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ABSTRACT

As data lakes become increasingly popular in large enter-
prises today, there is a growing need to tag or classify data
assets (e.g., files and databases) in data lakes with additional
metadata (e.g., semantic column-types), as the inferred meta-
data can enable a range of downstream applications like
data governance (e.g., GDPR compliance), and dataset search.
Given the sheer size of today’s enterprise data lakes with
petabytes of data and millions of data assets, it is impera-
tive that data assets can be “auto-tagged”, using lightweight
inference algorithms and minimal user input.
In this work, we develop Auto-Tag, a corpus-driven ap-

proach that automates data-tagging of custom data types
in enterprise data lakes. Using Auto-Tag, users only need
to provide one example column to demonstrate the desired
data-type to tag. Leveraging an index structure built offline
using a lightweight scan of the data lake, which is analogous
to pre-training in machine learning, Auto-Tag can infer
suitable data patterns to best “describe” the underlying “do-
main” of the given column at an interactive speed, which
can then be used to tag additional data of the same “type”
in data lakes. The Auto-Tag approach can adapt to custom
data-types, and is shown to be both accurate and efficient.
Part of Auto-Tag ships as a “custom-classification” feature
in a cloud-based data governance and catalog solution Azure
Purview.
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1 INTRODUCTION

Large enterprise data lakes are increasingly common today,
often with petabytes of data and millions of data assets (e.g.,
flat files or databases). Given their sheer sizes, it has become
increasingly important to govern and catalog data lakes, as
evidenced by a growing number of offerings from startups
and established vendors, such as Azure Purview [4], AWS
Glue Catalog [3], Google Cloud Data Catalog [8], Alation [1],
Waterline [12], Collibra [6], etc.

Figure 1: Azure Purview: sample columns in an ex-

ample file “Contoso_Dev_IncomeStatement.tsv”, are

automatically tagged as “Personal.IP Address”, “Con-

toso.CustomerId”, “US.ZIP Code”, etc.

A key challenge in governing data lakes is data tagging
(also known as classification), which is the process of infer-
ring rich metadata (e.g. semantic column-types) from data.
Such inferred metadata are critical for downstream applica-
tions such as data governance and data discovery:

Data governance.Data protection regulations such as GDPR,
PCI and CCPA impose strict requirements on how sensitive
personal data can be retained and accessed. To ensure com-
pliance, it is imperative that enterprises can automatically
identify sensitive data assets in their data lakes, so that these
data assets can be governed in accordance with regulatory
requirements.

Data discovery. In order to improve the productivity of en-
terprise workers, it is increasingly important for enterprise
workers to discover and leverage data assets relevant to their
tasks, using self-service mechanisms such as data-set search.
Given the large number of data assets in modern enterprise
data lakes, and their nondescript, sometimes cryptic, nature,
datasets search is clearly challenging (compared to the web
search for exampled) [22]. Suitable metadata tags/classifica-
tions associated with data assets can significantly improve
search relevance, and enhance the overall usefulness of en-
terprise data lakes.
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Figure 2: An example spreadsheet from Contoso, with many enterprise-specific “custom” data-types.

Figure 3: Azure Purview UI for custom-classification

by-example: after uploading an example data file,

columns with inferred patterns will be suggested for

user to inspect and approve.

Auto-tagging of “standard” data-types. Given the im-
portance of data tagging, it is no surprise that leading ven-
dors in this space all have features relating to automated
data-tagging.

Figure 1 shows a data-tagging feature inAzure Purview [4].
Out of the box, the system can already recognize 100+ stan-
dard data types commonly found in the public domain [5].1
In this particular example, it detects a few sample columns
to be of type “IP Address”, “US Zip Code”, etc. Note that
these are well-known data-types from the public domain,
henceforth refer to as “standard” data-types.

Because standard data-types are well-known and their cor-
responding “data-taggers” can be reliably tested beforehand,

1Note that many of these data-types are sensitive in nature, making them
particularly relevant to data governance and catalog vendors.

auto-tagging features for standard data-types are readily
available and work well “out-of-the-box” in today’s data-
catalog and governance vendors (using a combination of
techniques like predefined regex patterns, bloom-filters, etc.).

Auto-tagging of “custom” data-types. While standard
data-types capture an important class of use cases, we ob-
serve that there is also a large number of “custom” enterprise
data types, which are unique to different industries and en-
terprises.

In the example of Figure 2, column B contains unique IDs
that this company Contoso (a fictional company) assigns
to their customers – in this case, these values have a pre-
fix of “CUST#” followed by six hexadecimal characters (e.g.,
“CUST#0FF125”). Ideally, we want to tag columns of this type
as a new custom data-type “Contoso.CustomerId”, like shown
in the second column of Figure 1. However, Contoso’s way
of identifying customers is likely unique, as other compa-
nies may devise their own unique-identifiers for customers –
for example, another company may use customer-identifiers
that have a string prefix of “C-” followed by a unique nine-
digit number (e.g., “C-123456789”), while yet another com-
pany may choose to use other types of UUID. These different
forms of customer-ids are custom-made (generated by some
programs) and unique to each enterprise, which are thus not
well-known “standard” data-types that a general-purpose
data-catalog solution can possibly anticipate.
There are a large number of such custom data-types in

today’s enterprises. Figure 4 shows a few example custom
data-types, harvested from a real production data lake at
Microsoft [15]. Each column here has a distinctive data pat-
tern, which uniquely identifies a custom data-type widely
used inside the company. For instance, the first column is
known as Knowledge-Base entity-id (Satori [21]), which is
a unique ID assigned to real-world entities and used by the
search engine Bing. Similarly, the second column encodes
the delivery status of Bing ads, etc.

Methods developed for tagging “standard” data types are
clearly inapplicable for these idiosyncratic “custom” data
types, because they are unique to different enterprises, and
unlikely to be found from the public domain or other enter-
prises.



Figure 4: Example “custom” data types, crawled from an enterprise data-lake at Microsoft. Each column has a

distinctive data pattern in proprietary formats, encoding specific meanings. These custom data types are all com-

mon, occurring in at least 5000 columns in our sample crawl with 7M columns.

This motivates us to look into ways that can tag custom
enterprise data-types, with minimal input from users.

Tagging custom-types by-examples.Unlike auto-tagging
of standard data types, which can be expected to work out-of-
box, we believe that tagging custom enterprise data types re-
quires some amount of human input, (e.g. from data-owners
or domain-experts), to (1) determine relevant data of interest
to “tag”, and (2) provide suitable and meaningful tags that
can describe the underlying meaning of the custom data-type
(i.e., an algorithm may infer values of the form “CID-12345”
to be a unique data-type, but cannot be sure of its meaning).

We believe that a human-in-the-loop approach to tagging
custom data-types have two key desiderata:

• Low human-cost. The system should require minimal
input from enterprise users, ideally needing users to provide
only one example column to demonstrate the custom data
type of interest (e.g., an example column in Figure 4). Note
that this is different from typical machine-learning tasks –
asking users to repeatedly provide feedback in the form of
positive/negative labels to tag one custom data type can be
too costly in this setting.

• Low execution-cost. It is also important that any tag-
inference algorithm needs to be lightweight, in order for
the feature to be cost-effective on large enterprise data lakes.
Although a deep analysis (e.g., a full scan) of the data lake will
typically yield better predictive accuracy, the scale of the data
(e.g., petabytes) makes a full scan too expensive. Thus, auto-
tagging algorithms should only perform a lightweight scan
(e.g. a row-wise sample per asset), in order for the feature to
be viable in terms of COGS.
In Section 2, we will discuss why existing techniques

(e.g., [16, 25, 38–40]) may be insufficient in such a setting,
either due to high human-costs, or high execution-cost.

In this work, we develop an initial version of this auto-
tagging feature called Auto-Tag. Unlike standard machine-
learning, Auto-Tag has the advantage of requiring only
one labeled example column (low human costs), and unlike
content-based or dictionary-based approaches, does not re-
quire a full scan of data files (low execution costs), because
patterns can be reliably generalized from small samples.
Using a variant of an algorithm we develop in [34], we

first perform lightweight (row-wise sampled) scans of data
lakes offline, to build a succinct index structure that is analo-
gous to pre-training inmachine-learning. At online inference
time, given an example column of interest users point us to,
Auto-Tag leverages the offline index to produce relevant
data patterns that can accurately describe the underlying
domain of the custom type of interest.

Figure 3 shows a by-example auto-tagging feature in Azure
Purview, which uses this technology to auto-tag custom data-
types. From the UI, users can easily upload a data file with
target columns of interest. Leveraging a succinct index struc-
ture built offline, a list of suggested data-tagging patterns
can be produced at an interactive speed, so that users can
pick the desired pattern corresponding to the column of in-
terest, inspect the suggested pattern, before approving the
data-tagging rule. The tagging-rule so created would then
be used to tag additional columns in the data lake matching
the given pattern during data scans.
Our experiments using real data from a production en-

terprise data lake at Microsoft [15] suggest that Auto-Tag
is both accurate and cost-efficient, for tagging custom data-
types. We report experimental results in Section 4.



2 RELATEDWORKS

Auto-tagging of data assets is an important topic, given the
abundance of data in data lakes today. We will review related
data-tagging techniques below2, and discuss why they are
not immediately applicable to our problem (high human-cost
or execution cost).
We emphasize that different classes of techniques below

are often suitable for orthogonal types of data (e.g., natural-
language content vs. machine-generated data), and thus do
not subsume each other.

Data-tagging by value-patterns. It is reported that a
substantial fraction of enterprise data columns have regex-
like patterns [34], for which pattern-based approaches are
the most suitable.
There are many existing techniques from the data pro-

filing literature, which infers patterns based on example
data-values. These include research prototypes like Potter’s
wheel [32], X-System [26], LearnPads [19, 20], FlashPro-
file [29], and commercial implementations like Microsoft
SQL Server SSIS [10], Trifacta [11], Ataccama [2].

As we will highlight in Section 3, the goal of data-profiling
is distinctively different from data-tagging – it aims to find
patterns to succinctly summarize given data values only,
which tend to produce overly-specific (or under-generalized)
patterns, which yield low recall when used for auto-tagging.
There is significant room for improvement, and is the focus
of our corpus-driven Auto-Tag approach.

Data-tagging by machine learning models. Machine-
learning or deep-learning based approaches, such as Auto-
EM [40], Sherlock [25] and Sato [39], have been developed to
tag columns with natural-language content (e.g., company-
names, people-names, etc.). Such approaches, however, are
often a poor fit for machine-generated data (e.g., GUID,
employee-ID, etc.), and would complement pattern-based
approaches. Such approaches also typically require a non-
trivial amount of labeled data, increasing the cost of adoption
for tagging custom enterprise data-types (high human costs).

Data-tagging by value-overlap. Techniques have also
been developed to tag columns based on value overlap in
enterprise tables [16] and web tables [35, 36], where the idea
is that if a substantial fraction of values in a given column
match a known dictionary of values (e.g., a known list of
department-names or product-names), then the column can
be tagged accordingly.

When such “dictionaries of values” for enterprise concepts
are not known a priori, techniques are developed to harvest
such “dictionaries” for data-tagging. These techniques are

2We focus on techniques that produce tags based on data-values in columns.
Orthogonal techniques leveraging other types of information also exist, e.g.,
program-flows [33].

known in the literature as set expansion [23, 31, 37], con-
cept discovery [27, 28], and more broadly knowledge-base
construction [14, 18, 21, 24]. These approaches, however,
typically require full-scans for high recall, thus introducing
high execution-costs.

Data-tagging by synthesized programs. Because val-
ues of certain data types (e.g., credit-card numbers, UPC
codes) have unique signatures such as check-sums, which
can only be detected via specific program-logic, program-
synthesis based data-tagging have been proposed, which
synthesize type-detection functions using existing code [38].
Such approaches, however, requires the presence of a enterprise-
specific code repository to be effective.
3 AUTO-TAG BY-EXAMPLES

Given the need of low human-costs and execution-costs
discussed above, in this work we set out to solve the auto-
tagging problem, for string-valued custom-types with syn-
tactic patterns (our prior study [34] suggests that this is an
important class accounting for around 40% string-valued
columns in a production data lake).

We will first briefly describe the pattern language used.

3.1 Preliminary: Pattern Language

We use a standard pattern language (similar to [32]). Other
languages can also be plugged in Auto-Tag to produce cor-
responding patterns.

Figure 5 shows a standard generalization hierarchy, where
leaf-nodes represent the English alphabet, and intermediate
nodes (e.g., <digit>, <letter>) represent token that values
can generalize into. A pattern is a sequence of (leaf or in-
termediate) tokens, and for a given value 𝑣 , this hierarchy
induces a space of all patterns consistent with 𝑣 , denoted
by P(𝑣). For instance, for a value 𝑣 = “9:07”, we could gen-
erate P(𝑣) = {“<digit>:<digit>{2}”, “<digit>+:<digit>{2}”,
“<digit>:<digit>+”, “<num>:<digit>+”, “9:<digit>{2}”, . . . },
among many other options.

Given a column𝐶 for which patterns need to be generated,
we define the space of candidate patterns, denoted by P(𝐶),
as the set of patterns consistent with values 𝑣 ∈ 𝐶 . We use
an in-house implementation to produce patterns based on
the hierarchy in Figure 5 (other hierarchies and languages
can be applied similarly in Auto-Tag).

3.2 Find Suitable “Domain” Patterns

Given the pattern language P described above, and given a
data lake, consisting of a large collection of tables T (which
can be flat files such as .csv, .tsv, .xls, .json, as well as database
files and database tables, etc.), at a high level our auto-tagging
problem can be stated as follows.
Definition 1. Auto-tag by-examples. Given a data lake

of tables T, users demonstrate a desired action to tag data of



type 𝑡 , by providing one example column 𝐶 ∈ T consisting
of a set of values 𝐶 = {𝑣𝑖 } that are of type 𝑡 , and a tag 𝑛(𝑡)
describing this type 𝑡 . Let P(𝐶) be the set of all data-patterns
consistent with 𝐶 , our goal is to select a suitable pattern
𝑝 ∈ P(𝐶), such that for any data column 𝐷 ∈ T, if 𝑝 ∈ P(𝐷)
or 𝑝 also matches the column 𝐷 , then 𝐷 is also likely of type
𝑡 (can be tagged as 𝑛(𝑡)).

Example 1. As a concrete example, users provide an ex-
ample column 𝐶1 shown in Figure 8, as well as a tag 𝑛(𝐶1),
say “date”. The system should suggest a suitable pattern
“<letter>{3} <digit>{2} <digit>{4}” that best describe the
underlying data “domain”. Once this is reviewed and ap-
proved by users, it can be used to tag additional columns in
T matching the same pattern (with tag “date”).

One challenge is that P(𝐶) is large (there are manyways to
“generalize” a column 𝐶 into patterns). For a simple column
of date-time strings like in Figure 6, and using a standard
generalization hierarchy as in Figure 5, one could produce
over 3 billion possible patterns. For example, the first part
(digit “9” for month) alone can be generalized in 7 different
ways shown in the top-right box of Figure 6, and the cross-
product at each position creates a large space (3.3 billion
patterns) for this seemingly simple column.

Given a large space of candidates P(𝐶), the key is to:
(1) Not “under-generalize”: or use overly restrictive pat-

terns, which lead to low recall for data-tagging; and
(2) Not “over-generalize”: or use overly generic patterns

(e.g. the trivial “.*”), which lead to low precision.
These are the key reasons why related techniques like

pattern-profiling (e.g., Potter’s Wheel [32], PADS [19], X-
System [26], FlashProfile [30], etc.) are not directly applicable
to data-tagging, because they have very different objectives.
Specifically, the goal of pattern-profiling is to succinctly

“summarize” a given set of values in column 𝐶 , so that users
can quickly understand what is in 𝐶 without needing to
scroll/inspect the entire 𝐶 . Such techniques explicitly con-
sider only values in 𝐶 , without needing to consider values
not present in 𝐶 (e.g., other valid values that are in the same
“domain” as 𝐶).

For example, classical pattern profiling methods like Pot-
ter’s Wheel [32] and FlashProfile [30] would correctly gen-
erate a desirable pattern “Mar <digit>{2} 2019” for 𝐶1 in
Figure 8, which is valuable from a pattern-profiling’s per-
spective as it succinctly describes all given values in 𝐶1.
However, this pattern is not suitable for data-tagging, as
it under-generalizes and would miss many similar date-time
columns like “Apr 01 2019”, thus yielding low recall. A more
appropriate data-tagging pattern should instead describe the
entire “domain” of possible values for this data-type, e.g.,
“<letter>{3} <digit>{2} <digit>{4}”.

Figure 5: Example generalization hierarchy.

Figure 6: Possible ways to generalize a column of date-

time strings, using the hierarchy in Figure 5.

A key challenge here is to select suitable patterns from
P(𝐶), when only one example column 𝐶 is given. This is
intuitively difficult if we only look at 𝐶 – for the date exam-
ples in Figure 8, we as humans know the ideally-generalized
pattern for this type, but for data from proprietary domains
with ad-hoc formats (e.g., Figure 4), even humans may find
it hard and need to use additional evidence to reason about
ideal patterns to describe the corresponding “domain” (e.g.,
by inspecting similar-looking columns in the lake T).
Following this intuition, we propose a corpus-driven ap-

proach Auto-Tag that leverages summary statistics of T
(with similar-looking columns) to determine the best pattern,
which we describe next.

3.3 Auto-Tag: Estimate Pattern Quality

Intuitively, a pattern 𝑝 (𝐶) ∈ P(𝐶) is a good domain pattern
if it captures all valid values from the same domain, and a
“bad” pattern if it under-generalizes or over-generalizes.

Avoid under-generalization.We show that it is possible
to infer whether 𝑝 (𝐶) under-generalizes, using summary
statistics from T (without human input).
Example 2. The left of Figure 7 shows a query column

𝐶 for which domain patterns need to be generated. A few
candidate patterns in P(𝐶) are listed in the middle. In this
example, we know that 𝑝1 (𝐶), 𝑝2 (𝐶), 𝑝3 (𝐶) are “bad” because
they under-generalize the domain (too “narrow”).
We show that this can be inferred using T alone. Specif-

ically, 𝑝1 (𝐶) likely under-generalizes the domain, because
we can find many columns like 𝐷 ∈ T shown on the right



Figure 7: Given a column 𝐶, leverage tables in a data lake T, to infer whether candidate patterns 𝑝 (𝐶) over-

generalize or under-generalize.

of Figure 7 that are “impure” – these columns contain val-
ues that match 𝑝1 (𝐶), as well as values that do not (e.g.,
“9/11/2019 09:12:03 AM”, where the day part does not match
𝑝1 (𝐶)). A large number of “impure” columns likely indicate
under-generalizations.

We can show that 𝑝2 (𝐶) also likely under-generalizes the
domain, as it makes many columns like 𝐷 “impure” (the “PM”
part does not match 𝑝2 (𝐶)).
The same can be said about 𝑝3 (𝐶) (values like “10:02:20

AM” are inconsistent with 𝑝3 (𝐶) because they have two-digit
hours, whereas 𝑝3 (𝐶) uses a single <digit>).
Using 𝑝5 (𝐶) to describe the domain, on the other hand,

would not yield many “impure” columns in T, suggesting
that it does not under-generalize the domain.

Intuitively, we can use the impurity of 𝑝 on data columns
𝐷 ∈ T, measured as the fraction of values in 𝐷 not matching
𝑝 , to infer whether 𝑝 is an under-generalization:

Definition 2. The impurity of a candidate pattern 𝑝 on a
data column 𝐷 ∈ T, is defined as:

Imp𝐷 (𝑝) =
|{𝑣 |𝑣 ∈ 𝐷, 𝑝 ∉ P(𝑣)}|

|{𝑣 |𝑣 ∈ 𝐷}| (1)

Example 3. In Figure 7, Imp𝐷 (𝑝1) can be calculated as 2
12 ,

since the first 2 values (with “9/11/2019”) out of 12 do not
match 𝑝1. Similarly, Imp𝐷 (𝑝3) can be calculated as 8

12 , since
the last 8 values in 𝐷 (with two-digit hours) do not match
𝑝3.

Finally, Imp𝐷 (𝑝5) is 0
12 , since all values in 𝐷 match 𝑝5.

We note that if 𝑝 (𝐶) is used to tag data in the same domain
as 𝐶 , then Imp𝐷 (𝑝) directly corresponds to expected false-
negative-rate (FNR), or recall-loss for data-tagging tasks.
Definition 3. The expected false-negative-rate (FNR) of

using pattern 𝑝 (𝐶) to tag a data column 𝐷 drawn from the
same domain as 𝐶 , denoted by FNR𝐷 (𝑝), is defined as:

FNR𝐷 (𝑝) =
FN𝐷 (𝑝)

TP𝐷 (𝑝) + FN𝐷 (𝑝)
(2)

Where TP𝐷 (𝑝) and FN𝐷 (𝑝) are the number of false-positive
detection and true-negative detection of 𝑝 on 𝐷 , respectively.
Note that since 𝐷 is from the same domain as 𝐶 , ensuring
that TP𝐷 (𝑝) and FN𝐷 (𝑝) = |𝐷 |, FNR𝐷 (𝑝) can be rewritten
as:

FNR𝐷 (𝑝) =
|{𝑣 |𝑣 ∈ 𝐷, 𝑝 ∉ P(𝑣)}|

|{𝑣 |𝑣 ∈ 𝐷}| = Imp𝐷 (𝑝) (3)

Thus allowing us to estimate FNR𝐷 (𝑝) using Imp𝐷 (𝑝).
Example 4. Continue with Example 3, it can be verified

that the expected FNR of using 𝑝 as the domain pattern for𝐷 ,
directly corresponds to the impurity Imp𝐷 (𝑝) – e.g., using
𝑝1 to tag 𝐷 has FNR𝐷 (𝑝1) = Imp𝐷 (𝑝1) = 2

12 ; while using 𝑝5
to tag 𝐷 has FNR𝐷 (𝑝5) = Imp𝐷 (𝑝5) = 0, etc.
Based on FNR𝐷 (𝑝) defined for one column 𝐷 ∈ T, we

can in turn define the estimated FNR on the entire corpus T,
using all column 𝐷 ∈ T where some value 𝑣 ∈ 𝐷 matches 𝑝 :
Definition 4. Given a corpus T, we estimate the FNR of

pattern 𝑝 on T, denoted by FNRT (𝑝), as:
FNRT (𝑝) = avg

𝐷∈T,𝑣∈𝐷,𝑝∈P(𝑣)
FNR𝐷 (𝑝) (4)

Example 5. Continue with the 𝑝5 in Example 3 and Ex-
ample 4. Suppose there are 5000 data columns 𝐷 ∈ T where
some value 𝑣 ∈ 𝐷 matches 𝑝5. Suppose 2000 columns out
of the 5000 have FNR𝐷 (𝑝5) = 0, and the remaining 3000
columns have FNR𝐷 (𝑝5) = 50%. The overall FNRT (𝑝5) can
be calculated as 3000∗50%

5000 = 30%, using Equation (4).
Avoid over-generalization. So far we have focused on

avoiding under-generalization. Similarlywe should also avoid
over-generalization, such as 𝑝8 and 𝑝9 shown in Figure 8. We
achieve this by measuring coverage of pattern 𝑝 over T.

Definition 5. The coverage of a candidate pattern 𝑝 on T,
is defined as:

Cov(𝑝) = |{𝐷 |𝐷 ∈ T, 𝑝 ∈ P(𝐷)}| (5)



Intuitively, among all candidate patterns that do not under-
generalize (using impurity-based estimates), we should pick
the pattern with the least coverage, which is the least likely
to over-generalize.

Example 6. Recall that in Example 2, we infer that 𝑝1 (𝐶),
𝑝2 (𝐶) and 𝑝3 (𝐶) likely under-generalize (thus can be ex-
cluded), while 𝑝5 (𝐶), 𝑝8 (𝐶) and 𝑝9 (𝐶) do not. For the re-
maining patterns, given a data lake with 10M columns, we
find the coverage of 𝑝5 (𝐶), 𝑝8 (𝐶) and 𝑝9 (𝐶) to be 20K, 500K
and 10M, respectively. We can then pick 𝑝5 (𝐶) as the suitable
pattern for auto-tagging, as it does not under-generalize, and
at the same time is the least likely to over-generalize.

Given this intuition, we formalize pattern-inference as an
optimization problem below.

3.4 Problem Formulation: CMDT

We now describe the basic version of Auto-Tag as follows.
Given an input query column 𝐶 and a background corpus T,
we need to produce a domain pattern 𝑝 (𝐶), such that 𝑝 (𝐶)
is expected to have a low FNR but also with few false posi-
tives. We formulate this as an optimization problem, called
Coverage-Minimizing version of Data-Tagging (CMDT), de-
fined as:

(CMDT) min
𝑝∈P(𝐶)

CovT (𝑝) (6)

s.t. FNRT (𝑝) ≤ 𝑟 (7)
CovT (𝑝) ≥ 𝑚 (8)

Equation (7) states that the expected recall loss of using
𝑝 as the domain pattern for 𝐶 , estimated from FNRT (𝑝), is
lower than a given threshold 𝑟 . Equation (8) is an optional
constraint that requires the coverage of 𝑝 , CovT (𝑝), defined
as the number of columns in T that match 𝑝 , to be greater
than a given threshold𝑚 (otherwise the custom data-type
may be too niche to be interesting).
The domain pattern 𝑝 we produce for 𝐶 is then the mini-

mizer of CMDT from the space of all candidate patterns P(𝐶)
(Equation (6)), which as discussed minimizes the chance of
over-generalization (and false-positives in auto-tagging) for
a given recall constraint.

We should note that the CMDT formulation is closely re-
lated to the FMDV problem in [34]. The two problems share
the same problem structure but use different objective func-
tions (tailored to data-tagging and data-validation, respec-
tively). We leverage similar vertical-cut and horizontal-cut
algorithms in [34], and also optimization methods (light-
weight scan with offline indexing). Together, these mech-
anisms achieve (1) interactive response time and (2) cost
effectiveness (by scanning a small fraction of rows per file).
We refer readers to [34] for details of the algorithms in the
interest of space.

Figure 8: Example showing different patterns pro-

duced for data-profiling vs. data-tagging, because the

two have very different objectives.

4 EXPERIMENTS

We implement our offline indexing algorithm in a Map-
Reduce-like language called Scope [41] with UDFs in C#,
executed on a production cluster [15].

4.1 Benchmark Evaluation

Data set. We evaluate algorithms using a real corpus T with
7.2M data columns, crawled from a production data lake at
Microsoft [41].

Evaluation methodology. We randomly sample 1000
columns from T to produce a benchmark set of columns,
denoted by B. We use the first 1000 values of each column
to control column size variations.
Given a benchmark B with 1000 columns, B = {𝐶𝑖 |𝑖 ∈

[1, 1000]}, we manually assign a ground-truth tag-id for
each column. This produces clusters of columns in the same
data-type and should be assigned same tags.
We then evaluate precision and recall of patterns gener-

ated on B as follows. For each column 𝐶𝑖 ∈ B, we use the
first 10% of values in𝐶𝑖 (or 100 values) as the “training data”,
denoted by 𝐶 train

𝑖 , from which patterns need to be gener-
ated. Each algorithm𝐴 can observe𝐶 train

𝑖 and “learn” pattern
𝐴(𝐶 train

𝑖 ). The inferred pattern is denoted as 𝐴(𝐶 train
𝑖 ).

To test recall of𝐴(𝐶 train
𝑖 ) when𝐶𝑖 is used for auto-tagging,

denoted by 𝑅𝐴 (𝐶𝑖 ), we use the remaining 90% of values from
𝐶𝑖 , as well as other columns in Bwith the same ground-truth
cluster-id. These are data columns drawn from the same
data-type as 𝐶𝑖 , which we expect 𝐴(𝐶 train

𝑖 ) to match. We
take chunks of 100 values from these columns as column-
units, and compute recall by testing the fraction of column-
units that can be correctly tagged (under different matching
thresholds).
To test precision, denoted by 𝑃𝐴 (𝐶𝑖 ), we use columns in

B with a different ground-truth cluster-id, which are from a
different data-type as 𝐶𝑖 . We know that it is a false-positive
if 𝐴(𝐶 train

𝑖 ) were to tag these columns. We compute pre-
cision accordingly, by taking chunks of 100 values from
these columns as column-units, and compute the fraction of
column-units that not incorrectly tagged by 𝐴(𝐶 train

𝑖 ).



The overall precision/recall on benchmark B is the aver-
age across all cases: 𝑃𝐴 (B) = avg𝐶𝑖 ∈B 𝑃𝐴 (𝐶𝑖 ), and 𝑅𝐴 (B) =
avg𝐶𝑖 ∈B 𝑅𝐴 (𝐶𝑖 ). Both of these are between 0 and 1 as usual.

4.2 Methods Compared

We compare the following algorithms using benchmark B,
by reporting precision/recall numbers 𝑃𝐴 (B) and 𝑅𝐴 (B).

Auto-Tag. This is our proposed approach using CMDT.
Potter’s Wheel (PWheel) [32]. This is an influential

pattern-profiling method that finds the best pattern based
on minimal description length (MDL).

SQL Server Patterns [10]. SQL Server has a data-profiling
feature in SSIS and Data Tools. We invoke it programmati-
cally to produce regex patterns for each column.

XSystem [26]. This recent approach develops a flexible
branch and merge strategy to pattern profiling. We use the
authors’ implementation on GitHub [13] to produce patterns.

FlashProfile [29]. FlashProfile is a recent approach to
pattern profiling, which clusters similar values by a distance
score. We use the authors’ implementation in NuGet [7].
We also compare with Grok [9], which is a popular ap-

proach that uses a collection of curated regex patterns to de-
tect common types in log messages; schema-matching [17]
based methods (followed by pattern-profiling); and a simple
Value-Union [16] method that is more suitable for natural-
language content. These methods are not as effective (e.g.,
producing overly-generic patterns with low precision), and
are omitted from the results (to ensure we can zoom in on
the competitive methods in the figures).

4.3 Experimental Results

We evaluate different methods based on tagging quality (pre-
cision/recall), latency, and memory footprint.

Quality. Figure 9 shows precision/recall of all methods
using the enterprise benchmark B with 1000 randomly sam-
pled test cases. It can be seen that Auto-Tag is substantially
better than other methods in both precision and recall.

Among all the baselines, we find data profiling techniques
like PWheel and FlashProfile to also be of high-precision.
However, these techniques tend to under-generalize and
produce lower recall (because as discussed, data profiling
techniques aim to optimize for a fundamentally different
objective compared to data-tagging).

Latency. Given that it is important to produce regex sug-
gestions at interactive speed (for users to inspect and verify),
we compare the mean and max latency of different methods
on 1000 benchmark test columns. It can be seen that Auto-
Tag is clearly interactive, where the max latency is 0.663
second.

In comparison, methods like FlashProfile and XSystem
use expensive clustering, which on average take 6-7 sec-
onds per input column, where the max latency per column

Figure 9: Precision/Recall on 1000 randomly sampled

cosmos data. Results are scaled to test columns that

have patterns.

is close to 6 minutes for both methods. Note that for both
FlashProfile and XSystem we use authors’ original imple-
mentations [7, 13].

Memory footprint. We also evaluate the average and
max memory usage for pattern-learning per input column.
Auto-Tag avoids expensive bottom-up enumeration and is
lightweight, which uses an average of 1.9MBmemory (2.8MB
max). In comparison, clustering-based pattern-profilingmeth-
ods like FlashProfile takes 162MB memory on average,
with a max memory usage of 7.9GB.

Method mean-latency (ms) max-latency (ms)
Auto-Tag 12 663

FlashProfile 7076 359382
XSystem 6411 346996

Table 1: Mean/max latency on 1000 benchmark cases.

5 CONCLUSIONS

Observing the need to data-tagging for custom data types
in enterprise data lakes, we propose a corpus-driven Auto-
Tag approach to infer relevant data patterns. This is shown
to be accurate and cost-effective, when evaluated on real
enterprise data from a production data lake.
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