
acmqueue | january-february 2021 1

hardware security

A
lthough largely driven by economies of scale, the
development of the modern cloud also enables
increased security. Large data centers provide
aggregate availability, reliability, and security
assurances. The operational cost of ensuring that

operating systems, databases, and other services have
secure configurations can be amortized among all tenants,
allowing the cloud provider to employ experts who are
responsible for security; this is often unfeasible for smaller
businesses, where the role of systems administrator is
often conflated with many others.

Cloud data centers are also subject to tight physical
security: the number of people with physical access is
limited, and the controls on their access are stricter in a
large cloud provider’s data centers than on premises—
often vulnerable to insider threats such as disgruntled
former employees leaving with a copy of sensitive data or
physical media (including on-site backups).

Extending
hardware-
enforced
cryptographic
protection
to data while
in use

MARK RUSSINOVICH, MANUEL COSTA, CÉDRIC FOURNET, DAVID CHISNALL,

ANTOINE DELIGNAT-LAVAUD, SYLVAN CLEBSCH, KAPIL VASWANI, VIKAS BHATIA

1 of 28 TEXT
ONLY

Toward
Confidential
Cloud
Computing

acmqueue | january-february 2021 2

hardware security

Cloud providers systematically encrypt data in transit
(on the network) and at rest (on disks and backups) using
keys associated with tenants: Even if attackers gain
access to a data center, they cannot see the plaintext of
tenant data unless they also manage to compromise their
managed keys. This trend of increasing security in the
cloud will continue; the next step is confidential computing,
extending hardware-enforced cryptographic protection to
data while in use (i.e., during computation).

TRUSTING THE CLOUD
Why would tenants take security assurances from the
cloud at face value? Tenants trust their provider to
different extents. Some may fully trust it to keep their
data secure. Some may be concerned about other tenants,
software bugs, or insider attacks (for example, from
data center technicians). Some may require compliance
with strict privacy regulations. Some may also doubt
the provider’s willingness or ability to enforce its stated
security policies—guaranteeing, for example, that their
data will never be used without their consent—or even
fear subpoenas and other legal attacks in the jurisdictions
where the cloud operates. To address these concerns,
tenants increasingly expect the following:
3 Minimal hardware, software, and operational TCBs

(trusted computing bases) for their sensitive workloads.
3 Technical enforcement, rather than just business policies.
3 Transparency about the guarantees, residual risks, and

mitigations that they get.
Confidential computing meets these expectations by

allowing tenants to exercise full control over the TCB

2 of 28

acmqueue | january-february 2021 3

hardware security

used to run their cloud workloads: Confidential computing
allows tenants to precisely define all the hardware
and software that has access to their workloads (data
and code), and it provides the technical mechanisms to
verifiably enforce this guarantee. In short, tenants retain
full control over their secrets.

In particular, confidential computing can render
workloads opaque to the cloud provider because tenants
can use this precise level of control to prevent access to
their secrets by the hypervisor and other cloud-hosting
infrastructure. This prevents attacks from the cloud fabric
and its operators, and complements the more traditional
security goal of protecting the cloud fabric from
potentially malicious tenants.

This level of control goes beyond preventing accesses
by the cloud-hosting infrastructure: it allows a tenant to
specify that a particular set of secrets can be processed
only by a specific code module. This capability is powerful
because it can be used to design resilient systems with
reduced attack surfaces. Precise control over the trust
placed in confidential cloud services enables useful
scenarios among multiple parties that do not fully trust
one another. For example, a tenant may in turn deploy
a service with strong privacy assurances for its own
customers; and competing parties may jointly configure
and run a multiparty cloud computation (such as data
analytics or machine learning) with strong technical
guarantees about the use of their pooled data.

The shift to confidential computing is part of an
industrywide effort. The Confidential Computing
Consortium, founded in 2019, includes Alibaba, AMD, Arm,

3 of 28

acmqueue | january-february 2021 4

hardware security

Google, Huawei, Intel, Microsoft, nVidia, Oracle, Red Hat,
and many others. The consortium exists in recognition that
transitioning to a world where confidential computing is
the default for all cloud services will require significant
effort at all levels of the stack, starting from the hardware
and including hypervisors, operating-system kernels, and
cloud services.

CONFIDENTIAL COMPUTING PLATFORMS
Let’s look at trusted execution environments, dynamic
implementations of such, blind hypervisors, and various
platform abstractions.

Hardware foundation: trusted execution environments
At the lowest level of the stack, the hardware must be
able to provide a TEE (trusted execution environment) that
isolates the code and data of a given confidential workload
from any other code running in a system—including code
running at the highest privilege levels. The hardware must
also support encryption for all of its I/O, as data flows
in and out of the TEE, and be able to measure and sign
the contents of the TEE to produce verifiable evidence
that it is secure. This in turn requires a hardware root of
trust to hold the platform root secrets and signing keys,
and a public-key infrastructure to endorse these keys.
Thankfully, these features can often be fitted into new
generations of existing platforms, so they can be used
in confidential mode, rather than requiring dedicated
hardware and software.

ISOLATION. For confidentiality and integrity, software
running in the TEE must be safe from snooping or

4 of 28

acmqueue | january-february 2021 5

hardware security

interference by other parts of the system. This may involve
fencing and locking mechanisms to prevent changes to
trusted code once it has been loaded and measured, and to
reserve resources such as cores or memory caches for the
exclusive use of a TEE to mitigate side channels. Many TEEs
use encryption for either all of their state or the portion
that is stored outside of trusted tightly coupled memory.
Side channels, such as the Spectre and Meltdown family
of vulnerabilities or differential power analysis, have the
potential to pierce isolation. The full hardware/software
stack for TEEs must provide defenses against any that are
in scope for the threat model—for example, speculative
load hardening3 in the compiler, or secure caches8,13 and
mechanisms for secure speculation9,14 in the hardware.
Some of these defenses may be built entirely at the
software level—for example, by using data trace-oblivious
data structures.5

HARDWARE ROOT OF TRUST. Protection must be
rooted in hardware; otherwise, cloud operators could
easily break isolation by emulating TEEs in software.
Each TEE-capable device must have a unique identity,
cryptographically secured with a hardware secret. This
secret may, for example, be sampled and recorded in fuse
banks within the device at the end of its manufacturing
process, and the corresponding public key may be
harvested by the manufacturer to issue the platform
certificate. TPMs (trusted platform modules) provide
an early example of discrete roots of trust, with limited
protection from physical attacks. Google’s recently
released OpenTitan core and Microsoft’s Pluton subsystem
are examples of more advanced, integrated hardware

5 of 28

acmqueue | january-february 2021 6

hardware security

roots of trust. Pluton was originally created for the Xbox
One gaming console and therefore has a long history
of large-scale deployment into potentially hostile
environments. It is also integrated into Azure Sphere IoT
(Internet of things) devices and has been licensed to major
CPU vendors (AMD, Intel, and Qualcomm), where it initially
provides a TPM interface and can provide the hardware
root of trust for confidential computing systems.

Although hardware roots of trust are now well
established, they traditionally protect someone offering
a service on a device (a game publisher or, in our case,
a cloud provider) from misuse, whereas confidential
computing further requires they protect third parties
against attackers that have physical access to the device
or logical access to the nonconfidential parts of the device.
As an example, a mechanism that allows firmware signed
by the cloud provider direct access to the hardware secret
violates the promise of confidential computing.

ATTESTATION. Attestation is the mechanism that
builds the confidence into confidential computing. As with
cryptographic messaging systems, confidentiality without
integrity is insufficient. Being able to run software in such
a way that the cloud provider cannot inspect or tamper
with it is no use if you can’t guarantee that it really is the
software that you expected to run.

Attestation uses keys derived from the hardware
secrets maintained by the hardware root of trust to sign
evidence that a TEE is in a known-good state protected by
a real hardware device. This evidence is similar to a secure
boot signature: a set of measurements of the TEE, for
example, the hash of the initial memory contents, and the

6 of x

acmqueue | january-february 2021 7

hardware security

state of various security-critical registers. Upon receiving
and verifying this evidence, a remote user or software
component can be certain of the integrity of the TEE
and will then typically establish an encrypted channel to
deploy secrets and control computation inside the TEE.

Hardware advancements: Dynamic TEE implementations
Physical isolation is the simplest way of guaranteeing
confidentiality and integrity—for example, by using an
isolated core with a simple I/O interface. This is the route
taken by Apple’s Secure Element (found in iOS devices and
recent Macs). This is sufficient when the code running in
the TEE has compute and storage requirements that are
known up front and is provided by a single vendor. It is not
sufficient in a cloud environment with elastic requirements
and many tenants: The cloud fabric must be able to create
variable-sized TEEs, to host multiple TEEs on a single
system, and to dynamically allocate/deallocate resources
to TEEs.

As part of the confidential computing effort, TEEs
became available on most general-purpose processors
over the past few years. Arm’s TrustZone provided an early
TEE implementation, allowing memory to be assigned at
boot time to one of two worlds—secure or normal—and
allowing a small trusted kernel in the secure world to
provide isolated processes. In this model, all of the secure-
world components must trust the secure kernel (and
secure hypervisor, if present), though they do not have to
trust the normal-world’s hypervisor and operating system
kernel(s).

Intel’s SGX (Software Guard Extensions) took this a step

7 of 28

P
hysical
isolation
is the
simplest
way of

guaranteeing
confidentiality
and integrity.

acmqueue | january-february 2021 8

hardware security

further and provided the ability to create isolated regions
of memory in the virtual address space of user-mode
processes. Any number of these regions can be created
dynamically after booting, subject to resource constraints.
Code and data inside the regions are protected against
software attacks by access-control checks implemented
by the CPU: the hypervisor and the kernel cannot see or
tamper with the data inside the regions. The regions are
also protected against physical attackers by memory
encryption: whenever data in use leaves the CPU caches, it
is encrypted before being written back to memory.

Memory encryption overhead is low if you want only to
guarantee confidentiality, and not cryptographic integrity
in the presence of replay attacks from an adversary
with access to the memory bus. The Xbox 360 and later
models have used AES (Advanced Encryption Standard)
for memory encryption since their launch and provided
enough bandwidth and latency for games, some of the
most demanding workloads on modern CPUs. The memory
controllers of mainstream CPUs are now gaining similar
functionality, including support for different keys for
different memory regions. Protecting large-scale memory
integrity against physical attacks is more expensive;
schemes to reduce this overhead are an area of active
research.

SGX’s isolated memory regions are ideal for small-TCB
services,10 but using them to run full VM (virtual machine)
confidentiality is challenging because they lack support for
multiple address spaces and privileged and unprivileged
mode separation. This led AMD to develop another type
of TEE focused on VM-level isolation. AMD processors

8 of 28

acmqueue | january-february 2021 9

hardware security

went through a series of design iterations aimed at
fully removing the hypervisor from the trust boundary.
Their first step, SEV (Secure Encrypted Virtualization),
automatically encrypted memory in use by VMs. Next,
SEV_ES (SEV with Encrypted State) added encryption of
VM register state on every transition to the hypervisor.
Finally, SNP (Secure Nested Paging) provided an additional
guarantee that the hypervisor cannot break memory
integrity by tampering with the virtual memory mappings
to execute integrity or replay attacks on a confidential
VM. Taken together, these features guarantee that the
hypervisor cannot read or tamper with VM state (i.e., the
hypervisor is out of the TCB). Intel’s recently announced
TDX (Trust Domain Extensions) provides a similar set of
security guarantees to SNP, and it targets comprehensive
VM-level confidentiality.

Finally, several important workloads require specialized
processors, such as GPUs, FPGAs (field-programmable
gate arrays), and other accelerators. These devices can
also be augmented with TEE capabilities, with a large
design space.12 For example, some accelerators may have
large memories (e.g., high-bandwidth memory) protected
with physical packaging, making encryption less relevant.
In many cases, accelerators can be allocated to a single
tenant at a time, which removes attacks and further
simplifies their designs.

To use these devices securely and efficiently, I/O buses
also require changes. Most current systems assume
the I/O bus is trusted, but this has been a problem
for embedded systems: Until very recently the CAN
(controller-area network) bus used in most cars did

9 of 28

acmqueue | january-february 2021 10

hardware security

not perform any end-to-end authentication, allowing
compromised components such as a media player to send
messages pretending to be from the engine-management
system. Similarly, the PCI (peripheral component
interconnect) bus specification assumes that all endpoints
are trusted, enabling a malicious device to spoof the
originator ID, for example, but confidential accelerators
need a mechanism for establishing end-to-end secure
channels between device and host TEEs and for integrating
encryption between the device and the host.

Virtualization advancements: Blind hypervisors
Exposing confidential computing hardware requires
changing the systems layer of the cloud fabric. This
includes changing the hypervisor to handle the constraint
that it cannot see VM state. Mainstream hypervisor
designs follow a hierarchical trust model. The hypervisor is
fully trusted by the guest, is responsible for storing guest
state between context switches, and has full access to
guest memory.

Most paravirtualized device interfaces are designed on
the assumption that any guest memory can be used for the
virtual equivalent of DMA (direct memory access) buffers.
These assumptions stopped being true on mainstream
hardware with the introduction of AMD’s SEV. Memory
encryption meant that the hypervisor had to provide a
region for bounce buffers that the guests could use. Linux
supports this mode of operation with SEV via the software
IOTLB (input/output translation lookaside buffer) driver.

When performing an explicit domain transition from
inside the TEE to the surrounding environment, hardware

10 of 28

E
xposing
confidential
computing
hardware
requires

changing the
systems layer of
the cloud fabric.

acmqueue | january-february 2021 11

hardware security

implementations typically preserve the register context.
This is not usually true for asynchronous exits, which may
leak sensitive information. In a model where the hypervisor
is trusted, this information may be useful for handling the
VM exit. When the hypervisor is untrusted, either it must
be modified so it does not take advantage of the feature, or
a shim layer must be added to sanitize the information.

For example, consider a page fault in second-level
address translation. In a conventional system, the
hypervisor receives a trap with the full register context
and an exception register specifying the fault address.
It can then either kill the VM, issue an upcall to ask the
VM’s kernel to handle it, or page in the missing page from
backing store. In a confidential computing system, this
would allow the hypervisor to single-step execution and
see the register state at every step. At a minimum, the
hypervisor must receive only an encrypted and integrity-
protected version of the register state, but even knowing
the fault address may leak too much information. In a
more secure design, a shim layer inside the TEE would
receive the asynchronous exit and decide whether to
issue a hypercall to fill in the missing page or simply notify
the kernel of the fault. This code can then enforce policy
related to the frequency of such exits in order to mitigate
possible attacks from the hypervisor.

It is worth noting that it is possible to create a form of
TEE by trusting the hypervisor when hardware isolation is
not available. This is the basis for Windows’ virtualization-
based security, introduced with Windows Server 2016 and
Windows 10, where critical components run isolated from
the Windows kernel by Hyper-V. This can support the same

11 of 28

acmqueue | january-february 2021 12

hardware security

abstractions as other TEEs, including isolated memory
regions similar to SGX, but with a weaker threat model: in
this design, the hypervisor is still trusted. This is similar to
the approach recently used by Amazon’s Nitro Enclaves.1

Platform abstractions: Confidential VMs, confidential
containers, enclaves
The systems layer exposes confidential computing
hardware to developers and users through a set of
platform abstractions: confidential VMs, confidential
containers, and enclaves.

Confidential VMs allow tenants to have a fully
backward-compatible VM experience running existing
unmodified applications. In the background, systems
record and check attestations to verify the security
guarantees and make them auditable. Placing entire VMs
in TEEs is important for fast and easy adoption, but it also
causes some problems. For example, the administrator
for the VM has full read/write control over the VM, which
is too coarse in many cases. Another concern is that the
TCB for a VM is large: a VM image is far more than just a
kernel and an application; it includes a large number of
system services. In the worst case, this is still likely to be
more secure than running the software on premises or on
existing cloud infrastructure, but there could be a better
solution.

Confidential containers allow tenants to have a finer
degree of control over the TCB and to run new or existing
containerized applications confidentially. Over the past
few years, containers have emerged as a common way
of deploying software in the cloud. The exact technology

12 of 28

T
he
systems
layer
exposes
confiden-

tial computing
hardware to
developers and
users through a
set of platform
abstractions.

acmqueue | january-february 2021 13

hardware security

varies, but a container is typically a small (often layered or
virtual) file system that contains the minimum required to
run a single program.

Best practices recommend running a single
microservice in each container. Orchestration
infrastructure then supports deploying fleets of
cooperating microservice containers. This has several
advantages: the container can be configured to have a
smaller TCB than a complete confidential VM, and the
confidential container may run in a VM without the VM
administrator being able to access it. The TEE providing the
isolation for the container may still be based on VM-level
isolation mechanisms (SNP, TDX, and so on), or it may be
based on process-level isolation. (Systems such as Haven2
and SGX-LKL11 [Linux Kernel Library] adopt ideas from the
library operating system and Exokernel world to run a
Windows or Linux library operating system inside SGX
memory regions.)

Container deployments of microservices introduce
complex attestation issues: Orchestration frameworks
need to provision these services with sufficient state
so they can acquire keys, and they need to manage
protocols for establishing the identity of an entire set of
microservices.

In an ideal world, software written for security would
focus on a minimal TCB. To give developers full control
over the TCB, confidential computing platforms expose
an enclave abstraction. Enclaves are fully flexible. They
can hold as little or as much code as a developer wishes to
put in them—for example, they can hold a single function
that processes credit-card information or a secret signal-

13 of 28

I
n an ideal
world, soft-
ware written
for security
would focus on

a minimal TCB.

acmqueue | january-february 2021 14

hardware security

processing algorithm.
As with containers, the actual hardware-level isolation

mechanism for enclaves may be VM- or process-level
isolation. For example, VM-level isolation can be used
to create a sidecar VM that exposes a simple enclave
interface to the base VM. Developers can design services
that partition code with different privileges into distinct
enclaves. Each enclave should be limited to access only
the data necessary to perform its function. Following this
principle of least-privilege requires developers to do the
additional work of refactoring services, but it yields the
highest security and most resilient applications.

There is still a large design space for the interfaces
that enclaves will present. The OpenEnclave SDK,6
originally from Microsoft and now part of the Confidential
Computing Consortium, offers C and C++ environments,
providing a relatively easy starting point for small-TCB
development targeting several types of confidential
hardware. Other SDKs have begun to emerge for memory-
safe languages such as Rust.

CONFIDENTIAL COMPUTING APPLICATIONS
Confidential computing makes it possible to outsource
sensitive workloads to the cloud, and it even introduces
new computing patterns. For example, it enables secure
and confidential multiparty computation in which groups
of users, who may be mutually distrusting, can run joint
computations and share their results without revealing
their private inputs to one another or to anyone with
physical or logical access to the hardware on which
the computations execute. This should lead to the

14 of 28

acmqueue | january-february 2021 15

hardware security

development of a broad range of confidential-computing
applications—in fact, these properties are already
resulting in advances in multiple application domains.

Confidential AI
Machine-learning algorithms are rapidly increasing their
demand for more computation and larger data sets. At
the same time, their applications raise significant security
and privacy concerns. The elastic and scalable nature
of the cloud is already a natural choice for this type of
computation, but confidential computing makes it feasible
to leverage the cloud with strong security assurances.

In medical and pharmaceutical applications, for
example, training data may include individuals’ private
health-care records, and the resulting models may be used
to make clinical decisions. Running the training process
inside an enclave ensures that the data cannot be viewed
or modified by anyone else. It also provides integrity
guarantees (and a robust audit log) that the intended
training algorithm was run on the specified records with
a specified software stack. As a special case of these
guarantees, the resulting model may be encrypted, signed,
and equipped with key release policies to ensure it will be
unlocked only within another enclave that will enforce
specific access control and usage restriction. The enclave
may, for example, enforce differential privacy by limiting
the number of times the model is queried and adding noise
to their results.

As an example, a tenant can leverage confidential
cloud computing to offer a medical diagnostics service to
its own customers, with technical assurances that (1) it

15 of 28

acmqueue | january-february 2021 16

hardware security

cannot steal or misuse a model supplied and maintained by
a specialist third-party for this purpose; and (2) it cannot
access any personal medical information to query, store, or
use the model for any other purpose.

Confidential databases and analytics
Database systems store and process sensitive and
business-critical data such as personal records, financial
information, and government data. Unauthorized
access to such data can have serious consequences,
including physical harm and loss of customer trust and
competitive advantage. Current database systems provide
sophisticated access-control mechanisms such as role-
based access control. These mechanisms are limited in
effectiveness against stronger attackers such as those
with administrative or physical access to the servers. In
a common example, the individual or outsourced team
responsible for managing the database represents a
large insider threat to a company. Because this individual
or team is managing the database system, they are able
to see all confidential data, even if they have no need to
access it.

Over the past few years, the notion of encrypted
databases has been proposed as a way of enforcing
stronger, cryptographic access control. In an encrypted
database, data remains encrypted both at rest and during
computation, using keys that are not available even to
the database or server administrator. Data appears in
cleartext only within trust boundaries defined by data
owners.

Encrypted databases can be realized in multiple ways.

16 of 28

acmqueue | january-february 2021 17

hardware security

One approach (proposed by CryptDB and other related
systems) is to encrypt data on a trusted client using
partially homomorphic encryption schemes. An alternative
approach is to decrypt, process, and re-encrypt sensitive
data within a trusted execution environment (such as Intel
SGX enclaves). This approach was proposed by EnclaveDB,7
and a related approach has been adopted by Microsoft’s
SQL Server in the Always Encrypted feature. The designs
vary from streaming columnar data into enclaves at the
time of processing to placing all sensitive data and queries
within enclaves. Approaches based on TEEs have the
potential to provide stronger security guarantees such as
integrity and freshness of query processing, confidentiality
for queries, tamperproof auditing, etc. They are also more
flexible (i.e., they permit any kind of computation and can
support complex access-control policies such as attribute-
based access control). In addition to data processing, a TEE
is a natural choice for enforcing and auditing fine-grained
key-release policies.

Confidential multiparty collaboration
Secure and confidential multiparty computation enabled
by enclaves5 also facilitate new types of collaboration
between data set owners, leading to a multiplicative
increase in the amount of training data. Hence, instead of
being limited to data from a single hospital, multiparty
models can be trained on a joint data set from multiple
hospitals, without revealing the constituent data sets
(typically subject to complex regulations and commercial
considerations). Although it may be possible to train similar
models without pooling their data sets, using, for example,

17 of 28

acmqueue | january-february 2021 18

hardware security

federated learning or local differential privacy, these
alternatives would involve algorithmic changes, additional
resources, and utility losses. Scenarios for confidential
multiparty collaboration exist in many other domains,
including finance, energy, climate study, and government.

Confidential ledgers
General-purpose applications that run in a cloud data
center need a way to convince their users that they are
running correctly. New frameworks have emerged to help
developers build this new class of trusted applications.
These frameworks provide a simple way of building
trusted applications that run inside of TEEs and produce
verifiable ledgers of their execution. For example, the
CCF (Confidential Consortium Framework)4 provides a
tamperproof ledger and transactional updates on a key-
value store. This is used to build a number of cloud services
such as Azure Confidential Ledger, which provides a
tamper-evident, high-performance, confidential ledger that
applications can use to store general-purpose log records
for auditability and verifiability. These properties allow for a
new class of applications that require coordination between
mutually distrusting parties, as well as applications that
require verifiable execution for legal reasons.

Trusted applications commonly use TEE attestation
along with secure messaging channels. This gives users
confidence that they are connecting to the correct
application in a secure and confidential manner. CCF, and
other comparable frameworks, additionally distribute
and replicate the execution of application logic to ensure
liveness and integrity of execution, even when a fraction of

18 of 28

acmqueue | january-february 2021 19

hardware security

the nodes in the system are malicious or compromised. In
particular, CCF supports Byzantine fault tolerance, where
arbitrary malicious behavior is tolerated, as well as crash
fault-tolerance configurations.

FOUNDATIONAL SERVICES
Usability is critical to any security technology that aims
for widespread adoption. It is easy to imagine a simple
configuration switch that lets tenants turn on “confidential
computing” for their existing workloads, but what does it
mean? Encrypting a VM, for example, adds some defense
in depth but is largely security theater unless coupled
with a trustworthy mechanism for attesting its contents:
if the provider controls the initial VM, and the tenant has
no mechanism to review it, then the provider is still fully
trusted.

To get meaningful end-to-end protection, the workload
inputs and outputs must be encrypted, and the associated
data keys must be released only to the TEE allocated
for the workload. This involves keeping track of the
platform and code that are authorized for this workload,
while enabling updates for both platform and code. For
convenience, most tenants will likely choose to delegate
these tasks to cloud services. For security, these services
must themselves be deployed in TEEs, relying on one
another for core functionalities such as secure identity,
keying, and logging.

The next section outlines the services at the core of a
confidential computing ecosystem in support of tenants
that deploy confidential workloads and application
developers who contribute their code.

19 of 28

U
sability
is critical
to any
security
technol-

ogy that aims
for widespread
adoption.

acmqueue | january-february 2021 20

hardware security

Key management and attestation services
If a confidential service needs access to any persistent
data (for example, a VM disk image) then it needs to
retrieve the key from somewhere. For traditional client-
side disk encryption, this can be stored in the TPM and
unlocked by the tenant entering a passphrase. In a cloud
scenario, the storage part is relatively easy to solve either
with managed HSMs (hardware security modules) via a
service such as Azure Key Vault or a persistent confidential
computing service that manages key storage. Asking the
tenant to enter a passphrase for every VM, container, or
other service that they launch, however, is not a scalable
solution.

When tenants grant access to their data, they
are making a policy decision based on a review of the
information included in the attestation and other metadata
at their disposal. This process can be automated by a
confidential cloud service, such as the Microsoft Azure
Attestation: at the start of the confidential computation,
the newly created TEE establishes a secure connection
to the attestation service and presents its attestation
materials. The service checks them against the
authorization policies previously uploaded by the tenant
and, if successful, issues the corresponding credentials.
The TEE may then use these credentials to access tenant
data. It may, for example, present a token issued by the
attestation service to obtain the current decryption key
from an HSM.

The cloud provider runs the attestation service
atop a fleet of authorized TEEs, and then a tenant can
do the manual setup step (the equivalent of entering a

20 of 28

acmqueue | january-february 2021 21

hardware security

passphrase) once and provide policies and credentials so
that the service can automatically authorize thousands
of VMs on its behalf. Within the cloud, for example, the
service may automatically authorize migration between
TEEs and recovery from their encrypted checkpoints.

To this end, the service maintains an up-to-date,
consistent cache of platform certificates for all TEEs
provisioned in its data centers. It performs frequent checks
for certificate revocations and can manage, for example,
the consistent deployment of firmware or microcode
updates for the trusted hardware (typically requiring new
collections of certificates). Thus, the service can support
precise, stateful policy statements of the form, “This
task must run within an SGX enclave, on an Intel SGX v2.1
platform, deployed in the German Azure data center, in a
VM allocated to the tenant, supported by certificates that
are valid as of today,” rather than just, “This task must run
within an enclave.”

From a cloud perspective, it is important both to
minimize the number of distinct hardware offerings
and to ensure software portability across everything.
X86 VMs will happily work on Intel or AMD hardware
even though the virtualization extensions on both are
different. If confidential VMs needed to be implemented
differently between AMD and Intel hardware, this would
add a significant barrier to adoption. By factoring out the
hardware-specific details, the attestation service enables
other services to be platform independent. For example,
it enables the integration of legacy HSMs without the
need to customize them for different forms of confidential
enclaves, VMs, and containers.

21 of 28

F
rom a cloud
perspective,
it is
important
both to

minimize the
number
of distinct
hardware
offerings and
to ensure
software
portability
 across
everything.

acmqueue | january-february 2021 22

hardware security

Code Transparency
Remote attestation enables tenants (or services they
trust) to authenticate the platform and software TCB for
their computations, but it does not ensure that this TCB
is trustworthy. To this end, tenants would ideally gather
and review the security of all the source code for their
applications, runtime SDKs and libraries, and compilation
tool chains. They would then rebuild the software image
for their workload and check that its hash matches the one
presented for attestation. This task is daunting for several
reasons:
3 It involves a lot of software from different origins, even

for simple applications.
3 Parts of this software may be proprietary or

confidential, hindering its review.
3 Modern build systems are sensitive to details in their

environment, yielding irreproducible code.
3 Cloud computing encourages agile development and

facilitates seamless code updates, often without
requiring a restart of the application.

3 Emergency patches may be required to mitigate newly
disclosed vulnerabilities, and they can hardly wait for a
security review of every impacted application.
To facilitate this task, or at least amortize its cost,

a code transparency service can securely record the
software dependencies, build environments, and resulting
binaries used for confidential computing. A cloud provider
may operate this service as a confidential ledger that
systematically enforces code-update policies, signs the
resulting binaries, and maintains a public, immutable log of
all its operations. Accordingly, the tenant may configure the

22 of 28

acmqueue | january-february 2021 23

hardware security

cloud attestation and key management services to authorize
any such signed binaries for a confidential application.

For example, a tenant may configure the code
transparency service to install emergency patches
automatically from a reputable software vendor,
provided they are correctly signed and published on
the release branch of their designated GitHub project.
(More conservatively, they may also require signed
endorsements from the cloud provider or a designated
expert.) Even if the patch is broken, the service will at least
provide a strong audit trail to enable its review after the
fact. The software vendor might still be able to undermine
a tenant’s security guarantees but cannot do so without
placing its reputation on the line. The code transparency
service can also be used to mitigate software supply chain
attacks, because it provides auditable provenance and
chain-of-custody for a software bill of materials (SBoM).

CONFIDENTIAL COMPUTING IS THE FUTURE
OF THE CLOUD
Confidential computing provides strong security
assurances in the cloud by empowering tenants to
remotely control the TCBs for their workloads: it makes
explicit the (minimal) hardware, software, and services
that they still need to trust; and it provides strong
technical protection against any attacks from the rest—
preventing potential attacks from other tenants and even
from the cloud provider. This enables tenants in turn to
develop and deploy their own confidential applications for
their most sensitive data.

Confidential cloud computing is in its infancy, but we

23 of 28

acmqueue | january-february 2021 24

hardware security

believe that it will eventually become ubiquitous, the
same as other privacy and integrity mechanisms such as
TLS and encryption at rest. The hardware for confidential
computing (CPUs, FPGAs, and accelerators) should
evolve at a rapid pace, as the result of a large, concerted
effort across the industry aiming to provide open, robust,
standardized, platform-agnostic capabilities. As these
become available, they will form the foundation for a
cloud fabric that will be compartmentalized with small
TCBs, where each component will have access only to the
information necessary to perform its function.

This foundation will support running confidential VMs,
as well as higher-level platform services. While some
services may never run in a fully confidential mode, they
will benefit from the new, more secure foundation. As
software-engineering tools evolve toward enabling
compartmentalized confidential-by-default development,
these guarantees will be easy to add.

Imagine a future in which end users have complete and
verifiable control over how their data is used by any cloud
service. If they want their organization’s documents to be
indexed, a confidential indexing service could guarantee
that no one outside their organization ever sees that data.
A confidential videoconferencing service could guarantee
end-to-end encryption without sacrificing the ability to
record the session or provide transcripts, with the output
sent to a confidential file-sharing service, never appearing
unencrypted anywhere other than the organization’s
devices or confidential VMs. A confidential email system
could similarly protect privacy without compromising on
functionality such as searching or authoring assistance.

24 of 28

acmqueue | january-february 2021 25

hardware security

Ultimately, confidential computing will enable many
innovative cloud services, while allowing users to retain
full control over their data.

References
1. AWS Nitro Enclaves. AWS; https://aws.amazon.com/ec2/

nitro/nitro-enclaves/.
2. Baumann, A., Peinado, M., Hunt, G. 2014. Shielding

applications from an untrusted cloud with Haven.
Proceedings of the 11th Usenix Symposium on Operating
Systems Design and Implementation; https://www.
usenix.org/conference/osdi14/technical-sessions/
presentation/baumann.

3. Carruth, C. 2018. Speculative load hardening. LLVM
Compiler Infrastructure; https://llvm.org/docs/
SpeculativeLoadHardening.html.

4. Confidential Consortium Framework. GitHub; https://
github.com/microsoft/CCF.

5. Ohrimenko, O., et al. 2016. Oblivious multi-party
machine learning on trusted processors. Proceedings
of the 25th Usenix Security Symposium, 619-636; https://
dl.acm.org/doi/10.5555/3241094.3241143.

6. Open Enclave SDK. GitHub; https://github.com/
openenclave/openenclave.

7. Priebe, C., Vaswani, K., Costa, M. 2018. EnclaveDB: a
secure database using SGX. Proceedings of the IEEE
Symposium on Security and Privacy; https://ieeexplore.
ieee.org/document/8418608.

8. Qureshi, M. K. 2019. New attacks and defense for
encrypted-address cache. Proceedings of the 46th
International Symposium on Computer Architecture,

25 of 28

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/baumann
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://github.com/microsoft/CCF
https://github.com/microsoft/CCF
https://dl.acm.org/doi/10.5555/3241094.3241143
https://dl.acm.org/doi/10.5555/3241094.3241143
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://ieeexplore.ieee.org/document/8418608
https://ieeexplore.ieee.org/document/8418608

acmqueue | january-february 2021 26

hardware security

360-371; https://dl.acm.org/doi/10.1145/3307650.3322246.
9. Sakalis, C., et al. 2019. Efficient invisible speculative

execution through selective delay and value prediction.
Proceedings of the International Symposium on
Computer Architecture; https://www.researchgate.
net/publication/333755760_Efficient_Invisible_
Speculative_Execution_through_Selective_Delay_
and_Value_Prediction.

10. Schuster, F., et al. 2015. VC3: trustworthy data analytics
in the cloud using SGX. Proceedings of the 2015 IEEE
Symposium on Security and Privacy, 38-54; https://
dl.acm.org/doi/10.1109/SP.2015.10.

11. SGX-LKL. GitHub; https://github.com/lsds/sgx-lkl.
12. Volos, S., et al. 2018. Graviton: trusted execution

environments on GPUs. Proceedings of the 13th
Usenix Symposium on Operating Systems Design and
Implementation; https://www.usenix.org/system/files/
osdi18-volos.pdf.

13. Werner, M., et al. 2019. ScatterCache: thwarting cache
attacks via cache set randomization. Proceedings of the
28th Usenix Security Symposium; https://www.usenix.
org/system/files/sec19-werner.pdf.

14. Yan, M., et al. 2018. InvisiSpec: making speculative
execution invisible in the cache hierarchy. Proceedings
of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture; https://iacoma.cs.uiuc.edu/
iacoma-papers/micro18.pdf.

Mark Russinovich is CTO of Microsoft Azure, where he leads
technical strategy and architecture for Microsoft’s cloud
computing platform.

26 of 28

https://dl.acm.org/doi/10.1145/3307650.3322246
https://www.researchgate.net/publication/333755760_Efficient_Invisible_Speculative_Execution_through_Selective_Delay_and_Value_Prediction
https://www.researchgate.net/publication/333755760_Efficient_Invisible_Speculative_Execution_through_Selective_Delay_and_Value_Prediction
https://www.researchgate.net/publication/333755760_Efficient_Invisible_Speculative_Execution_through_Selective_Delay_and_Value_Prediction
https://www.researchgate.net/publication/333755760_Efficient_Invisible_Speculative_Execution_through_Selective_Delay_and_Value_Prediction
https://dl.acm.org/doi/10.1109/SP.2015.10
https://dl.acm.org/doi/10.1109/SP.2015.10
https://github.com/lsds/sgx-lkl
https://www.usenix.org/system/files/osdi18-volos.pdf
https://www.usenix.org/system/files/osdi18-volos.pdf
https://www.usenix.org/system/files/sec19-werner.pdf
https://www.usenix.org/system/files/sec19-werner.pdf
https://iacoma.cs.uiuc.edu/iacoma-papers/micro18.pdf
https://iacoma.cs.uiuc.edu/iacoma-papers/micro18.pdf

acmqueue | january-february 2021 27

hardware security

Manuel Costa is a partner research manager at Microsoft
Research Cambridge, where he leads the Confidential
Computing research theme. He is interested in advancing the
state of the art in security and privacy, operating systems, and
programming languages.

Cédric Fournet is a senior principal research manager in the
Confidential Computing group at Microsoft Research. He
is interested in security, privacy, cryptography, distributed
programming, and formally verified software.

David Chisnall is a principal researcher at Microsoft Research
Cambridge, where he works on hardware/software co-design
for security. His work spans computer architecture, operating
systems, compilers, and language design. He is also an active
open-source developer, contributing to LLVM since 2008 and
having served two terms on the FreeBSD Core Team.

Antoine Delignat-Lavaud received a Ph.D. in computer science
from ENS Paris, working in the PROSECCO team at Inria Paris
on cryptographic protocols, programming languages, and
formal verification with applications to web security. He is a
principal researcher in the Confidential Computing group at
Microsoft Research Cambridge and is researching protocols
and systems for confidential cloud services built on hardware-
security guarantees.

Sylvan Clebsch is a senior principal research engineer
at Microsoft Research Cambridge. His work includes the
Confidential Consortium Framework, Verona, and the Pony
programming language.

27 of 28

acmqueue | january-february 2021 28

hardware security

Kapil Vaswani is a principal researcher in the Confidential
Computing group at Microsoft Research. His research focuses
on building secure, robust, and transparent systems. He has
pioneered work on secure databases using trusted hardware
and new forms of trusted hardware.

Vikas Bhatia is head of product for Azure confidential
computing. Prior to Azure, he led product teams in the
Windows Developer Platform group, Cloud Game Streaming,
Xbox One, and Visual C++ Compiler.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

28 of 28

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE.
STAY CONNECTED.
KEEP INVENTING.

