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A
lthough largely driven by economies of scale, the 
development of the modern cloud also enables 
increased security. Large data centers provide 
aggregate availability, reliability, and security 
assurances. The operational cost of ensuring that 

operating systems, databases, and other services have 
secure configurations can be amortized among all tenants, 
allowing the cloud provider to employ experts who are 
responsible for security; this is often unfeasible for smaller 
businesses, where the role of systems administrator is 
often conflated with many others. 

Cloud data centers are also subject to tight physical 
security: the number of people with physical access is 
limited, and the controls on their access are stricter in a 
large cloud provider’s data centers than on premises—
often vulnerable to insider threats such as disgruntled 
former employees leaving with a copy of sensitive data or 
physical media (including on-site backups). 
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Cloud providers systematically encrypt data in transit 
(on the network) and at rest (on disks and backups) using 
keys associated with tenants: Even if attackers gain 
access to a data center, they cannot see the plaintext of 
tenant data unless they also manage to compromise their 
managed keys. This trend of increasing security in the 
cloud will continue; the next step is confidential computing, 
extending hardware-enforced cryptographic protection to 
data while in use (i.e., during computation).

TRUSTING THE CLOUD
Why would tenants take security assurances from the 
cloud at face value? Tenants trust their provider to 
different extents. Some may fully trust it to keep their 
data secure. Some may be concerned about other tenants, 
software bugs, or insider attacks (for example, from 
data center technicians). Some may require compliance 
with strict privacy regulations. Some may also doubt 
the provider’s willingness or ability to enforce its stated 
security policies—guaranteeing, for example, that their 
data will never be used without their consent—or even 
fear subpoenas and other legal attacks in the jurisdictions 
where the cloud operates. To address these concerns, 
tenants increasingly expect the following: 
3  Minimal hardware, software, and operational TCBs 

(trusted computing bases) for their sensitive workloads. 
3 Technical enforcement, rather than just business policies. 
3  Transparency about the guarantees, residual risks, and 

mitigations that they get.
Confidential computing meets these expectations by 

allowing tenants to exercise full control over the TCB 
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used to run their cloud workloads: Confidential computing 
allows tenants to precisely define all the hardware 
and software that has access to their workloads (data 
and code), and it provides the technical mechanisms to 
verifiably enforce this guarantee. In short, tenants retain 
full control over their secrets. 

In particular, confidential computing can render 
workloads opaque to the cloud provider because tenants 
can use this precise level of control to prevent access to 
their secrets by the hypervisor and other cloud-hosting 
infrastructure. This prevents attacks from the cloud fabric 
and its operators, and complements the more traditional 
security goal of protecting the cloud fabric from 
potentially malicious tenants.

This level of control goes beyond preventing accesses 
by the cloud-hosting infrastructure: it allows a tenant to 
specify that a particular set of secrets can be processed 
only by a specific code module. This capability is powerful 
because it can be used to design resilient systems with 
reduced attack surfaces. Precise control over the trust 
placed in confidential cloud services enables useful 
scenarios among multiple parties that do not fully trust 
one another. For example, a tenant may in turn deploy 
a service with strong privacy assurances for its own 
customers; and competing parties may jointly configure 
and run a multiparty cloud computation (such as data 
analytics or machine learning) with strong technical 
guarantees about the use of their pooled data.

The shift to confidential computing is part of an 
industrywide effort. The Confidential Computing 
Consortium, founded in 2019, includes Alibaba, AMD, Arm, 
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Google, Huawei, Intel, Microsoft, nVidia, Oracle, Red Hat, 
and many others. The consortium exists in recognition that 
transitioning to a world where confidential computing is 
the default for all cloud services will require significant 
effort at all levels of the stack, starting from the hardware 
and including hypervisors, operating-system kernels, and 
cloud services.

CONFIDENTIAL COMPUTING PLATFORMS
Let’s look at trusted execution environments, dynamic 
implementations of such, blind hypervisors, and various 
platform abstractions.

Hardware foundation: trusted execution environments  
At the lowest level of the stack, the hardware must be 
able to provide a TEE (trusted execution environment) that 
isolates the code and data of a given confidential workload 
from any other code running in a system—including code 
running at the highest privilege levels. The hardware must 
also support encryption for all of its I/O, as data flows 
in and out of the TEE, and be able to measure and sign 
the contents of the TEE to produce verifiable evidence 
that it is secure. This in turn requires a hardware root of 
trust to hold the platform root secrets and signing keys, 
and a public-key infrastructure to endorse these keys. 
Thankfully, these features can often be fitted into new 
generations of existing platforms, so they can be used 
in confidential mode, rather than requiring dedicated 
hardware and software. 

ISOLATION. For confidentiality and integrity, software 
running in the TEE must be safe from snooping or 
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interference by other parts of the system. This may involve 
fencing and locking mechanisms to prevent changes to 
trusted code once it has been loaded and measured, and to 
reserve resources such as cores or memory caches for the 
exclusive use of a TEE to mitigate side channels. Many TEEs 
use encryption for either all of their state or the portion 
that is stored outside of trusted tightly coupled memory. 
Side channels, such as the Spectre and Meltdown family 
of vulnerabilities or differential power analysis, have the 
potential to pierce isolation. The full hardware/software 
stack for TEEs must provide defenses against any that are 
in scope for the threat model—for example, speculative 
load hardening3 in the compiler, or secure caches8,13 and 
mechanisms for secure speculation9,14 in the hardware. 
Some of these defenses may be built entirely at the 
software level—for example, by using data trace-oblivious 
data structures.5

HARDWARE ROOT OF TRUST. Protection must be 
rooted in hardware; otherwise, cloud operators could 
easily break isolation by emulating TEEs in software. 
Each TEE-capable device must have a unique identity, 
cryptographically secured with a hardware secret. This 
secret may, for example, be sampled and recorded in fuse 
banks within the device at the end of its manufacturing 
process, and the corresponding public key may be 
harvested by the manufacturer to issue the platform 
certificate. TPMs (trusted platform modules) provide 
an early example of discrete roots of trust, with limited 
protection from physical attacks. Google’s recently 
released OpenTitan core and Microsoft’s Pluton subsystem 
are examples of more advanced, integrated hardware 
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roots of trust. Pluton was originally created for the Xbox 
One gaming console and therefore has a long history 
of large-scale deployment into potentially hostile 
environments. It is also integrated into Azure Sphere IoT 
(Internet of things) devices and has been licensed to major 
CPU vendors (AMD, Intel, and Qualcomm), where it initially 
provides a TPM interface and can provide the hardware 
root of trust for confidential computing systems. 

Although hardware roots of trust are now well 
established, they traditionally protect someone offering 
a service on a device (a game publisher or, in our case, 
a cloud provider) from misuse, whereas confidential 
computing further requires they protect third parties 
against attackers that have physical access to the device 
or logical access to the nonconfidential parts of the device. 
As an example, a mechanism that allows firmware signed 
by the cloud provider direct access to the hardware secret 
violates the promise of confidential computing.

ATTESTATION. Attestation is the mechanism that 
builds the confidence into confidential computing. As with 
cryptographic messaging systems, confidentiality without 
integrity is insufficient. Being able to run software in such 
a way that the cloud provider cannot inspect or tamper 
with it is no use if you can’t guarantee that it really is the 
software that you expected to run. 

Attestation uses keys derived from the hardware 
secrets maintained by the hardware root of trust to sign 
evidence that a TEE is in a known-good state protected by 
a real hardware device. This evidence is similar to a secure 
boot signature: a set of measurements of the TEE, for 
example, the hash of the initial memory contents, and the 
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state of various security-critical registers. Upon receiving 
and verifying this evidence, a remote user or software 
component can be certain of the integrity of the TEE 
and will then typically establish an encrypted channel to 
deploy secrets and control computation inside the TEE. 

Hardware advancements: Dynamic TEE implementations
Physical isolation is the simplest way of guaranteeing 
confidentiality and integrity—for example, by using an 
isolated core with a simple I/O interface. This is the route 
taken by Apple’s Secure Element (found in iOS devices and 
recent Macs). This is sufficient when the code running in 
the TEE has compute and storage requirements that are 
known up front and is provided by a single vendor. It is not 
sufficient in a cloud environment with elastic requirements 
and many tenants: The cloud fabric must be able to create 
variable-sized TEEs, to host multiple TEEs on a single 
system, and to dynamically allocate/deallocate resources 
to TEEs. 

As part of the confidential computing effort, TEEs 
became available on most general-purpose processors 
over the past few years. Arm’s TrustZone provided an early 
TEE implementation, allowing memory to be assigned at 
boot time to one of two worlds—secure or normal—and 
allowing a small trusted kernel in the secure world to 
provide isolated processes. In this model, all of the secure-
world components must trust the secure kernel (and 
secure hypervisor, if present), though they do not have to 
trust the normal-world’s hypervisor and operating system 
kernel(s).

Intel’s SGX (Software Guard Extensions) took this a step 
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further and provided the ability to create isolated regions 
of memory in the virtual address space of user-mode 
processes. Any number of these regions can be created 
dynamically after booting, subject to resource constraints. 
Code and data inside the regions are protected against 
software attacks by access-control checks implemented 
by the CPU: the hypervisor and the kernel cannot see or 
tamper with the data inside the regions. The regions are 
also protected against physical attackers by memory 
encryption: whenever data in use leaves the CPU caches, it 
is encrypted before being written back to memory. 

Memory encryption overhead is low if you want only to 
guarantee confidentiality, and not cryptographic integrity 
in the presence of replay attacks from an adversary 
with access to the memory bus. The Xbox 360 and later 
models have used AES (Advanced Encryption Standard) 
for memory encryption since their launch and provided 
enough bandwidth and latency for games, some of the 
most demanding workloads on modern CPUs. The memory 
controllers of mainstream CPUs are now gaining similar 
functionality, including support for different keys for 
different memory regions. Protecting large-scale memory 
integrity against physical attacks is more expensive; 
schemes to reduce this overhead are an area of active 
research.

SGX’s isolated memory regions are ideal for small-TCB 
services,10 but using them to run full VM (virtual machine) 
confidentiality is challenging because they lack support for 
multiple address spaces and privileged and unprivileged 
mode separation. This led AMD to develop another type 
of TEE focused on VM-level isolation. AMD processors 
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went through a series of design iterations aimed at 
fully removing the hypervisor from the trust boundary. 
Their first step, SEV (Secure Encrypted Virtualization), 
automatically encrypted memory in use by VMs. Next, 
SEV_ES (SEV with Encrypted State) added encryption of 
VM register state on every transition to the hypervisor. 
Finally, SNP (Secure Nested Paging) provided an additional 
guarantee that the hypervisor cannot break memory 
integrity by tampering with the virtual memory mappings 
to execute integrity or replay attacks on a confidential 
VM. Taken together, these features guarantee that the 
hypervisor cannot read or tamper with VM state (i.e., the 
hypervisor is out of the TCB). Intel’s recently announced 
TDX (Trust Domain Extensions) provides a similar set of 
security guarantees to SNP, and it targets comprehensive 
VM-level confidentiality.

Finally, several important workloads require specialized 
processors, such as GPUs, FPGAs (field-programmable 
gate arrays), and other accelerators. These devices can 
also be augmented with TEE capabilities, with a large 
design space.12 For example, some accelerators may have 
large memories (e.g., high-bandwidth memory) protected 
with physical packaging, making encryption less relevant. 
In many cases, accelerators can be allocated to a single 
tenant at a time, which removes attacks and further 
simplifies their designs. 

To use these devices securely and efficiently, I/O buses 
also require changes. Most current systems assume 
the I/O bus is trusted, but this has been a problem 
for embedded systems: Until very recently the CAN 
(controller-area network) bus used in most cars did 
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not perform any end-to-end authentication, allowing 
compromised components such as a media player to send 
messages pretending to be from the engine-management 
system. Similarly, the PCI (peripheral component 
interconnect) bus specification assumes that all endpoints 
are trusted, enabling a malicious device to spoof the 
originator ID, for example, but confidential accelerators 
need a mechanism for establishing end-to-end secure 
channels between device and host TEEs and for integrating 
encryption between the device and the host.

Virtualization advancements: Blind hypervisors
Exposing confidential computing hardware requires 
changing the systems layer of the cloud fabric. This 
includes changing the hypervisor to handle the constraint 
that it cannot see VM state. Mainstream hypervisor 
designs follow a hierarchical trust model. The hypervisor is 
fully trusted by the guest, is responsible for storing guest 
state between context switches, and has full access to 
guest memory. 

Most paravirtualized device interfaces are designed on 
the assumption that any guest memory can be used for the 
virtual equivalent of DMA (direct memory access) buffers. 
These assumptions stopped being true on mainstream 
hardware with the introduction of AMD’s SEV. Memory 
encryption meant that the hypervisor had to provide a 
region for bounce buffers that the guests could use. Linux 
supports this mode of operation with SEV via the software 
IOTLB (input/output translation lookaside buffer) driver.

When performing an explicit domain transition from 
inside the TEE to the surrounding environment, hardware 
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implementations typically preserve the register context. 
This is not usually true for asynchronous exits, which may 
leak sensitive information. In a model where the hypervisor 
is trusted, this information may be useful for handling the 
VM exit. When the hypervisor is untrusted, either it must 
be modified so it does not take advantage of the feature, or 
a shim layer must be added to sanitize the information.

For example, consider a page fault in second-level 
address translation. In a conventional system, the 
hypervisor receives a trap with the full register context 
and an exception register specifying the fault address. 
It can then either kill the VM, issue an upcall to ask the 
VM’s kernel to handle it, or page in the missing page from 
backing store. In a confidential computing system, this 
would allow the hypervisor to single-step execution and 
see the register state at every step. At a minimum, the 
hypervisor must receive only an encrypted and integrity-
protected version of the register state, but even knowing 
the fault address may leak too much information. In a 
more secure design, a shim layer inside the TEE would 
receive the asynchronous exit and decide whether to 
issue a hypercall to fill in the missing page or simply notify 
the kernel of the fault. This code can then enforce policy 
related to the frequency of such exits in order to mitigate 
possible attacks from the hypervisor.

It is worth noting that it is possible to create a form of 
TEE by trusting the hypervisor when hardware isolation is 
not available. This is the basis for Windows’ virtualization-
based security, introduced with Windows Server 2016 and 
Windows 10, where critical components run isolated from 
the Windows kernel by Hyper-V. This can support the same 
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abstractions as other TEEs, including isolated memory 
regions similar to SGX, but with a weaker threat model: in 
this design, the hypervisor is still trusted. This is similar to 
the approach recently used by Amazon’s Nitro Enclaves.1

Platform abstractions: Confidential VMs, confidential 
containers, enclaves
The systems layer exposes confidential computing 
hardware to developers and users through a set of 
platform abstractions: confidential VMs, confidential 
containers, and enclaves.

Confidential VMs allow tenants to have a fully 
backward-compatible VM experience running existing 
unmodified applications. In the background, systems 
record and check attestations to verify the security 
guarantees and make them auditable. Placing entire VMs 
in TEEs is important for fast and easy adoption, but it also 
causes some problems. For example, the administrator 
for the VM has full read/write control over the VM, which 
is too coarse in many cases. Another concern is that the 
TCB for a VM is large: a VM image is far more than just a 
kernel and an application; it includes a large number of 
system services. In the worst case, this is still likely to be 
more secure than running the software on premises or on 
existing cloud infrastructure, but there could be a better 
solution. 

Confidential containers allow tenants to have a finer 
degree of control over the TCB and to run new or existing 
containerized applications confidentially. Over the past 
few years, containers have emerged as a common way 
of deploying software in the cloud. The exact technology 
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varies, but a container is typically a small (often layered or 
virtual) file system that contains the minimum required to 
run a single program. 

Best practices recommend running a single 
microservice in each container. Orchestration 
infrastructure then supports deploying fleets of 
cooperating microservice containers. This has several 
advantages: the container can be configured to have a 
smaller TCB than a complete confidential VM, and the 
confidential container may run in a VM without the VM 
administrator being able to access it. The TEE providing the 
isolation for the container may still be based on VM-level 
isolation mechanisms (SNP, TDX, and so on), or it may be 
based on process-level isolation. (Systems such as Haven2 
and SGX-LKL11 [Linux Kernel Library] adopt ideas from the 
library operating system and Exokernel world to run a 
Windows or Linux library operating system inside SGX 
memory regions.) 

Container deployments of microservices introduce 
complex attestation issues: Orchestration frameworks 
need to provision these services with sufficient state 
so they can acquire keys, and they need to manage 
protocols for establishing the identity of an entire set of 
microservices. 

In an ideal world, software written for security would 
focus on a minimal TCB. To give developers full control 
over the TCB, confidential computing platforms expose 
an enclave abstraction. Enclaves are fully flexible. They 
can hold as little or as much code as a developer wishes to 
put in them—for example, they can hold a single function 
that processes credit-card information or a secret signal-
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processing algorithm. 
As with containers, the actual hardware-level isolation 

mechanism for enclaves may be VM- or process-level 
isolation. For example, VM-level isolation can be used 
to create a sidecar VM that exposes a simple enclave 
interface to the base VM. Developers can design services 
that partition code with different privileges into distinct 
enclaves. Each enclave should be limited to access only 
the data necessary to perform its function. Following this 
principle of least-privilege requires developers to do the 
additional work of refactoring services, but it yields the 
highest security and most resilient applications.

There is still a large design space for the interfaces 
that enclaves will present. The OpenEnclave SDK,6 
originally from Microsoft and now part of the Confidential 
Computing Consortium, offers C and C++ environments, 
providing a relatively easy starting point for small-TCB 
development targeting several types of confidential 
hardware. Other SDKs have begun to emerge for memory-
safe languages such as Rust. 

CONFIDENTIAL COMPUTING APPLICATIONS
Confidential computing makes it possible to outsource 
sensitive workloads to the cloud, and it even introduces 
new computing patterns. For example, it enables secure 
and confidential multiparty computation in which groups 
of users, who may be mutually distrusting, can run joint 
computations and share their results without revealing 
their private inputs to one another or to anyone with 
physical or logical access to the hardware on which 
the computations execute. This should lead to the 
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development of a broad range of confidential-computing 
applications—in fact, these properties are already 
resulting in advances in multiple application domains.

Confidential AI 
Machine-learning algorithms are rapidly increasing their 
demand for more computation and larger data sets. At 
the same time, their applications raise significant security 
and privacy concerns. The elastic and scalable nature 
of the cloud is already a natural choice for this type of 
computation, but confidential computing makes it feasible 
to leverage the cloud with strong security assurances. 

In medical and pharmaceutical applications, for 
example, training data may include individuals’ private 
health-care records, and the resulting models may be used 
to make clinical decisions. Running the training process 
inside an enclave ensures that the data cannot be viewed 
or modified by anyone else. It also provides integrity 
guarantees (and a robust audit log) that the intended 
training algorithm was run on the specified records with 
a specified software stack. As a special case of these 
guarantees, the resulting model may be encrypted, signed, 
and equipped with key release policies to ensure it will be 
unlocked only within another enclave that will enforce 
specific access control and usage restriction. The enclave 
may, for example, enforce differential privacy by limiting 
the number of times the model is queried and adding noise 
to their results.   

As an example, a tenant can leverage confidential 
cloud computing to offer a medical diagnostics service to 
its own customers, with technical assurances that (1) it 
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cannot steal or misuse a model supplied and maintained by 
a specialist third-party for this purpose; and (2) it cannot 
access any personal medical information to query, store, or 
use the model for any other purpose. 

Confidential databases and analytics
Database systems store and process sensitive and 
business-critical data such as personal records, financial 
information, and government data. Unauthorized 
access to such data can have serious consequences, 
including physical harm and loss of customer trust and 
competitive advantage. Current database systems provide 
sophisticated access-control mechanisms such as role-
based access control. These mechanisms are limited in 
effectiveness against stronger attackers such as those 
with administrative or physical access to the servers. In 
a common example, the individual or outsourced team 
responsible for managing the database represents a 
large insider threat to a company. Because this individual 
or team is managing the database system, they are able 
to see all confidential data, even if they have no need to 
access it.

Over the past few years, the notion of encrypted 
databases has been proposed as a way of enforcing 
stronger, cryptographic access control. In an encrypted 
database, data remains encrypted both at rest and during 
computation, using keys that are not available even to 
the database or server administrator. Data appears in 
cleartext only within trust boundaries defined by data 
owners. 

Encrypted databases can be realized in multiple ways. 
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One approach (proposed by CryptDB and other related 
systems) is to encrypt data on a trusted client using 
partially homomorphic encryption schemes. An alternative 
approach is to decrypt, process, and re-encrypt sensitive 
data within a trusted execution environment (such as Intel 
SGX enclaves). This approach was proposed by EnclaveDB,7 
and a related approach has been adopted by Microsoft’s 
SQL Server in the Always Encrypted feature. The designs 
vary from streaming columnar data into enclaves at the 
time of processing to placing all sensitive data and queries 
within enclaves. Approaches based on TEEs have the 
potential to provide stronger security guarantees such as 
integrity and freshness of query processing, confidentiality 
for queries, tamperproof auditing, etc. They are also more 
flexible (i.e., they permit any kind of computation and can 
support complex access-control policies such as attribute-
based access control). In addition to data processing, a TEE 
is a natural choice for enforcing and auditing fine-grained 
key-release policies. 

Confidential multiparty collaboration
Secure and confidential multiparty computation enabled 
by enclaves5 also facilitate new types of collaboration 
between data set owners, leading to a multiplicative 
increase in the amount of training data. Hence, instead of 
being limited to data from a single hospital, multiparty 
models can be trained on a joint data set from multiple 
hospitals, without revealing the constituent data sets 
(typically subject to complex regulations and commercial 
considerations). Although it may be possible to train similar 
models without pooling their data sets, using, for example, 
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federated learning or local differential privacy, these 
alternatives would involve algorithmic changes, additional 
resources, and utility losses. Scenarios for confidential 
multiparty collaboration exist in many other domains, 
including finance, energy, climate study, and government. 

Confidential ledgers
General-purpose applications that run in a cloud data 
center need a way to convince their users that they are 
running correctly. New frameworks have emerged to help 
developers build this new class of trusted applications. 
These frameworks provide a simple way of building 
trusted applications that run inside of TEEs and produce 
verifiable ledgers of their execution. For example, the 
CCF (Confidential Consortium Framework)4 provides a 
tamperproof ledger and transactional updates on a key-
value store. This is used to build a number of cloud services 
such as Azure Confidential Ledger, which provides a 
tamper-evident, high-performance, confidential ledger that 
applications can use to store general-purpose log records 
for auditability and verifiability. These properties allow for a 
new class of applications that require coordination between 
mutually distrusting parties, as well as applications that 
require verifiable execution for legal reasons.

Trusted applications commonly use TEE attestation 
along with secure messaging channels. This gives users 
confidence that they are connecting to the correct 
application in a secure and confidential manner. CCF, and 
other comparable frameworks, additionally distribute 
and replicate the execution of application logic to ensure 
liveness and integrity of execution, even when a fraction of 
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the nodes in the system are malicious or compromised. In 
particular, CCF supports Byzantine fault tolerance, where 
arbitrary malicious behavior is tolerated, as well as crash 
fault-tolerance configurations. 

FOUNDATIONAL SERVICES
Usability is critical to any security technology that aims 
for widespread adoption. It is easy to imagine a simple 
configuration switch that lets tenants turn on “confidential 
computing” for their existing workloads, but what does it 
mean? Encrypting a VM, for example, adds some defense 
in depth but is largely security theater unless coupled 
with a trustworthy mechanism for attesting its contents: 
if the provider controls the initial VM, and the tenant has 
no mechanism to review it, then the provider is still fully 
trusted.

To get meaningful end-to-end protection, the workload 
inputs and outputs must be encrypted, and the associated 
data keys must be released only to the TEE allocated 
for the workload. This involves keeping track of the 
platform and code that are authorized for this workload, 
while enabling updates for both platform and code. For 
convenience, most tenants will likely choose to delegate 
these tasks to cloud services. For security, these services 
must themselves be deployed in TEEs, relying on one 
another for core functionalities such as secure identity, 
keying, and logging. 

The next section outlines the services at the core of a 
confidential computing ecosystem in support of tenants 
that deploy confidential workloads and application 
developers who contribute their code. 
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Key management and attestation services 
If a confidential service needs access to any persistent 
data (for example, a VM disk image) then it needs to 
retrieve the key from somewhere. For traditional client-
side disk encryption, this can be stored in the TPM and 
unlocked by the tenant entering a passphrase. In a cloud 
scenario, the storage part is relatively easy to solve either 
with managed HSMs (hardware security modules) via a 
service such as Azure Key Vault or a persistent confidential 
computing service that manages key storage. Asking the 
tenant to enter a passphrase for every VM, container, or 
other service that they launch, however, is not a scalable 
solution.

When tenants grant access to their data, they 
are making a policy decision based on a review of the 
information included in the attestation and other metadata 
at their disposal. This process can be automated by a 
confidential cloud service, such as the Microsoft Azure 
Attestation: at the start of the confidential computation, 
the newly created TEE establishes a secure connection 
to the attestation service and presents its attestation 
materials. The service checks them against the 
authorization policies previously uploaded by the tenant 
and, if successful, issues the corresponding credentials. 
The TEE may then use these credentials to access tenant 
data. It may, for example, present a token issued by the 
attestation service to obtain the current decryption key 
from an HSM.   

The cloud provider runs the attestation service 
atop a fleet of authorized TEEs, and then a tenant can 
do the manual setup step (the equivalent of entering a 
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passphrase) once and provide policies and credentials so 
that the service can automatically authorize thousands 
of VMs on its behalf. Within the cloud, for example, the 
service may automatically authorize migration between 
TEEs and recovery from their encrypted checkpoints. 

To this end, the service maintains an up-to-date, 
consistent cache of platform certificates for all TEEs 
provisioned in its data centers. It performs frequent checks 
for certificate revocations and can manage, for example, 
the consistent deployment of firmware or microcode 
updates for the trusted hardware (typically requiring new 
collections of certificates). Thus, the service can support 
precise, stateful policy statements of the form, “This 
task must run within an SGX enclave, on an Intel SGX v2.1 
platform, deployed in the German Azure data center, in a 
VM allocated to the tenant, supported by certificates that 
are valid as of today,” rather than just, “This task must run 
within an enclave.”

From a cloud perspective, it is important both to 
minimize the number of distinct hardware offerings 
and to ensure software portability across everything. 
X86 VMs will happily work on Intel or AMD hardware 
even though the virtualization extensions on both are 
different. If confidential VMs needed to be implemented 
differently between AMD and Intel hardware, this would 
add a significant barrier to adoption. By factoring out the 
hardware-specific details, the attestation service enables 
other services to be platform independent. For example, 
it enables the integration of legacy HSMs without the 
need to customize them for different forms of confidential 
enclaves, VMs, and containers. 
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Code Transparency 
Remote attestation enables tenants (or services they 
trust) to authenticate the platform and software TCB for 
their computations, but it does not ensure that this TCB 
is trustworthy. To this end, tenants would ideally gather 
and review the security of all the source code for their 
applications, runtime SDKs and libraries, and compilation 
tool chains. They would then rebuild the software image 
for their workload and check that its hash matches the one 
presented for attestation. This task is daunting for several 
reasons:
3  It involves a lot of software from different origins, even 

for simple applications.
3  Parts of this software may be proprietary or 

confidential, hindering its review. 
3  Modern build systems are sensitive to details in their 

environment, yielding irreproducible code.
3  Cloud computing encourages agile development and 

facilitates seamless code updates, often without 
requiring a restart of the application.

3  Emergency patches may be required to mitigate newly 
disclosed vulnerabilities, and they can hardly wait for a 
security review of every impacted application. 
To facilitate this task, or at least amortize its cost, 

a code transparency service can securely record the 
software dependencies, build environments, and resulting 
binaries used for confidential computing. A cloud provider 
may operate this service as a confidential ledger that 
systematically enforces code-update policies, signs the 
resulting binaries, and maintains a public, immutable log of 
all its operations. Accordingly, the tenant may configure the 
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cloud attestation and key management services to authorize 
any such signed binaries for a confidential application. 

For example, a tenant may configure the code 
transparency service to install emergency patches 
automatically from a reputable software vendor, 
provided they are correctly signed and published on 
the release branch of their designated GitHub project. 
(More conservatively, they may also require signed 
endorsements from the cloud provider or a designated 
expert.) Even if the patch is broken, the service will at least 
provide a strong audit trail to enable its review after the 
fact. The software vendor might still be able to undermine 
a tenant’s security guarantees but cannot do so without 
placing its reputation on the line. The code transparency 
service can also be used to mitigate software supply chain  
attacks, because it provides auditable provenance and 
chain-of-custody for a software bill of materials (SBoM).

CONFIDENTIAL COMPUTING IS THE FUTURE  
OF THE CLOUD
Confidential computing provides strong security 
assurances in the cloud by empowering tenants to 
remotely control the TCBs for their workloads: it makes 
explicit the (minimal) hardware, software, and services 
that they still need to trust; and it provides strong 
technical protection against any attacks from the rest—
preventing potential attacks from other tenants and even 
from the cloud provider. This enables tenants in turn to 
develop and deploy their own confidential applications for 
their most sensitive data.

Confidential cloud computing is in its infancy, but we 
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believe that it will eventually become ubiquitous, the 
same as other privacy and integrity mechanisms such as 
TLS and encryption at rest. The hardware for confidential 
computing (CPUs, FPGAs, and accelerators) should 
evolve at a rapid pace, as the result of a large, concerted 
effort across the industry aiming to provide open, robust, 
standardized, platform-agnostic capabilities. As these 
become available, they will form the foundation for a 
cloud fabric that will be compartmentalized with small 
TCBs, where each component will have access only to the 
information necessary to perform its function. 

This foundation will support running confidential VMs, 
as well as higher-level platform services. While some 
services may never run in a fully confidential mode, they 
will benefit from the new, more secure foundation. As 
software-engineering tools evolve toward enabling 
compartmentalized confidential-by-default development, 
these guarantees will be easy to add. 

Imagine a future in which end users have complete and 
verifiable control over how their data is used by any cloud 
service. If they want their organization’s documents to be 
indexed, a confidential indexing service could guarantee 
that no one outside their organization ever sees that data. 
A confidential videoconferencing service could guarantee 
end-to-end encryption without sacrificing the ability to 
record the session or provide transcripts, with the output 
sent to a confidential file-sharing service, never appearing 
unencrypted anywhere other than the organization’s 
devices or confidential VMs. A confidential email system 
could similarly protect privacy without compromising on 
functionality such as searching or authoring assistance. 
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Ultimately, confidential computing will enable many 
innovative cloud services, while allowing users to retain 
full control over their data.
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