eight tasks were organized into sections according to com-
plexity: 3 easy, 2 medium, and 3 hard tasks (Table 3). We determined
the complexity based on the count and types of SQL clauses (e.g.,
GROUP BY, INTERSECT, MIN()) and the count and types of errors in
the generated SQL query (e.g., wrong operator, missing column).
For example, the query corresponding to Task #6 in Table 3 is
hard because it has two JOINs and one each of: WHERE, GROUP BY,
HAVING, and SELECT. This methodology was inspired from the one
used by the Spider dataset benchmark [45]. Within each complexity
level, half the tasks resulted in DIY presenting correct results which
participants may nonetheless seek to verify; and half the tasks re-
sulted in NL2SQL translation errors that needed to be corrected.
We curated these tasks by asking different types of questions to
the RAT-SQL model and inspecting the responses. We include an
equal number of correct and incorrect responses, spanning a range
of SQL complexities and error types.

4.2 Results
Our observations revealed the benefits of using sample data to help
users assess the correctness of the system’s responses, and both a
range of debugging rationales and strategies across participants.
We present these observations below, and discuss observations that
could indicate where DIY may benefit from additional refinement.

4.2.1 General Reactions: Overall, participants likedDIY’s approach
of using sample data to explain the system’s strategy. P10 com-
mented, “It is important to have this transparency and to show people
how the system is working and to let them control it. This is a great
example of that.” P8 commented, “I think it’s really cool and I think
there are a lot of customers who would benefit from something like
this.” P14 liked the multi-modal explanations, commenting “I really
liked your idea of the linear stuff...kind of a visual explanation of the
of the query path.” Also, participants rated their experience with an
average SUS of 65.42 (Figure 7): while this is encouraging, further
refinement is possible.

4.2.2 Debugging Rationales: Our system’s initial response high-
lighted important tokens in the question and the computed answer
on the production database (Figure 1B,C). Participants inspected
these first and then, based on their assessment, optionally chose to

DIY: Debug-It-Yourself IUI ’21, April 14–17, 2021, College Station, TX, USA

Table 3: Eight tasks used in the study.

No. Question Error Error Type Complexity

1 What is the mean acceleration, minimum horsepower, and maximum displacement among all cars? Yes Wrong columns Easy
2 What is the average acceleration of cars each year? No - Easy
3 Which products are manufactured in Austin? Yes Wrong column Easy
4 Which products by Sony are priced above 100? No - Medium
5 Which car models are produced since 1980? Yes Wrong operator Medium
6 Which countries in Europe have more than 2 car manufacturers? No - Hard
7 Which continent has the most car makers? Also list the count. Yes Missing column Hard
8 Which car models are lighter than 3500 or built by BMW? No - Hard

-100 -50 0 50 100

Percentage

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 7: SUS Scores reported by participants.

expand the Debug View. We observed different rationales for elect-
ing to debug, including: (i) the option was available (“Just because
I can!” – P8), (ii) they detected an error (everyone), (iii) they just
wanted to double-check the answer or strategy (almost everyone,
“I want to verify the Average.” – P1), (iv) they did not have enough
domain expertise to trust the answer on production database (“I am
not good with cars” - P1), (v) they had some domain expertise that
led them to suspect the answer (“I can think of a couple more rows so
I’m just gonna verify” - P8). At times, participants did not utilize the
Debug View because: (i) they had begun to trust the system (“I will
probably not verify, I trust the system by now.” – P1, “Assuming the
math is correct, this seems fine.” – P7), (ii) they were satisfied with
the orange highlights in the Annotated Question View (“it looks to
me that it highlighted the right keywords” – P5, P14). Many partici-
pants also expressed a need for additional context to interpret the
answers, even if that context was not explicitly requested in the
original question. For example, for the question “Which products
by Sony cost more than $100?” the system’s response returned
only Products.Name values. P1, P7, and P17 wished to see more
columns, including the manufacturer and price, to facilitate inspec-
tion. Likewise, P7 suggested adding rows that do not match the
criteria, and striking them out using the same visual convention
employed by the DIY Explainer View.

4.2.3 Strategies: With the Debug View, participants employed
three broad strategies to verify the query. In the first category
were participants who expressed concerns about modifying the
sample data, and predominantly utilized inspection (e.g., of term
mappings and explanations) to assess the correctness of the query.
In the extreme cases, three participants (P1, P16, P17) did not modify

the sample testing database at all. P1 commented, “My judgement
is based on the result I see, if I manipulate the data, I don’t trust the
result anymore, and I don’t trust the system anymore.”

In the second category were participants who modified the sam-
ple data to explore counterfactual what-if scenarios. Specifically,
participants modified sample data to (i) generate positive (or nega-
tive) scenarios (“Now that I have been able to generate an affirmative
case, I am more happy with this” – P8) or (ii) to test specific bound-
ary conditions (“I was basically playing for boundary conditions” –
P7, “I want to make sure I have tested the right boundary conditions”
– P15). We observed participants manipulate the sample testing
database in several different ways. One participant chose to delete
irrelevant rows from the sample data (“I might as a matter of figuring
this out remove everybody I don’t care about” - P8). One participant
chose to add a new test row (“as I did not want to manipulate existing
data” - P15). One participant sorted the sample data tables to verify
the MAX and MIN superlatives in the question. Most participants
edited specific cells in the sample testing database, e.g., “ford” to
“bmw” to verify a WHERE clause, or change the CountryId from 1 to
2 to create a successful JOIN.

Finally, in the third category participants manipulated the map-
pings in the Detected Entity View to, for example, test boundary
conditions. One participant modified the operator mappings “is
greater than” to “is less than” to test a reverse scenario (P8). An-
other participant changed the attribute Price to Revenue to verify
the query response updated accordingly. This strategy is interesting
because modifying the mappings changes how the system inter-
prets the user’s original question. Accordingly, these affordances

IUI ’21, April 14–17, 2021, College Station, TX, USA Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos

were intended for fixing errors or resolving ambiguities. Some par-
ticipants were aware of this and planned to revert to the original
mapping after testing. Other participants were reminded by the
notification at the bottom of the Debug View.

4.2.4 Areas for improvement: Finally, though participants were
generally positive about the system, we identified several areas of
improvement in both the DIY technique and the QA shell.
Confusion between production and sample data. The DIY
technique at present presents two distinct answers for any given
query: one for the production database, and a second for the sample
testing database. At multiple points during the study, participants
(P1, P8, P11, P14) exhibited confusion as to why the two answers
did not match. P11 commented, “OK, so it says monitor here (in the
Answer on Sample Data View), which is what I was expecting. Why
does it say CD drive, DVD drive (in the Answer on Production Data
View)?” They failed to recognize that the sample testing database
is a very small subset of the production database.
Generating a smarter sample testing database. The sample
data generation module (Section 3.3) identifies entities from the
query and defines constraints that, if satisfied, would generate a
relevant sample. As discussed earlier, practicality and feasibility
related restrictions further constrain sampling. Participants pointed
out this limitation when they encountered a sample testing data-
base that they felt they need to modify further to enable relevant
debugging. P1 commented, “For me, to build trust with the system, I
would want the system to be smart enough and return sample data
relevant to the question.” They went on to suggest the human to be
more involved in the generation of the sample data, “I wonder if I
could tell the system to return sample data post 1980 so then I can
verify if the answer is indeed correct.”
Improving the multi-modal explanations. Some participants
found it challenging to follow the explanations for certain SQL
constructs. For example, P5 did not understand multi-table JOIN
conditions. P7 worried that the use of (too many) IDs in the sample
testing database and the JOIN condition resulted in added complex-
ity. Some participants failed to interpret compound SQL clauses
(e.g., UNION) as it was presented in a linear manner just like other
SQL clauses. We will explore alternate representations for these SQL
clauses (e.g., representing subqueries in a tree-like representation,
and using animations to visualize multi-table join operations).

5 DISCUSSION AND FUTUREWORK
5.1 Notable Observations
5.1.1 Handling ambiguities between conversational and formal lan-
guage: For one of the task questions, “Which car models are produced
since 1980?,” the NL2SQL system mapped the token “since” to the
“greater than” operator. In colloquial conversation, “since” often im-
plies a “greater than or equal to” operation, and thus this mapping
needed to be fixed. It was interesting that six participants (P1, P7,
P11, P12, P15, P17) pointed out this ambiguity, commenting that it
is sometimes up to the user’s interpretation. Nevertheless, only P7
and P17 modified the mapping.

5.1.2 Leveraging manipulation to facilitate understanding: As men-
tioned earlier, some participants modified the mappings between
the question and the database entities to either test a boundary

condition (e.g., is greater than→ is less than) or to observe a change
(e.g., Price → Revenue). This was interesting as the participants
deliberately modified what were already correct mappings. We en-
vision this to be an opportunity to support data exploration within
the Debug View. For example, consider a scenario wherein a user
first asks for cars with Acceleration>100 and upon inspecting the
answer, is interested in cars with Acceleration>200 instead. Answer-
ing this question in a QA system generally involves paraphrasing
the original question.

5.2 Limitations and Future Work
5.2.1 System Limitations: While the system supports modifying
existing mappings from question tokens to database columns or
operators, it is more limited in what new mappings can be added.
For example, unmapped tokens may only be mapped to columns
previously implicated by the system’s original interpretation of the
question. Likewise, the sample data generation and the explanation
generation modules currently do not support all SQL constructs. For
example, neither module generates smart constraints ormulti-modal
explanations for window functions (e.g., OVER) or wildcard operators
(e.g., LIKE, %), since the NL2SQL backend does not currently support
these constructs.

5.2.2 Usability and Design: We have identified several improve-
ments to the Debug View design. For example, in scenarios involv-
ing multiple tables and steps, the current horizontal layout was not
easy to navigate. We are considering a switch to a vertical layout,
or showing views only on demand. Likewise, we are exploring al-
ternate layouts to better distinguish between the sample testing
database and the production database. In addition, it would be use-
ful to allow users to add columns to the Explainer View. This will
enable the creation of new mappings to columns not previously
implicated by the system’s original interpretation of the question.

5.2.3 Teach SQL:. We believe that NL2SQL can be a powerful tool
for teaching SQL and that DIY can be extended to better support
this use case. Existing tools (e.g., SQL Fiddle [10], Tryit Editor [38]
already provide users with a sandbox for executing SQL queries
on existing data sets. Adding DIY could provide a natural language
interface to help novices formulate SQL queries, and DIY’s step-by-
step multi-modal explanations may also offer pedagogical value.

6 CONCLUSION
Debug-It-Yourself (DIY) is an interactive technique that helps users
to assess NL2SQL scenarios for correctness and, if possible, fix
errors. DIY provides users with a sandbox where they can interact
with (1) the mappings between the question and the generated
query, (2) a small-but-relevant subset of the underlying database,
and (3) multi-modal explanations of the generated query. In an
exploratory user study, we investigated how DIY helps users assess
the correctness of the system’s answers, and we discussed how our
observations revealed insights about different end-user debugging
strategies, as well as the challenges in supporting such scenarios.

DIY: Debug-It-Yourself IUI ’21, April 14–17, 2021, College Station, TX, USA

ACKNOWLEDGMENTS
We thank Ahmed Elgohary, Ahmed Hassan Awadallah, Ameesh
Shah, Ben Zorn, Christian König, Chris Meek, Matthew Richardson,
Oleksandr Polozov, Tao Yu, and Xiang Deng for their feedback.

REFERENCES
[1] J. Berant, D. Deutch, A. Globerson, T. Milo, and T. Wolfson. 2019. Explaining

Queries Over Web Tables to Non-experts. In 2019 IEEE 35th International Confer-
ence on Data Engineering (ICDE). 1570–1573. https://doi.org/10.1109/ICDE.2019.
00144

[2] Sonia Bergamaschi, Francesco Guerra, Matteo Interlandi, Raquel Trillo Lado,
Yannis Velegrakis, et al. 2013. QUEST: a keyword search system for relational
data based on semantic and machine learning techniques. (2013).

[3] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. 2012. Soda: Generating sql for business users. Proceedings of the
VLDB Endowment 5, 10 (2012), 932–943.

[4] Ben Bogin, Matt Gardner, and Jonathan Berant. 2019. Global Reasoning over
Database Structures for Text-to-SQL Parsing. arXiv:1908.11214 [cs.CL]

[5] Ben Bogin, Matt Gardner, and Jonathan Berant. 2019. Representing
Schema Structure with Graph Neural Networks for Text-to-SQL Parsing.
arXiv:1905.06241 [cs.CL]

[6] John Brooke. 2013. SUS: a retrospective. Journal of usability studies 8, 2 (2013),
29–40.

[7] DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin.
2020. RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex
Text-to-SQL in Cross-Domain Databases. arXiv:2004.03125 [cs.CL]

[8] Jonathan Danaparamita and Wolfgang Gatterbauer. 2011. QueryViz: helping
users understand SQL queries and their patterns. In Proceedings of EDBT. 558–561.

[9] Ahmed Elgohary, Saghar Hosseini, and Ahmed Hassan Awadallah. 2020. Speak
to your Parser: Interactive Text-to-SQL with Natural Language Feedback.
arXiv:2005.02539 (2020).

[10] Jake Feasel. 2021. SQL Fiddle. http://sqlfiddle.com/, accessed 2021-01-01.
[11] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G Karahalios.

2015. Datatone: Managing ambiguity in natural language interfaces for data
visualization. In Proceedings of ACM UIST. 489–500.

[12] Barbara J Grosz, Douglas E Appelt, Paul A Martin, and Fernando CN Pereira.
1987. TEAM: an experiment in the design of transportable natural-language
interfaces. Artificial Intelligence 32, 2 (1987), 173–243.

[13] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. arXiv:1905.08205 [cs.CL]

[14] Pengcheng He, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. 2019. X-SQL:
reinforce schema representation with context. arXiv:1908.08113 (2019).

[15] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TAPAS: Weakly Supervised Table Parsing
via Pre-training. arXiv:2004.02349 (2020).

[16] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac Dykeman. 2018. Applying
pragmatics principles for interaction with visual analytics. IEEE TVCG 24, 1
(2018), 309–318.

[17] Mohd Ibrahim and Rodina Ahmad. 2010. Class diagram extraction from textual
requirements using natural language processing (NLP) techniques. In 2010 Second
International Conference on Computer Research and Development. IEEE, 200–204.

[18] Jan-Frederik Kassel and Michael Rohs. 2018. Valletto: A multi-modal Interface
for Ubiquitous Visual Analytics. In ACM CHI ’18 Extended Abstracts.

[19] Esther Kaufmann, Abraham Bernstein, and Lorenz Fischer. 2007. NLP-Reduce: A
naive but domainindependent natural language interface for querying ontologies.
In 4th European Semantic Web Conference ESWC. 1–2.

[20] Amol Kelkar, Rohan Relan, Vaishali Bhardwaj, Saurabh Vaichal, and Peter Relan.
2020. Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker.
arXiv:2002.00557 [cs.CL]

[21] Dae Hyun Kim, Enamul Hoque, and Maneesh Agrawala. 2020. Answering Ques-
tions about Charts and Generating Visual Explanations. In Proceedings of ACM
CHI. :1–:13.

[22] Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zervakis, Alkis Simitsis, Geor-
gia Koutrika, and Yannis Ioannidis. 2012. Logos: a system for translating queries
into narratives. In Proceedings of ACM SIGMOD. 673–676.

[23] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. 2010. Explaining structured queries in
natural language. In 2010 IEEE 26th International Conference on Data Engineering
(ICDE 2010). 333–344.

[24] Dongjun Lee. 2019. Clause-Wise and Recursive Decoding for Complex and
Cross-Domain Text-to-SQL Generation. arXiv:1904.08835 [cs.CL]

[25] Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang Gatterbauer, HV
Jagadish, and Mirek Riedewald. 2020. QueryVis: Logic-based diagrams help

users understand complicated SQL queries faster. In Proceedings of ACM SIGMOD.
2303–2318.

[26] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: an interactive natural language
interface for querying relational databases. In Proceedings of ACM SIGMOD. 709–
712.

[27] Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Berant, and Matt Gardner. 2019.
Grammar-based Neural Text-to-SQL Generation. arXiv:1905.13326 [cs.CL]

[28] A. Narechania, A. Srinivasan, and J. Stasko. 2021. NL4DV: A Toolkit for Generat-
ing Analytic Specifications for Data Visualization fromNatural Language Queries.
IEEE TVCG 27, 2 (2021), 369–379. https://doi.org/10.1109/TVCG.2020.3030378

[29] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on
Semi-Structured Tables. In Proceedings of ACL IJCNLP. 1470–1480.

[30] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory
of natural language interfaces to databases. In Proceedings of ACM IUI. ACM,
149–157.

[31] Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich Gossweiler, and Angel X
Chang. 2016. Eviza: A natural language interface for visual analysis. In Proceedings
of ACM UIST. 365–377.

[32] Vidya Setlur, Melanie Tory, and Alex Djalali. 2019. Inferencing underspecified
natural language utterances in visual analysis.. In Proceedings of ACM IUI. 40–51.

[33] Alkis Simitsis and Yannis Ioannidis. 2009. DBMSs should talk back too.
arXiv:0909.1786 (2009).

[34] Arjun Srinivasan and John Stasko. 2018. Orko: Facilitating multi-modal inter-
action for visual exploration and analysis of networks. IEEE TVCG 24, 1 (2018),
511–521.

[35] Yu Su, AhmedHassan Awadallah, Madian Khabsa, Patrick Pantel, Michael Gamon,
and Mark Encarnacion. 2017. Building natural language interfaces to web apis.
In Proceedings of ACM CIKM. 177–186.

[36] Yu Su, Ahmed Hassan Awadallah, Miaosen Wang, and Ryen W White. 2018.
Natural language interfaces with fine-grained user interaction: A case study
on web apis. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 855–864.

[37] Yiwen Sun, Jason Leigh, Andrew Johnson, and Sangyoon Lee. 2010. Articulate: A
semi-automated model for translating natural language queries into meaningful
visualizations. In Proceedings of the International Symposium on Smart Graphics.
184–195.

[38] W3Schools. [n.d.]. SQL Tryit Editor v1.6. https://www.w3schools.com/sql/trysql.
asp?filename=trysql_select_all, accessed 2020-12-29.

[39] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of ACL. Online, 7567–7578.

[40] Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao,
Oleksandr Polozov, and Rishabh Singh. 2018. Robust Text-to-SQL generation
with execution-guided decoding. arXiv:1807.03100 (2018).

[41] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating Struc-
tured Queries From Natural Language Without Reinforcement Learning.
arXiv:1711.04436 [cs.CL]

[42] Bowen Yu and Cláudio T Silva. 2019. FlowSense: A natural language interface for
visual data exploration within a dataflow system. IEEE TVCG 26, 1 (2019), 1–11.

[43] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and
Dragomir Radev. 2018. SyntaxSQLNet: Syntax Tree Networks for Complex and
Cross-DomainText-to-SQL Task. arXiv:1810.05237 [cs.CL]

[44] Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria
Lin, Yi Chern Tan, Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan Li, Luyao Chen, Yuwen
Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher, Walter S
Lasecki, and Dragomir Radev. 2019. CoSQL: A Conversational Text-to-SQL
Challenge Towards Cross-Domain Natural Language Interfaces to Databases.
arXiv:1909.05378 [cs.CL]

[45] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and
text-to-sql task. arXiv:1809.08887 (2018).

[46] Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li,
Heyang Er, Irene Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor,
Sungrok Shim, Jonathan Kraft, Vincent Zhang, Caiming Xiong, Richard Socher,
and Dragomir Radev. 2019. SParC: Cross-Domain Semantic Parsing in Context.
arXiv:1906.02285 [cs.CL]

[47] Rui Zhang, Tao Yu, He Yang Er, Sungrok Shim, Eric Xue, Xi Victoria Lin,
Tianze Shi, Caiming Xiong, Richard Socher, and Dragomir Radev. 2019. Editing-
Based SQL Query Generation for Cross-Domain Context-Dependent Questions.
arXiv:1909.00786 [cs.CL]

[48] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

https://doi.org/10.1109/ICDE.2019.00144
https://doi.org/10.1109/ICDE.2019.00144
https://arxiv.org/abs/1908.11214
https://arxiv.org/abs/1905.06241
https://arxiv.org/abs/2004.03125
http://sqlfiddle.com/
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/2002.00557
https://arxiv.org/abs/1904.08835
https://arxiv.org/abs/1905.13326
https://doi.org/10.1109/TVCG.2020.3030378
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_all
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_all
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1810.05237
https://arxiv.org/abs/1909.05378
https://arxiv.org/abs/1906.02285
https://arxiv.org/abs/1909.00786

	Abstract
	1 Introduction
	2 Related Work
	2.1 NL input and system output
	2.2 NL2SQL and SQL2NL

	3 DIY: Debug-It-Yourself
	3.1 Design Goals
	3.2 Assessing and Debugging with DIY: Example Usage Scenarios
	3.3 Generating the Sample Data
	3.4 Generating Multi-modal Explanations
	3.5 Implementation Details

	4 User Study
	4.1 Participants, Procedure, and Tasks
	4.2 Results

	5 Discussion and Future Work
	5.1 Notable Observations
	5.2 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References

