
1

Test Data Generation for Database Applications
Pooja Agrawal†, Bikash Chandra#, K. Venkatesh Emani#, Neha Garg‡, S. Sudarshan

IIT Bombay
{poojaagrwl15, bikash, venkateshek, nehagarg15, sudarsha}@cse.iitb.ac.in

Abstract—Unit test cases have become an essential tool to test
application code. Several applications make use of SQL queries
in order to retrieve or update information from a database.
Database queries for these applications are written natively in
SQL using JDBC or using ORM frameworks like Hibernate. Unit
testing these applications is typically done by loading a fixed
dataset and running unit tests. However with fixed datasets, er-
rors in queries may be missed. In this demonstration, we present
a system that takes as input a database application program,
and generates datasets and unit tests using the datasets to test
the correctness of function with queries in the application. Our
techniques are based on static program analysis and mutation
testing. We consider database applications written in Java using
JDBC or Hibernate APIs. The front-end of our system is a plugin
to the IntelliJ IDEA IDE. We believe that such a system would
be of great value to application developers and testers.

I. INTRODUCTION

Application testing is usually done by running multiple
unit test cases, each with a different set of inputs, and then
checking if the results match the expected results or not. Several
applications use databases to query and update stored data.
Database calls from an application are typically made using
either native SQL queries using frameworks like JDBC, or using
ORM (Object-Relational Mapping) frameworks like Hibernate.

Unit testing of applications that make calls to the database
is usually done by loading a fixed dataset into the database and
then running unit test cases. However, this approach of testing
using fixed datasets may result in many errors in queries being
missed since the dataset may not contain data to test these
errors. We illustrate this using the following example.

Consider the function in Fig. 1 derived from a real world
application. (In Fig. 1, we use pseudo code but our actual code
works with JDBC and Hibernate calls.) The function returns
the list of buildings along with the number of venues in the
building that are at least of the given size. In case a building
has no venues of the required size, the function should return
that building with count 0. The query q1 on line 2 fetches the
group id corresponding to the input user id. Users can access
the information on buildings corresponding to their group.
However, an admin user (group id=0) can access information
for all buildings. Both SQL queries on lines 6 and 12 are
incorrect since they will not return buildings when there are
no venues in the building of the given size. For example, with
the database instance shown in Fig. 2, and with an input size
10 and a user corresponding to group id= 3 or 0, the query

Work partially supported by fellowship from Tata Consultancy Services
† Current affiliation: dataxu
‡ Current affiliation: JPMorgan Chase & Co.

1 getNumVenues(user id, size) {
2 q1=Query(“select group id from users where user id=?”);
3 q1.setParam(1, user id);
4 group id = q1.executeQuery();
5 if(group id==0) { //admin user
6 q2=Query(“select b.b name,count(venue id) from
7 building b inner join venue v
8 on(b.b name=v.b name and v.size>=?)
9 group by b name”);
10 q2.setParam(1, size);
11 } else {
12 q2=Query(“select b.b name,count(venue id) from
13 building b inner join venue v
14 on (b.b name=v.b name and v.size>=?)
15 where b.group id=? group by b name”);
16 q2.setParam(1, size);
17 q2.setParam(2, group id);
18 }
19 return(q2.executeQuery());
20 }

Basic block Conditional Sequential
region region region
B1:2-4, B2:6-10, C1:5-18 S1:2-19
B3:12-17, B4:19

Fig. 1: Function to find number of venues

b name group id
Himalaya 3

Nilgiri 3

(a) building instance

venue id b name size
21 Himalaya 10
11 Nilgiri 5

(b) venue instance
building name count

Himalaya 1

(c) Result of function
getNumVenues

building name count
Himalaya 1

Nilgiri 0

(d) Expected result

Fig. 2: Database instances and results for size=10 and a user
with group id=3

will not list the Nilgiri building which has no room of size at
least 10. A correct query using a left outer join in place of
an inner join should list Nilgiri with count 0. Note that the
dataset has been carefully constructed to detect such an error.
On other datasets, the erroneous query may still return correct
results.

In this demonstration, we present the XDataPro system
that solves the problem of test data generation for queries in
database applications. Given an input program with embedded

2

Fig. 3: XDataPro architecture

SQL queries, XDataPro generates test datasets, program input
values, and unit tests based on these datasets and input values.
The datasets and unit tests are aimed at checking the correctness
of the queries in the program.

XDataPro leverages the DBridge [1] system for static
program analysis to identify queries and relevant constraints for
all execution paths of the program (details in Section II). The
queries and constraints are then passed on to XData [2], [3] for
data generation for each execution path. Given an input query,
XData generates multiple datasets, each targeted at catching
one or more common errors in the query. XDataPro extends
XData to generate test data for queries as well as program
input parameters by taking into account program constraints
(details in Section III).

A key difference between XData and XDataPro is that the
input to the latter is a database application, in which SQL
queries are intertwined with imperative code. Thus the queries
are not readily available and must be identified from the given
program. However, this is not trivial since queries in programs
are often constructed dynamically and different queries may be
used in different execution paths of the program. There may
be constraints on query parameters and results imposed by
the program, and results of one query may be used in another
query. For example, the program in Fig. 1 may execute one of
two queries corresponding to lines 6 or 12 based on whether
user id=0 or not. The user id itself is determined by the result
of the query q1. Hence when extracting a query from a program
for test data generation, we also need to take into account the
context of the program under which the query runs.

Once the datasets for queries in the program have been
generated, the user can check if the output matches the expected
output or not. Using these datasets and the input provided by
the user, XDataPro generates unit tests. A unit test for testing
a function consists of the inputs to the function, the dataset on
which queries are run, and the output of the function. These
unit tests may be used for regression testing in future. Fig. 3
summarizes the architecture of the XDataPro system.

Our implementation focuses on Java programs using JDBC or
Hibernate for database access, but the techniques themselves are
not tied to any programming language or data access framework.
The front-end to our test generation tool is a plugin for the
IntelliJ IDEA IDE. The plugin enables users to interact with
our system through a simple graphical user interface. Details
are described in Section IV.

II. PROGRAM ANALYSIS

In this section, we discuss our techniques that use static
program analysis to identify the queries, and the constraints
on query inputs/outputs from a database application program.

Fig. 4: Walk-through of IR construction

We first discuss our intermediate representation (IR) before
outlining our approach and supported program constructs.

Real world programs can contain complex control flow
including branching and loops. In our approach, we use the
concept of program regions to systematically construct our
IR for such complex programs. Regions [4] are structured
fragments in a program, such as straight line code, if-else
blocks, loops, etc. A basic block region represents straight line
code, a conditional region represents an if-else block, a loop
region represents a loop, and a sequential region represents a
sequence of two (or more) regions one after another. Program
regions can be constructed by identifying patterns in the control
flow graph of a program (refer [1] for details). Regions for
Fig. 1 are shown alongside the code.

A. Intermediate Representation

Our IR is based on the DAG based representation for
database applications proposed by Emani et al. [1] for trans-
lating imperative code to SQL. The IR from [1] is essentially
a variable to expression map. The expression represents the
value of the variable at any point in the region/program in
terms of the region/program inputs (intermediate assignments
are bypassed). In this paper, we use an array of such variable-
expression maps, one map for each alternative execution path
in the program. Each map is also annotated with a condition.
The map is valid for the program execution path in which the
annotated condition evaluates to true.

Fig. 4 illustrates the IR construction for the program in Fig. 1
(details in Section II-B). The IR after Step 3 (labeled S1),
consists of two maps corresponding to whether the group id
corresponding to the user is ‘0’ or not. These correspond to
the two execution paths generated by the if-else construct from
line 5 of Fig. 1.

B. IR Construction using Regions

Each node in the IR is annotated with its corresponding
region, as marked in the program. The first step is to construct
IR for basic blocks. This is shown alongside Step 1 in
Fig. 4. Note that the IR for each basic block consists of a

3

single variable to expression map, and there are no conditions
associated with the map. Merging the blocks B2 and B3
into conditional region C1 in step 2 gives us two maps, one
corresponding to group id=0 and the other corresponding to
group id!=0. Merging the blocks B1, C1 and B4 in step 3
gives us the final IR with maps and relevant conditions for
each program execution path. Note that our approach for IR
construction also performs constant folding for dynamically
constructed queries.

Once we have the final IR, in step 4, we consider each path
separately extract the queries and the conditions for the path.
The extracted queries and conditions are then passed to XData
for generating test data and unit tests to test each execution
path. Note that for path 2 the group id input of q2 depends on
the result of query q1. We take this into account by expressing
the group id parameter in q2 in terms of the query q1.

C. Supported Program Constructs

Our system is able to extract queries and constraints from
real world programs with complex control flow. The program
constructs handled by our system include
• Arbitrary levels of if-else branching, interspersed with

straight line code. Fig. 5a in Section IV is one such example.
• Arbitrary levels of nested function calls without recursion.
• Reuse and reassignment of variables. The same variable

may be used to construct and execute multiple queries, at
different program points. Our system is able to extract all
such queries.

• Multiple queries in the same program execution path.
• Chained queries where the results of one query are used

(directly or indirectly) to construct another query.
• Constraints on query parameters and constraints on result

set attributes.
• Loops: We only consider cursor loops with some restrictions,

detailed below.
Restrictions on Loops: In general, the number of iterations in
a loop is unknown at compile time. A special case of loops
that iterate over a query result set/collection, which are called
cursor loops, are widely used in database applications for
iteratively processing query results. Our system supports test
data generation for programs containing cursor loops.

When the loop body does not contain any branching, all
the paths in the loop are covered by the following datasets: (i)
empty dataset to cover the case with no iterations of the loop,
and (ii) other datasets to cover the loop body.

If the loop body has branching and if the branch conditions
are all predicates of the current tuple or loop invariant variables
only, we generate SQL queries such that generated datasets
would be sufficient to cover every path present inside the loop
at least once. For other cases of branching inside the loop body,
the number of possible paths is not bounded by the program
size, and it may not be possible to determine the sequence of
paths using static program analysis techniques.
Applications Using ORM: SQL queries are explicit in JDBC
programs. However, in programs using the Hibernate ORM,
joins may also be implicitly realized by specifying associations
between attributes of mapped classes. DBridge is able to obtain

explicit SQL queries in such cases [1], from which XData can
generate datasets. Consider the following code snippet extracted
from Wilos, an open source orchestration software.

for(Project p: getAllProjects())
if(!(p.isFinished()))

unfinP.add(p.getId());
The above code computes the set of projects whose status is

marked as unfinished. getAllProjects() internally uses Hibernate
API calls to fetch the list of all projects. This list is then filtered
inside the application and a set of project id’s satisfying the
condition are returned.

Given such a program, our system first translates this
program into an equivalent program that uses SQL queries,
using DBridge. DBridge contains techniques to translate
relational operations such as projections, selections, joins and
aggregations performed using loops in imperative code into a
query. For instance, the above program is translated as follows:

Query query = Utils.getSession().createSQLQuery
(“select id from Project where isFinished <> 1”);

The approach discussed in Section II-B can then be used to
extract queries and relevant constraints. We omit details of the
translation to SQL, for lack of space.

III. TEST DATA GENERATION

Once the SQL query and relevant constraints from the
program are obtained, we use the XData system [2], [3] for
generating the test datasets. The datasets are designed to catch
common errors in SQL queries. The errors in queries are
modeled as query mutations. A dataset that is able to produce
different results on the correct query and its mutant (thereby
showing that the mutant is not equivalent to the correct query)
is said to kill the mutations.

The type of mutations considered include join type mutations
(inner/outer), join condition mutations, selection condition
mutations, aggregate operator mutations, group by attribute
mutations, mutations in string patterns, like clause mutations,
distinct clause mutations, subquery connective mutations and
set operator mutations, amongst others. XData generates several
datasets for each query. Each dataset is targeted to kill one or
more mutations. In order to kill a mutation we need to ensure
that the dataset satisfies some constraints. XData encodes these
constraints along with database constraints in the CVC3 [5]
solver. XData then uses the solver to generate a dataset that
satisfies the constraints.

In the case of testing applications with embedded queries,
which is the focus of this paper, there may be additional
constraints due to the program in addition to the constraints
imposed by the query. We appropriately encode any such
arithmetic/string constraints imposed by the program into
constraints that we pass to the solver. We also pass the program
input parameters to the solver to get back values that may be
used when invoking the program/interface for unit testing.

Related Work: Although mutation testing is a well know
technique for testing applications in general, these techniques
do not consider queries embedded in the application. Pan et
al. [6] and Emmi et al. [7] focus on test data generation to
ensure path coverage for database applications but do not take

4

(a) Function for test data generation (b) User interaction on test results (c) Unit test case

Fig. 5: Unit test generation for a sample application

into account testing of SQL queries. Qex [8] generates a test
database for a database application along with query parameters
such that certain properties in the query results are satisfied (e.g.
the query result is non-empty) but does not consider mutation
testing of queries. Sarkar et al. [9] consider mutation testing
of queries in database applications but only handles mutations
involving WHERE and HAVING clause, unlike our system.

IV. DEMONSTRATION

In this section, we describe the use of our plugin to
configure and use the XDataPro system. Our demonstrations
will showcase the ability of XDataPro to (a) identify queries in
database applications, (b) generate test data for these queries
and program inputs, and (c) generate unit tests that use the
generated test data.

Our demonstration will use Java programs that access the
database using JDBC or Hibernate. Programs derived from real
world applications as well as sample programs based on the
University schema from [10] and the TPC-H schema will be
provided. These applications will contain SQL queries that have
some errors. A PostgreSQL database would also be provided
against which the programs can run.

The plugin can be installed as a third party tool on top of
an existing IntelliJ IDEA installation. Installing the plugin will
add a new main menu item titled “XDataPro”. This is shown
in Fig. 5a. Selecting the “Generate Test Data” sub-menu item
triggers XDataPro to identify all the queries in the currently
active file, and generate datasets and function parameter values
for testing the correctness of functions containing queries. The
generated datasets and parameter values are stored in a database,
and loaded as required for unit tests. Users can also direct
the plugin to consider only certain functions for testing, by
using the annotation @TestdataGen. This annotation is used
in Fig. 5a for the function getNumVenues.

For each function containing queries, the generated datasets
are loaded one at a time, the function is executed on the
generated parameter values, and the result is displayed to
the user in the form of a user interaction window, as shown
in Fig. 5b. Fig. 5b corresponds to a specific invocation of
our plugin on the SampleApp class from Fig. 5a. The window
displays the function name (SampleApp.getNumVenues), dataset

id (DS1), function input parameter values (user id:1234,
size:10), and the generated dataset, along with the output of
running the function using these values.

The user is asked to mark if the function’s output matches
the expected output for the given function inputs values and
the dataset. Once all the datasets have been marked for a
function, unit tests are generated for the function from a
predefined template, using the function signature and details
of the database containing generated datasets and parameter
values. One sample unit test case generated for the function
getNumVenues is shown in Fig. 5c. These unit tests are added
to the test suite for use in future regression testing.

V. CONCLUSION

We have described the XDataPro system that generates
data to test SQL queries used inside applications code. Our
framework can be used to complement the existing test cases
so that both imperative code and database queries can be tested.
Handling more program constructs is an area of future work.

REFERENCES

[1] K. V. Emani, K. Ramachandra, S. Bhattacharya, and S. Sudarshan,
“Extracting equivalent SQL from imperative code in database applications,”
in SIGMOD, 2016.

[2] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and
S. Sudarshan, “Data generation for testing and grading SQL queries,”
The VLDB Journal, vol. 24, no. 6, 2015.

[3] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira,
“Generating test data for killing SQL mutants: A constraint-based
approach,” in ICDE, 2011.

[4] S. S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[5] C. Barrett and C. Tinelli, “CVC3,” in Computer Aided Verification (CAV),
2007, pp. 298–302.

[6] K. Pan, X. Wu, and T. Xie, “Generating program inputs for database
application testing,” in ASE, 2011, pp. 73–82.

[7] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” in ISSTA, 2007, pp. 151–162.

[8] M. Veanes, N. Tillmann, and J. de Halleux, “Qex: Symbolic SQL query
explorer,” in LPAR, 2010, pp. 425–446.

[9] T. Sarkar, S. Basu, and J. Wong, “iConSMutate: Concolic testing of
database applications using existing database states guided by SQL
mutants,” in ITNG, 2014, pp. 479–484.

[10] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts.
McGraw Hill, 6th ed., 2010.

	Introduction
	Program Analysis
	Intermediate Representation
	IR Construction using Regions
	Supported Program Constructs

	Test Data Generation
	Demonstration
	Conclusion
	References

