Accelerating Recommendation System Training by Leveraging Popular Choices

Muhammad Adnan
University of British Columbia
adnan@ece.ubc.ca

Divya Mahajan
Microsoft
divya.mahajan@microsoft.com

Yassaman Ebrahimzadeh Maboud
University of British Columbia
yassaman@ece.ubc.ca

Prashant J. Nair
University of British Columbia
prashantnair@ece.ubc.ca

ABSTRACT
Recommender models are commonly used to suggest relevant items to a user for e-commerce and online advertisement-based applications. These models use massive embedding tables to store numerical representation of items’ and users’ categorical variables (memory intensive) and employ neural networks (compute intensive) to generate final recommendations. Training these large-scale recommendation models is evolving to require increasing data and compute resources. The highly parallel neural networks portion of these models can benefit from GPU acceleration however, large embedding tables often cannot fit in the limited-capacity GPU device memory. Hence, this paper deep dives into the semantics of training data and obtains insights about the feature access, transfer, and usage patterns of these models. We observe that, due to the popularity of certain inputs, the accesses to the embeddings are highly skewed with a few embedding entries being accessed up to 10 000× more. This paper leverages this asymmetrical access pattern to offer a framework, called FAE, and proposes a hot-embedding aware data layout for training recommender models. This layout utilizes the scarce GPU memory for storing the highly accessed embeddings, thus reduces the data transfers from CPU to GPU. At the same time, FAE engages the GPU to accelerate the executions of these hot embedding entries. Experiments on production-scale recommendation models with real datasets show that FAE reduces the overall training time by 2.3× and 1.52× in comparison to XDL CPU-only and XDL CPU-GPU execution while maintaining baseline accuracy.

1 INTRODUCTION
Recommender models are an important class of machine learning algorithms that enable the industry (Netflix [1], Facebook [2], Amazon [3], etc.) to offer a targeted user experience through personalized recommendations. Deep learning based recommendation models [2, 4] are at the core of a wide variety of internet services and consume significant infrastructure capacity and compute cycles in datacenters [5]. Training such at-scale models observes a conflation of challenges arising from high compute and data storage/transfer requirements. On the compute side, hardware accelerators notably GPUs and other heterogeneous architectures [6–10] provide a robust mechanism to increase performance and energy efficiency. To mitigate the large memory requirement, distributing training load through model parallel training [11–14] or reducing the overall memory requirement through sparsity [15] and compression [16–19] can be used. However, such techniques either require a pool of hardware accelerators that cumulatively provide enough memory to store these large models or tradeoff accuracy from the reduced precision for model footprint.

1.1 Motivation
Recommender models, as shown in Figure 1A, use embedding tables that contribute heavily towards the memory capacity requirement and neural networks that exhibit compute intensity. While neural networks can benefit from GPUs, embedding tables (10s of GBs) often cannot fit within GPU memories [5, 20]. Naively using model parallelism just to store the large embedding data across multiple GPUs is sub-optimal, as the number of GPU devices per compute node are not only fixed, but also scarce and expensive.

Figure 1B shows the size of the embedding tables for four real-world datasets [22–25] across two open-source recommender models, “Deep Learning Recommendation Model for Personalization and Recommendation Systems” (DLRM) [2] and “Time-based Sequence Model for Personalization and Recommendation Systems” (TBSM) [4]. As user-targeted applications evolve, the size of these embedding tables is expected to increase [20, 26] at a rate faster than the anticipated increase in the memory capacity [27, 28]. This is because larger embedding tables can track a greater and diverse degree of user preferences [5]. Therefore, in practice, it is common to train recommendation models either solely on CPUs or use the CPUs for handling the embedding data with GPUs executing data-parallel neural networks [29]. In the latter case, embeddings are stored in CPU memories as shown in Figure 1C and require embedding data to be transferred between CPU and GPUs.
This paper proposes the Frequently Accessed Embeddings (FAE) framework that efficiently places embedding data across CPUs and GPUs, while maintaining baseline accuracy. This paper makes the following contributions:

1. We find that embedding table accesses in real world recommender models is heavily compute-resource intensive. To address this, the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

2. We intelligently place hot embeddings on every GPU device memory while maintaining baseline accuracy. This paper classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

3. We find that embedding table accesses in real world recommender models is heavily compute-resource intensive. To address this, the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

4. We intelligently place hot embeddings on every GPU device memory while maintaining baseline accuracy. This paper classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

5. We find that embedding table accesses in real world recommender models is heavily compute-resource intensive. To address this, the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

6. We intelligently place hot embeddings on every GPU device memory while maintaining baseline accuracy. This paper classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

Figure 1: A) Typical recommender model [2, 4, 21]. They comprise compute-intensive neural networks like DNNs and MLPs in tandem with the memory-intensive embedding tables. B) shows the proportion of the embedding table that is frequently accessed (hot). The graph also shows the % of training inputs that only access the hot embeddings. C) shows the baseline embedding data layout, i.e., storing entirely in the main memory. D) shows embedding table sizes for four real world datasets and the access patterns of such models and their training inputs. This data layout reduces the memory footprint of embedding data per GPU and mitigates frequent data transfers between CPU and GPUs.

Past work [30] has shown that data transfers are not only performance degrading but also consume significantly higher energy compared to accessing memories on the device. To address this, we leverage the observation that certain embedding entries and inputs to recommendation models are significantly more popular than the others. For instance, blockbuster movies tends to be significantly more popular than other movies. Below, we discuss how popular inputs and embeddings can be delegated to a faster and compute-proximate device memory while maintaining the training fidelity.

1.2 Proposed Work and Contributions

Prior work [31, 32] have shown that convergence of population preferences underlies the principle of popular inputs. This popularity of training inputs implies that embedding data (accessed based on the input) also exhibits a highly skewed access behavior. Figure 1B shows the proportion of the embedding entries accessed by popular inputs in real-world datasets. For each benchmark, entries that have been accessed greater than $10^{-5}$, $10^{-4}$, $10^{-3}$, $10^{-2}$% of the total accesses respectively are showcased. We call these highly accessed entries and their corresponding popular inputs as hot. This paper aims to offer an embedding data layout that accounts for access patterns of such models and their training inputs. This data layout reduces the memory footprint of embedding data per GPU and mitigates frequent data transfers between CPU and GPUs.

Optimized Data Layout: The proposed optimized data layout classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing only the hot embedding data (only a few hundred MBs) on every GPU device memory and (2) perform all the hot embedding accesses and neural network tensor computations locally on the GPUs. This eliminates any CPU-GPU communication for the popular inputs. For a large dataset like Criteo Terabyte, the size of hot portions of embedding tables is about ~400 MB (0.7% as compared to 61GB for the entire tables) while catering to 81.6% of the input data. These hot embeddings can easily fit within the memory of even a low-end GPUs. For hot inputs, the entire graph shown in Figure 1 is trained using GPUs in a data-parallel fashion. For the remainder of the inputs, their embedding accesses and computation are performed on the CPU and the neural network is executed in data parallel fashion on GPUs.

Challenges: Storing hot embedding data locally in every GPU poses four challenges: First, as each training step executes a mini-batch of inputs, if even a single input within the mini-batch accesses a cold embedding entry, that data has to be obtained from the CPU. Thus incurs a CPU-GPU communication overhead and becomes the latency bottleneck for that mini-batch. Second, training contiguously only on either hot or cold inputs can have an impact on accuracy. This is because, popular inputs only update the hot embeddings. Third, as we split hot and cold embedding data between CPU and GPUs, all the devices need to be kept synchronized. Fourth, the hotness of an embedding entry depends on the dataset and recommender model. Hence, hotness needs to be re-calibrated for every (model, dataset, and system configuration) tuple.

Contributions: This paper proposes the Frequently Accessed Embeddings (FAE) framework that efficiently places embedding data across CPUs and GPUs, while maintaining baseline accuracy. This paper makes the following contributions:

1. We find that embedding table accesses in real world recommender models is heavily compute-resource intensive. To address this, the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

2. We intelligently place hot embeddings on every GPU device memory while maintaining baseline accuracy. This paper classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing only the hot embedding data (only a few hundred MBs) on every GPU device memory and (2) perform all the hot embedding accesses and neural network tensor computations locally on the GPUs. This eliminates any CPU-GPU communication for the popular inputs. For a large dataset like Criteo Terabyte, the size of hot portions of embedding tables is about ~400 MB (0.7% as compared to 61GB for the entire tables) while catering to 81.6% of the input data. These hot embeddings can easily fit within the memory of even a low-end GPUs. For hot inputs, the entire graph shown in Figure 1 is trained using GPUs in a data-parallel fashion. For the remainder of the inputs, their embedding accesses and computation are performed on the CPU and the neural network is executed in data parallel fashion on GPUs.

3. We find that embedding table accesses in real world recommender models is heavily compute-resource intensive. To address this, the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

4. We intelligently place hot embeddings on every GPU device memory while maintaining baseline accuracy. This paper classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing only the hot embedding data (only a few hundred MBs) on every GPU device memory and (2) perform all the hot embedding accesses and neural network tensor computations locally on the GPUs. This eliminates any CPU-GPU communication for the popular inputs. For a large dataset like Criteo Terabyte, the size of hot portions of embedding tables is about ~400 MB (0.7% as compared to 61GB for the entire tables) while catering to 81.6% of the input data. These hot embeddings can easily fit within the memory of even a low-end GPUs. For hot inputs, the entire graph shown in Figure 1 is trained using GPUs in a data-parallel fashion. For the remainder of the inputs, their embedding accesses and computation are performed on the CPU and the neural network is executed in data parallel fashion on GPUs.

5. We find that embedding table accesses in real world recommender models is heavily compute-resource intensive. To address this, the proposed layout where hot embeddings that cater to >70% of the training inputs, are stored locally on GPUs.

6. We intelligently place hot embeddings on every GPU device memory while maintaining baseline accuracy. This paper classifies embedding entries into hot and cold regions as shown in Figure 1D. The categorization allows (1) replicating and storing only the hot embedding data (only a few hundred MBs) on every GPU device memory and (2) perform all the hot embedding accesses and neural network tensor computations locally on the GPUs. This eliminates any CPU-GPU communication for the popular inputs. For a large dataset like Criteo Terabyte, the size of hot portions of embedding tables is about ~400 MB (0.7% as compared to 61GB for the entire tables) while catering to 81.6% of the input data. These hot embeddings can easily fit within the memory of even a low-end GPUs. For hot inputs, the entire graph shown in Figure 1 is trained using GPUs in a data-parallel fashion. For the remainder of the inputs, their embedding accesses and computation are performed on the CPU and the neural network is executed in data parallel fashion on GPUs.
We prototype FAE on well established open-source deep learning-based recommender system training models DLRM [2] and TBSM [4]. These models are adopted by both academia [33] and industry [34–36]. We compare our FAE optimized training with two implementations. First, the open-source implementations of DLRM and TBSM. Second, a highly optimized implementation of these models using the XDL framework [37]. We evaluate FAE for a wide variety of real-world and synthetic deep learning based recommender models. For real-world model architectures, our experiments show that FAE achieves, on average, a performance improvement of 2.3× and 1.52× in comparison to XDL enhanced CPU and CPU-GPU baseline, respectively. Furthermore, FAE achieves 4.76× and 1.80× against the open-source implementation of DLRM and TBSM on CPU and CPU-GPU, respectively. Both baselines execute in a hybrid mode that uses a CPU with 4 GPUs. FAE reduces the amount of data transferred from CPU to GPU by 1.54× in comparison to XDL-based baseline. For synthetic model architectures, FAE achieves 2.94× speedup over XDL-based baseline.

**Outline:** Section 2 provides background on recommender models. Section 3 describes the challenges and insights that drive our design discussed in Section 4. Finally, Section 5 discusses the evaluation of our proposed framework followed by the related work.

## 2 BACKGROUND

In this section we provide the background on the model, inputs, and training process of recommendation systems.

**Recommendation models and their training inputs:** Figure 2 shows the flow of a recommendation model which comprises embedding lookup and neural network layers. The recommendation model has two types of inputs, namely sparse and dense. Sparse inputs typically denote specific preferences of the user (like the movie genre, choice of music, etc.) and are used by the embedding layers. Dense inputs are continuous inputs (such as time of day, location of users, etc.) that feed directly into the neural network layers. The embedding phase uses large tables containing data that reduces the sparse input feature space into a vector. These inputs are used by the Deep Neural Network (DNN) and Multi-Layer Perceptron (MLP) components to classify and determine the final recommendation.

**State-of-the-art mode of execution for training:** Machine learning techniques generally employ data-parallel training to reduce the overall execution time [38]. This mode of training requires model replication across all the GPU devices, where each device executes on different inputs in a mini-batch. Thereafter, a post-execution synchronization is performed to update the weights/parameters using the aggregated gradient values. For recommendation models, this training mode tends to be infeasible as embedding tables cannot fit even on high-end GPUs such as Nvidia-V100.

To overcome this issue, as shown in the Figure 2, past work either executes the whole graph on the CPU or uses the CPU to handle the memory-intensive embedding layer with the GPUs executing the compute-intensive DNN layers. The first case is inefficient as CPUs are not optimized for neural network training as they cannot optimally process large tensor operations. On the other hand, the hybrid CPU-GPU mode incurs CPU-GPU communication overheads for intermediate results and gradients. This is shown in the forward pass by the bold dotted lines in the Figure 2. The backward pass also executes in a CPU-GPU mode, with CPU executing the backward computation for embeddings and GPU executing the backward propagation of neural layers. Thereafter, the gradients are generated on GPU for embeddings and on GPU for neural layers. Our experiments show that CPU-GPU communication can take up to 22% of the total training time. Additionally, any computation involving embedding data, such as the massively-parallel Stochastic Gradient Descent optimization, also then executes on the CPU.

**Leveraging training input and embedding access patterns:** Data accesses can exhibit certain locality that can be exploited either at software [16, 39], system [40], or hardware [41] level. For recommender models trained on real-world data, some sparse inputs are significantly more popular than others. Therefore, in such real-world applications, accesses into embedding tables are also heavily skewed. For instance, for the Criteo Kaggle dataset [22] on DLRM, the top 6.8% of the embedding table entries observe at least 76% of the total accesses. It is important to note that the cold portion of the embedding data is critical from a learning perspective as it contributes towards the overall efficacy of the model. This is because cold embeddings help cater the model to a wider user base. Thus, training only on popular inputs would make the targeted user experience futile as it would lead to certain items being always recommended.
Nevertheless, from a memory and infrastructure perspective, as shown in Figure 1B, hot entries are more important as they form 75% to 92% of the total training input accesses.

This paper leverages the popularity semantics of training input to mitigate the bottlenecks of the above mentioned CPU-GPU execution by optimizing the embedding data layout in the memory hierarchy. **Intuitively, highly accessed embeddings are kept in close proximity to the compute, i.e. GPU, whereas the cold embedding entries are stored in relatively larger but slower CPU memories.** This allows us to execute the entire training graph, shown in Figure 2, on the GPU in a data-parallel fashion for the popular inputs. This data layout overcomes the limitations of the baseline by - (1) accelerating embedding compute through GPUs whilst being within the memory capacity of the device and (2) eliminating the communication overheads (gradients and activations) between CPU and GPU.

## 3 CHALLENGES AND INSIGHTS

To perform efficient end-to-end training with the optimized embedding layout while maintaining baseline accuracy, we require a comprehensive framework that has both static and runtime components. Next we analyze the challenges of such a training execution.

1. **Does moving the hot embedding data to the GPU suffice?**
   As shown in Figure 3, even if 99% of the inputs are popular, i.e., access hot embeddings, the probability that the entire mini-batch accesses only hot embeddings decreases dramatically as the minibatch size increases. This is because, it is likely that at least one input within a large mini-batch would require accessing cold embedding entries. To obtain benefits from embedding data layout, we require the entire mini-batch to only access hot embedding entries. Even a single input accessing cold embedding entries would stall GPU execution as it tries to obtain its embedding entries from the CPU memory. To overcome this challenge, our framework comprises a static component that performs input-dataset pre-processing and organizes mini-batches such that they completely contain only hot or cold inputs. This pre-processing needs to be performed only once per dataset and is stored in a pre-processed format for subsequent executions. For hot mini-batches, the framework performs GPU-only data-parallel execution and for cold mini-batches the framework falls back onto the CPU-GPU hybrid mode.

2. **What constitutes a hot embedding entry?**
   The classification of an embedding entry as hot or cold is based on the access threshold. Any entry that is accessed more than a threshold is classified as hot. We expose this threshold as a knob to FAE to adjust the amount of hot embeddings that can be managed by GPUs, based on both the model and system specifications. To minimize performance overhead, we devise statistical techniques that use input dataset sampling to determine the access threshold. This enables FAE to determine the optimal threshold without scanning the entire training data. FAE selects a threshold that classifies enough embedding entries as hot so that they fit in allocated GPU device memory.

3. **How to schedule hot and cold mini-batches?**
   FAE processed data contains mini-batches that are either entirely hot or cold. Scheduling all the hot mini-batches followed by cold mini-batches incurs the least embedding update overhead as the embeddings only have to be synchronized between GPU and CPU once after the swap. However, such a technique can have an non-negligible impact on the accuracy. This is because the hot mini-batches only update the hot embedding entries whereas the cold mini-batches cover more embedding entries (both hot and cold), albeit sparsely. To tackle this issue, our framework, offers a runtime solution that dynamically tunes the rate of issuing hot and cold mini-batches to ensure that the accuracy metrics are met.

4. **How to maintain consistency between the embedding tables that are scattered across devices?**
   FAE replicates hot embedding tables across all the GPU devices and CPU contains all the embeddings (including hot embeddings). Thus, we need to perform two forms of synchronization during the training - one across all the GPUs after each mini-batch of data parallel execution and once between the cold and hot swap between CPU and GPU. In the former case, hot embeddings are synchronized using the AllReduce collective over the fast NVlink GPU to GPU interconnect [42]. In the latter case, the synchronization across GPU and CPU between hot and cold mini-batches is performed through PCIe transfer between the GPU-CPU devices. This communication overhead incurred by FAE is accounted for in the final execution latencies. To reduce this overhead, FAE minimizes the transitions between hot and cold mini-batches, without compromising baseline accuracy.

## 4 THE FAE FRAMEWORK

This paper proposes the **Frequently Accessed Embeddings (FAE)** framework to accelerate recommender system training. FAE efficiently utilizes the GPU memory and computation throughput to reduce the communication cost of obtaining embedding data. Figure 4 illustrates the flow of the framework; FAE consists of (1) the input and embedding pre-processing stage that determines the hotness of embeddings by sampling the input training data and (2) the training stage that replicates hot embeddings on all the GPUs and schedules hot/cold minibatches to ensure baseline accuracy. The pre-processing phase converges on an access threshold to classify an embedding entry as hot. This threshold is based on the allocated GPU memory size, confidence interval, and the CPU-GPU bandwidth. Thereafter, based on the final threshold, the **Embedding Classifier and Input Classifier** categorize both embedding entries and sparse inputs into hot and cold portions. The pre-processing phase executes statically once per training dataset, and stores the pre-processed data in the FAE format for subsequent training runs. At runtime, the **Embedding Replicator** extracts hot embedding entries and creates embedding bags that are replicated across GPUs.
4.1 Calibrating the Access Threshold

The first goal of the pre-processing phase is to pick an access threshold \( t \) for the embedding entries. We denote \( T \) as the total number of accesses into an embedding table. The accesses per entry for hot embeddings is \( \geq t \times T \). Any input that accesses only hot embeddings is also categorized as hot. Picking a large \( t \) would imply that only a few embedding entries would have enough accesses to be classified as hot. It would lead to only a small percentage of sparse-inputs that would execute completely in a GPU execution mode and thus reduce the overall performance benefits. Conversely, picking a small threshold will categorize embedding entries with very few accesses as hot which, would increase the embedding table size, often beyond the GPU device memory capacity. Figure 5 shows that we observe diminishing returns by reducing the threshold, as the number of hot embedding entries increases more steeply as compared to hot inputs. Thus, we need to efficiently tune \( t \) based on the system configuration parameters.

One of the system configuration parameters is the GPU memory allocated for hot embeddings – denoted by \( L \). Notation \( h \) constitutes the maximum number of hot entries that fit within \( L \). A naive mechanism to determine \( t \) will profile the entire training dataset and analyze the accesses of all the embedding entries. This requires sorting all embedding entries based on their access frequencies and classifying the top \( h \) entries as hot. This implementation will incur a high pre-processing overhead as it could imply processing several terabytes of data – even though profiling is performed only once per dataset. Instead, we propose a novel input sampler and Statistical Optimizer that ensures a low static compilation overhead for finding optimal \( t \) such that \( L \) is used effectively. Figure 6 describes the flow of events to determine the optimal value of \( t \).

4.1.1 Mitigating Read Overheads withSparse Input Sampler.

As size of the training input dataset is typically very large, we sample \( x\% \) of the input dataset \( (D) \). The value of \( x \) is specified as a hyper-parameter. Our implementation uses \( x = 5\% \) and obtains \( \hat{D} \) sampled sparse-input entries. Figure 7 shows the access profile for one large embedding table each for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte, and Avazu datasets with and without input sampling. Empirically, we observe with a sampling rate of 5%, \( \hat{D} \) maintains a similar access signature as \( D \).
4.1.2 Categorize and determine hot embedding size with the Profiler.

The goal of the profiler is twofold - (1) for the sampled input dataset $\hat{D}$ it creates an access profile of each embedding table ($E_z$), where $z$ is the table number and (2) it further samples this access profile to determine what the size of the hot embedding table is.

**Embedding Logger.** The profiler uses an embedding logger for each table to keep track of access counts (denoted as $k$) of $\hat{D}$ into each entry in $E_z$. As each model can access multiple embedding tables, our implementation assumes any table that is greater than or equal to 1 MB to be large. Embedding tables smaller than 1MB are de-facto considered “hot” as they can easily fit even on low-end GPUs. Thereafter, the profiler would still need to estimate the hot embedding table sizes, without traversing all the embeddings.

**Estimating the hot embedding table sizes per threshold.** Profiler creates a sampled access profile for each embedding table entry across all the tables by selecting random chunks of embedding entries and their observed access pattern from the logger. This enables estimating the size of the hot embeddings without traversing all the tables in their entirety. As the embedding logger observes only x% of the actual inputs, we need to scale down the required access counts to classify hot data. For embedding table number $z$ and a threshold $t$, the new hot embedding cutoff for each sampled entry is denoted by $H_{zt}$, described in Equation 1:

$$H_{zt} = t \times T \times \frac{x}{100}$$  \hspace{1cm} (1)

We then pick $n$ random samples, each consisting of $m = 1024$ entries from embedding logger for table $z$. Our implementation uses $n = 35$ and each sample consists of $m = 1024$ embedding entries. This chunk based sampling allows us to create a distribution of the access pattern. This paper uses Central Limit Theorem (CLT) to estimate the mean of the parent distribution. CLT has the property that, irrespective of the parent distribution, the mean of the sampled distribution will always approach the mean of the parent distribution. This is because, when the sample size $n \geq 30$, CLT considers the sample size to be large and the sampled mean will be normal even if the sample does not originate from a Normal Distribution [43]. As each embedding sample chunk consists $m = 1024$ entries, we can estimate the actual embedding table size with a precision of $1/1024$. For each chunk, we count ($C$) the number of entries with access counts ($k$) greater than or equal to $H_{zt}$. This is represented by Equation 2:

---

Figure 6: The flow of events in Input Sampler and Profiler. The original input 1 is sampled 2 at 5%. This sample is used by the profiler to create an access profile across embedding entries in the logger 4. For each threshold, A few chunks from the embedding logger are randomly sampled 4 to estimate the count of hot entries 6. The mean and standard deviation of this count determines the size of hot embedding tables per threshold 6.

Figure 7: Embedding table access profile from the original inputs ($D$) and the sampled inputs ($\hat{D}$) - sampling rate ($x$) = 5%. We observe that $\hat{D}$ has a similar access signature to $D$.

As shown in Figure 8, FAE obtains 19× to 55× reduction in latency by input sampling. For the Taobao Alibaba dataset, each input consists of a stream of up to 21 sub-inputs, therefore sees a larger reduction in latency [23].
$$C_l = \sum_{j=1}^{m}(k_j \geq H_{zt})$$

(2)

For *n* chunks, the standard deviation is *s* and the mean is *ȳ*, shown by Equation 3:

$$\hat{y} = \frac{\sum_{i=1}^{n} C_l}{n}$$

(3)

Figure 9 shows the latency savings from sampling embedding table instead of iterating through all the embedding access content. As the profiler scans 14x fewer embedding entries for each *t* it reduces latency of each scan by 14.5x×61x.

### Input Sampler and Profiler Example

The Criteo Terabyte dataset is 45 GB in size; post Input Sampler, we only process 2.25 GB. The profiler with this sampled input dataset, logs 8.5M embeddings in the logger for embedding table 20 (E20). Assuming an interim *t* of $10^{-2}$ and the original training dataset of 60.5M samples, each embedding entry in the logger would have incurred at least 6.05k accesses to be categorized as hot. As we use a sampled dataset (*D*), the hot entries observe fewer accesses and a smaller threshold of $H_{zt}$. 6.05k×$\frac{1}{100}$ = 302.5 accesses.

### Confidence in the estimated embedding table size

The goal of the profiler is to establish confidence in the estimated embedding size. A confidence interval, in statistics, refers to the probability (1−α) that a population parameter will fall between a set of values. To compute the confidence interval for the profiler’s estimated embedding table size, FAE uses the standard ‘Student’s t-interval’. As *ȳ* follows a t-distribution, the 100×(1−α) confidence interval (CI) for *ȳ* is represented by Equation 4:

$$CI_{100\times(1-\alpha)} = \hat{y} \pm t_{\frac{\alpha}{2}} \times \sqrt{\frac{N-n}{N} \times \left( \frac{s^2}{n} \right)}$$

(4)

Figure 10 shows the estimation variability compared to the actual values for a confidence interval of 99.9%. Actual value of the hot embedding size is the exact size the profiler would have obtained if it had processed the entire access pattern for each embedding table. This variability can be reduced if we specify a smaller confidence interval. We observe that the estimated values are within 10% of the actual values. As such, for every threshold, the profiler process described above is executed to determine the size of the hot embeddings. The Statistical Optimizer, based on this size and user requirements, either accepts the threshold or tunes it further as described below. Our experiments show that allocated memory of *L* = 512MB suffices for most GPUs (including low-end GPUs).

#### 4.1.3 Converging on a Threshold using Statistical Optimizer

The Statistical Optimizer invokes the profiler with varying *t* (interim thresholds) and a desired confidence interval to determine the final *t*. Based on the embedding size estimated for an interim threshold, the optimizer tunes the threshold to be higher or lower than the previous one. This ensures that the threshold is tuned appropriately based on the available GPU memory for each model architecture. The Statistical Optimizer then provides the final threshold as output to the next blocks in the FAE.

### 4.2 Input and Embedding Classifier

The embedding classifier uses the output of the Embedding Logger and the final threshold from Statistical Optimizer to tag (hot or cold) the embedding table entries. This requires only one pass of each embedding table. Additionally, the input classifier uses the final access threshold value and accesses to the already classified embedding table to identify hot sparse-inputs. Typically, there are 10x of embedding tables in a recommender model. A sparse-input typically accesses one or more entries in each of these embedding tables. A sparse-input is classified as hot only if all its embedding table accesses are to hot entries. This component typically requires only one pass of the entire sparse-input (*S*_i) and just checks if the embedding entry indices are present in the hot-embedding bags. As this is completely parallelizable operation across both inputs and embedding indices, we divide this task across multiple cores in the CPU. For a 16 core machine (32 hardware threads), the total time for this phase for different access thresholds is given by Figure 11.

The input classifier also bundles hot and cold inputs together into mini-batches. As aforementioned, we require the entire mini-batch to be hot to avoid the data shuffling between CPU and GPU. If an mini-batch of inputs is entirely hot, the entire execution can happen in a data-parallel mode on the GPU without any interference from the CPU. Once we have pre-processed the sparse-input data into hot and cold mini-batches, we store this in the FAE format for any subsequent training runs.
Figure 11: The latency of the input processor to classify sparse-inputs (as hot or cold) as we vary the access threshold. Overall, even for very low access thresholds, we only require only a maximum of 110 seconds.

4.3 Scheduler for Dynamic Hot-Cold Swaps

FAE’s pre-processing provides a dataset that is distributed into hot and cold mini-batches and a set of hot embeddings. The Embedding Replicator replicates the hot embedding bags across all GPUs, but a note here is that the hot embeddings also are available on CPU for baseline cold input executions. Next, we discuss the runtime scheduling of hot and cold mini-batches to ensure the baseline accuracy metrics whilst providing accelerated performance.

Impact on accuracy. In the most basic form, FAE can schedule the entire collection of mini-batches comprising hot inputs followed by cold inputs, or vice versa, but such a schedule can have potential impact on training accuracy. This is because the hot inputs only access and update the hot embedding entries, and training using only hot inputs for a long time can potentially reduce the randomness in training. For non-convexity loss optimization problems, this makes gradient descent based algorithms susceptible to local minima [44, 45]. To mitigate this, machine learning community has often deployed data shuffling. Next, we discuss how we uniquely attenuate this issue for our framework.

Communication Overheads. To re-introduce randomness in our training while also attaining accelerated performance, we intermittently schedule hot and cold mini-batches. However, changing input type (hot vs cold) can degrade performance as each of these events requires synchronization of hot embedding parameters between CPU and GPU copies. To balance this tradeoff of achieving accuracy but also obtaining performance, we implement Shuffle Scheduler, a module that dynamically determines the interleaving of hot and cold mini-batches based on the runtime training metric. The scheduler always begins with training on cold inputs as they update a wider range of embedding entries, albeit infrequently per entry. The rate of scheduling hot and cold mini-batches can be tuned dynamically based on Equation 5. In the equation, \( r(i) \) is the rate at \( i^{th} \) swap. Rate of \( R(100) \) implies that 100% of the mini-batches of cold inputs will be completed before the first hot mini-batches is issued. A rate of \( R(1) \) implies hot and cold are shuffled after every mini-batch. \( Test_L \) is the testing loss and \( u \) is a count of swaps.

\[
r(i + 1) = \begin{cases} 
\min (r(i) \times 1/2, R(1)) & \text{if } \Delta Test_L(i) \geq Test_L(i - 1) \\
\max (r(i) \times 2, R(100)) & \text{if } \Delta Test_L(i) \leq Test_L(i - u) \\
\frac{r(i)}{2} & \text{otherwise}
\end{cases} 
\]

5 EVALUATION

5.1 Experimental Setup

Based on the testing loss obtained after each swap, we determine whether the rate needs to be changed based on the following two conditions. The testing loss used for the scheduler can be loss functions such as mean squared loss and cross-entropy logarithmic loss, based on the model requirement. All of our models and their datasets use the logarithmic loss to establish the efficacy of training. Nonetheless, as we perform a comparison of loss score between each subsequent swap, any loss function can be used. If the framework observes an increase in the test loss from the previous schedule, it immediately reduces the rate by half. This implies that the remaining mini-batches of hot and cold inputs will be split into an alternate of cold and hot schedules. The rate can be reduced to a minimum of \( R(1) \).

If the test loss decreases, rate remains unchanged, as this is the expected behaviour, unless the loss has been decreasing successively for \( u \) schedules. This is the second case where rate is changed, i.e., increased by 2, up to a max of \( R(100) \). Similar to prior work that offers automatic convergence checks to avoid over-fitting, the downward trend of test loss curve [46] consecutively for 4 strips shows a balance between redundancy, badness, and slowness; thus we choose \( u \) as 4. Apart from the above two cases, the rate remains unchanged. The Shuffle Scheduler ensures that accuracy remains the priority of FAE. FAE begins training with \( R(50) \) (alternate cold and hot mini-batches) for a dataset, and tunes the rate accordingly.

5.1.1 Benchmarks and real-life datasets. We showcase the efficacy of our FAE framework on 4 real world datasets, using established recommendation models RMC1, RMC2, RMC3, and RMC4 which represent four classes of at-scale models [35]. We prototype FAE on top of the widely used open source implementation of Deep Learning Recommendation System (DLRM) [2] \(^1\) and Time-based Sequence Model for Personalization and Recommendation Systems (TBSM) [4] \(^2\) frameworks to train recommender models. Based on the sparse input configuration, there is a model-dataset correspondence, RMC1 model on Taobao Alibaba [23] with TBSM, and RMC2 on Criteo Kaggle [22], RMC3 on Criteo Terabyte [24], and RMC4 on Avazu [25] all with DLRM. TBSM consists of embedding layer and time series layer (TSL); the embedding layer is implemented through DLRM. TSL resembles an attention mechanism and contains its own MLP network to compute one or more context vectors between history of items and the last item. As Taobao Alibaba is the only dataset that provides temporal user behavior data, it is the only dataset that can leverage the TSL layer in TBSM. Table 2 describes the details of the model architecture for RMC1, RMC2, RMC3, and RMC4 including their dense and sparse features, embedding table numbers and size, and neural network configurations. In addition to these real world datasets and their corresponding models, we also perform an evaluation on synthetic models to showcase the efficacy of our framework. As FAE relies on popularity of certain inputs, we execute these synthetic models on Criteo Terabyte (largest dataset) to ensure the semantics of the training input. Table 2 highlights the

\(^1\)https://github.com/facebookresearch/dlrm
\(^2\)https://github.com/facebookresearch/tbsm
diversity of the model architectures in terms of embedding table sizes and neural network configurations.

5.1.2 Software libraries and setup. The base DLRM and TBSM code is configured using the Pytorch-1.7 and executed using Python-3. We use the torch.distributed backend to support scalable distributed training and performance optimization [47]. NCCL is used [48] for gather, scatter, and all-reduce collective calls via the backend NVLink [42] interconnect. DLRM and TBSM are also implemented on XDL 1.0 [37] using Tensorflow-1.2 [49] as the computation back-end.

Table 3: System Specifications

<table>
<thead>
<tr>
<th>Device</th>
<th>Architecture</th>
<th>Memory</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel Xeon 4116 (2.1 GHz)</td>
<td>768 GB DDR4 (2.7GB/s)</td>
<td>1.9 TB NVMe SSD</td>
</tr>
<tr>
<td>GPU</td>
<td>Nvidia Tesla V100 (1.2 GHz)</td>
<td>16 GB HBM-2.0 (960GB/s)</td>
<td>-</td>
</tr>
</tbody>
</table>

5.1.3 Server Architecture. Table 3 describes the configuration of our datacenter servers. These servers comprise 24-core Intel Xeon Silver 4116 (2.1 GHz) processor with Skylake architecture. Each server has a DRAM memory capacity of 192 GB. Each DDR4-2666 channel has 8 GB memory. Each server also has a local storage of 1.9 TB NVMe SSD. Each server offers 4 NVIDIA Tesla-V100 each with 16GB memory capacity as a general purpose GPU. The GPUs are connected using the high speed NVLink-2.0 interconnect. Every GPU is communicating with the rest of the system via a 16x PCIe Gen3 bus. In this paper, we perform experiments on a single server with a maximum of 4 GPUs. We expect our insights to hold true even in a multi-server scenario.

5.1.4 Baselines and terminology. We compare FAE optimized training against two baselines: (1) An open source implementation of DLRM and TBSM and (2) A DLRM and TBSM implementation on XDL. For both baselines we execute on CPU-only mode and CPU-GPU hybrid mode with varying number of GPUs. The CPU-only mode is referred to as XDL-CPU and DLRM-CPU. For CPU-GPU hybrid mode, in case of DLRM, embeddings execute on CPU and neural networks on GPU. For XDL, GPU is used to improve the efficiency of Advance Model Server by using a faster embedding dictionary lookup on GPU. CPU is used as a backend worker. We represent this mode as X-GPU, where X is the number of GPUs. FAE optimized training is referred to as X-GPU FAE.

5.2 Results and Insights

5.2.1 Accuracy Results. Figure 12 illustrates the accuracy of Criteo Kaggle, Taobao Alibaba, Criteo Terabyte, and Avazu for their RMC2, RMC1, RMC3, and RMC4 models. We use a full-precision XDL-CPU execution baseline that exactly follows the DLRM and TBSM executions. Table 4 compares the accuracy metrics for all the workloads. We use testing accuracy, Area Under Curve (AUC), and cross-entropy loss (logloss) as recommendation model performance metric, as established by the MLPerf [50] community. For Taobao dataset, we use the accuracy and logloss as performance metric, as AUC is not offered. As the table shows, each model achieves the corresponding baseline accuracy. For all the datasets, we observe that when the Shuffle Scheduler alternately issues cold and hot mini-batches at R(50), the models are able to converge to the baseline accuracy in the same number of baseline training iterations. FAE observes an initial jump in accuracy for both Criteo and Avazu datasets after the first swap between cold and hot mini-batch. Once, the model is trained on both the types of mini-batches, we do not observe any more jumps. As we interleave it with the first hot mini-batch, many pertinent embedding entries get updated and we reach the baseline accuracy for both training and testing sets.

Table 4: Metric Accuracy Comparisons

<table>
<thead>
<tr>
<th>Dataset</th>
<th>XDL</th>
<th>FAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (%)</td>
<td>AUC</td>
<td>Logloss</td>
</tr>
<tr>
<td>Criteo Kaggle</td>
<td>78.86</td>
<td>0.802</td>
</tr>
<tr>
<td>Taobao Alibaba</td>
<td>89.21</td>
<td>-</td>
</tr>
<tr>
<td>Criteo Terabyte</td>
<td>81.07</td>
<td>0.802</td>
</tr>
<tr>
<td>Avazu</td>
<td>83.61</td>
<td>0.758</td>
</tr>
</tbody>
</table>

5.2.2 Performance Gains and Absolute Training Times. Figure 13 shows the performance improvement of end-to-end training execution using FAE in comparison to XDL and DLRM/TBS. The end-to-end training runs are terminated when the established accuracy metric (cross-entropy loss or area under the curve) is met. The performance is normalized to XDL 1-GPU execution For a single device (CPU or 1-GPU), we use a mini-batch of 1K, 256, 1K and 1Input for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte and Avazu, respectively. FAE training reduces the average execution time (geomean) by 42%, 36%, and 34%, 1-GPU, 2-GPU, and 4-GPU executions, respectively. The GPU comparisons assume same number of GPUs for XDL and FAE. We maintain weak scaling across distributed runs where the mini-batch size is scaled with the number of GPUs. For example, 2 GPU execution use 2K, 512, 2K and 2K mini-batch size for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte and Avazu, respectively. For Taobao, 4 GPU execution takes more time than 2 GPU execution because the dataset is relatively small, thus the cold mini-batch executions overshadow benefits of FAE. Overall FAE reduces the training time by 2.3x and 1.52x in comparison to XDL CPU-only and XDL CPU-GPU with 4-GPUs.

Absolute time: We compare the absolute end-to-end training time, when all the executions reach their required accuracy metric. These
Figure 12: Increasing Accuracy with training iterations when optimized with FAE framework. As we see, all the datasets and corresponding recommender models achieve the XDL accuracy for both training and test or validation sets.

Figure 13: The performance of Criteo Kaggle, Taobao Alibaba, Criteo Terabyte, and Avazu training with the FAE vs XDL and DLRM. All values are normalized to XDL 1-GPU.

Figure 14: Latency breakdown for the 1, 2, and 4 GPU executions. The FAE framework adds the overhead of embedding synchronization across CPUs and GPUs, not present in XDL and DLRM.

Table 5: Absolute Training Time for 10 Epochs (mins)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>XDL 1-GPU</th>
<th>XDL 2-GPU</th>
<th>XDL 4-GPU</th>
<th>FAE 1-GPU</th>
<th>FAE 2-GPU</th>
<th>FAE 4-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteo Kaggle</td>
<td>197.56</td>
<td>196.97</td>
<td>122.71</td>
<td>179.16</td>
<td>116.27</td>
<td>160.65</td>
</tr>
<tr>
<td>Taobao Alibaba</td>
<td>1108.84</td>
<td>813.10</td>
<td>436.58</td>
<td>677.00</td>
<td>387.79</td>
<td>621.96</td>
</tr>
<tr>
<td>Criteo Terabyte</td>
<td>404.25</td>
<td>380.88</td>
<td>189.73</td>
<td>338.06</td>
<td>201.61</td>
<td>309.51</td>
</tr>
<tr>
<td>Avazu</td>
<td>134.28</td>
<td>103.24</td>
<td>72.07</td>
<td>84.04</td>
<td>62.73</td>
<td>61.15</td>
</tr>
</tbody>
</table>

5.2.3 Latency breakdown. Figure 14 shows the breakdown of the total runtime for each of the workloads executing on CPU-only and 1, 2, and 4 GPUs. In the Figure, colors for cold inputs are consistent across XDL, DLRM, and FAE executions. As the figure shows, the optimizer constitutes a large portion of the DLRM execution. This is because, a CPU cannot efficiently execute the massively parallel optimizer operation. FAE is able to mitigate some of these inefficiencies and reduce the optimizer time by performing both the neural network and embedding updates on GPUs for the hot input mini-batches. In case of XDL, efficiency of Advanced Model Server (AMS)
is improved using GPU to speed up the massively parallel optimizer and embedding dictionary lookup. Even XDL is limited by the size of GPU memory, hence only the index of embedding dictionary is stored in GPU memory. Due to small size of hot embedding tables, FAE stores the entire table in GPU memory instead of only the indices. Hence, for FAE the optimizer time for hot mini-batches is significantly lower than for the cold mini-batches, as the hot inputs are observed more often but accelerated on GPU. Figure 14 also shows the percentage of time spent by XDL, DLRM/TBSM, and FAE on data transfer to and fro the embedding layers. This data transfer is completely eliminated for FAE for hot mini-batches. For DLRM/TBSM implementations, the data transfer time comprises the time spent on transferring embedding data to the GPU. For XDL, the time reported is spent on transferring embedding indices and model dense parameters to the GPU.

Embedding Synchronization: One overhead imposed by FAE is one form of embedding synchronization while switching between cold and hot mini-batches. The embedding tables are updated across CPU and GPU memories to ensure the training process observes the same entries. This overhead is shown by the embedding sync on FAE executions and is highlighted in the Figure 14. Avazu observes a higher percentage of embedding synchronization overhead because of its comparatively smaller embedding size. Thus the fixed transfer cost from CPU to GPU, using PCIe, is not amortized over a large data transfer. On the contrary, Taobao observes the least percentage of synchronization overhead to be attributed to the high percent of forward and backward time of the Taobao RMC1 recommender model due to its deep attention layer. Thus, as the recommender models become bigger with larger embedding tables and deeper neural network layers, FAE can offer higher benefits by reducing the CPU-GPU data transfer between embedding and DNN layers, whilst observing amortized embedding synchronization overheads. This is because, even though embedding tables are expected to increase in size, a larger absolute size of embedding data does not necessarily imply a proportionally large hot embedding table. This is because certain inputs are always going to be way more popular than the others.

Table 6: CPU-GPU data transfer time for 10 Epochs (mins)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>1-GPU</th>
<th>2-GPU</th>
<th>4-GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DLRM</td>
<td>XDL</td>
<td>FAE</td>
</tr>
<tr>
<td>Criteo Kaggle</td>
<td>27.94</td>
<td>5.31</td>
<td>4.99</td>
</tr>
<tr>
<td>Taobao Alibaba</td>
<td>37.93</td>
<td>24.97</td>
<td>3.14</td>
</tr>
<tr>
<td>Criteo Terabyte</td>
<td>76.45</td>
<td>18.46</td>
<td>3.27</td>
</tr>
<tr>
<td>Avazu</td>
<td>35.94</td>
<td>6.22</td>
<td>2.97</td>
</tr>
</tbody>
</table>

Table 7: Amount of Data Transferred over 10 Epochs

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DLRM (GB)</th>
<th>XDL (GB)</th>
<th>FAE (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteo Kaggle</td>
<td>60.89</td>
<td>23.16</td>
<td>14.99</td>
</tr>
<tr>
<td>Taobao Alibaba</td>
<td>1.95</td>
<td>0.31</td>
<td>0.64</td>
</tr>
<tr>
<td>Criteo Terabyte</td>
<td>375.06</td>
<td>95.60</td>
<td>69.58</td>
</tr>
<tr>
<td>Avazu</td>
<td>40.45</td>
<td>30.27</td>
<td>10.45</td>
</tr>
</tbody>
</table>

Data transfer between CPU and GPU. Table 6 shows the absolute communication time to transfer the embedding layers and

Table 7 shows the amount of data transferred for XDL, DLRM/TBSM and FAE execution including the embedding synchronization for FAE. On average FAE reduces the total data transfer from 37 GB with XDL to 24 GB, even including the embedding synchronization overhead, which translates to 12% improvement in CPU-GPU data transfer time. In case of XDL, all dense parameters needs to be transferred from AMS to backend workers and vice versa per training iteration. FAE only require parameters to be transferred between CPU and GPU across the hot and cold mini-batch swap.

5.2.4 Performance improvement with varying mini-batch size. Figure 15 shows the performance benefits of FAE training over XDL execution for a 4-GPU system. Speedup is normalized to XDL execution with mini-batch size of 1K, 256, 1K and 1K for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte and Avazu datasets respectively. As the mini-batch size increases, we observe higher benefits because the overheads of FAE are amortized over a larger input set. For instance, now the Embedding Replicator replicates the model fewer times. However, with XDL, we do not see such an improvement because of extra time being spent on creating and sending larger mini-batches to the backend workers.

![Figure 15: Speedup of FAE with varying mini-batch sizes for a 4-GPU system, compared to a 4-GPU XDL](image)

5.2.5 Performance improvement for synthetic models. We use real-world training data as FAE utilizes the property that certain inputs are way more popular than the others. However, to understand the efficacy of FAE on varying types of model architectures, we create synthetic configurations, shown in Table 8, that can be executed on Criteo Terabyte dataset. Figure 16 shows the performance improvements of FAE across various synthetic models over XDL and DLRM/TBSM. FAE provides on average 2.94x speedup across small and large synthetic models as compared to XDL.

![Figure 16: Performance improvements of FAE across various synthetic models over XDL and DLRM/TBSM](image)

Table 8: Synthetic Models’ Configuration

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Bottom MLP</th>
<th>Top MLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYN-M1</td>
<td>13-64</td>
<td>512-1</td>
</tr>
<tr>
<td>SYN-M2</td>
<td>13-512-64</td>
<td>512-256-1</td>
</tr>
<tr>
<td>SYN-M3</td>
<td>13-1024-512-64</td>
<td>512-1024-256-1</td>
</tr>
<tr>
<td>SYN-M4</td>
<td>13-1024-512-256-64</td>
<td>512-1024-512-256-1</td>
</tr>
</tbody>
</table>

5.2.6 Power Benefits. Table 9 shows the per GPU power consumption using the baseline and FAE for a 1024 mini-batch. FAE reduces GPU power consumption by 9.7% in comparison to XDL. This is primarily due to the reduced communication cost between devices.
which is highly pertinent to current applications, with their ever in-
works training [8, 11, 12, 14, 52] has garnered most of the attention,
table placement that can improve the overall training performance.
the techniques leverage runtime access skew for their embedding
placements within an heterogeneous data-centre. However, none of
entries in the GPU for the entirety of the training job. Work in [62],
and uses this information to store the highly accessed embedding
equally. Instead, FAE delves into the access pattern of each dataset
computation, i.e, GPU, at runtime, albeit treats all embedding entries
multiple GPUs. This work stores the working parameters close to
reduce data stall time, respectively. On
runtime techniques to improve memory, communication, and I/O
employing any dynamic hashing. Work in [55] and [56] employ
exploit the coarse grained GPU based compute throughput, without
increasing requirement for compute and memory. In the deep learning
realm, prior work [40] caches data on local SSD to eliminate slow
reads from remote storage and employs hashing based techniques
to incorporate thrashing-free strategies across jobs to efficiently
utilize the shared cache. Instead, this work dives into the semantics
of the training inputs observed by recommender models and offers
compile time strategies to statistically ensure hot data is placed
close to compute. Our offline techniques enable FAE to fully ex-
pliot the coarse grained GPU based compute throughput, without
employing any dynamic hashing. Work in [55] and [56] employ
runtime techniques to improve memory, communication, and I/O
resources for training and reduce data stall time, respectively. On
the hardware side, works in [57] propose techniques to store embed-
ing tables in non-volatile memories and allocate a certain portion
of DRAM for caching. This work, however, does not support GPU
based training executions with replicated hot embeddings and does
not deal with perceptive input pre-processing to reduce the over-
head of communication between devices. Recent work in [58–60]
has also proposed solutions to accelerate near-memory processing
for embedding tables, but do not facilitate distributed training of
entire recommender models using GPUs.

Embedding parameter placement: Works in [61] offers a hier-
archical parameter server that builds a distributed hash table across
multiple GPUs. This work stores the working parameters close to
computation, i.e, GPU, at runtime, albeit treats all embedding entries
equally. Instead, FAE delves into the access pattern of each dataset
and uses this information to store the highly accessed embedding
entries in the GPU for the entirety of the training job. Work in [62],
aims to understand the implications of different embedding table
placements within an heterogeneous data-centre. However, none of
the techniques leverage runtime access skew for their embedding
table placement that can improve the overall training performance.

Mitigating memory intensive training through compres-
sion, sparsity, and quantization: Past work has used compres-
sion [17–19], sparsity [63], and quantization [15] to reduce the
overall memory footprint of machine learning models. Prior work
in [64], optimizes training by modifying the model either through
mixed-precision training or eliminating rare categorical variables
to reduce the embedding table size. Even with these optimizations
real dataset’s entire embedding table cannot fit on a GPU. Moreover,
approaches that change the data representation and/or embedding
tables, require accuracy re-validation across a variety of models and
datasets. FAE enables apropos utilization of memory hierarchy with-
out employing overheads such as compression/decompression [16]
and sparse operations. FAE moreover performs full-precision train-
ing of the baseline model by leveraging the highly skewed access
pattern for embedded tables and increase the throughput for hot em-
bedding entries. Nevertheless, our framework is orthogonal to the
prior techniques and can be used in tandem with them to improve
the memory efficiency even further.

Distributed deep learning training: Data parallel training [38]
forms the most common form of distributed training as it only
requires synchronization after the gradients generated in back-
ward pass of training. As models become bigger and bigger [26, 65],
model parallelism [12, 66] and pipeline parallelism [11] are becom-
ing common as they split a single model onto multiple devices.
Nonetheless, the techniques employed to automatically split the
models [67, 68], offer model parallelism solutions to enable training
of large model with size constrained by the accelerator memory
capacity. However, none of these techniques dive into the semantics
of input data to perform an optimal split. This is because they are
mainly suitable for DNNs.

Table 9: GPU Power Consumption Comparison

<table>
<thead>
<tr>
<th>Dataset</th>
<th>XDL</th>
<th>DLRM</th>
<th>FAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteo Kaggle</td>
<td>61.83W</td>
<td>58.91W</td>
<td>55.81W</td>
</tr>
<tr>
<td>Alibaba</td>
<td>56.39W</td>
<td>60.21W</td>
<td>56.62W</td>
</tr>
<tr>
<td>Criteo Terabyte</td>
<td>59.71W</td>
<td>62.47W</td>
<td>57.03W</td>
</tr>
<tr>
<td>Avazu</td>
<td>60.2W</td>
<td>58.03W</td>
<td>56.4W</td>
</tr>
</tbody>
</table>

6 RELATED WORK
Training machine learning models is an important and heavily
developed area of research. Optimizing for deep neural net-
works training [8, 11, 12, 14, 52] has garnered most of the attention,
whereas Recommender models have been under-researched.

Optimizations data layout through caching: Work in the past [53, 54] has delved into informed and domain-aware caching,
which is highly pertinent to current applications, with their ever in-
creasing requirement for compute and memory. In the deep learning
realm, prior work [40] caches data on local SSD to eliminate slow
reads from remote storage and employs hashing based techniques
to incorporate thrashing-free strategies across jobs to efficiently
utilize the shared cache. Instead, this work dives into the semantics
of the training inputs observed by recommender models and offers
compile time strategies to statistically ensure hot data is placed
close to compute. Our offline techniques enable FAE to fully ex-
pliot the coarse grained GPU based compute throughput, without
employing any dynamic hashing. Work in [55] and [56] employ
runtime techniques to improve memory, communication, and I/O
resources for training and reduce data stall time, respectively. On
the hardware side, works in [57] propose techniques to store embed-
ing tables in non-volatile memories and allocate a certain portion
of DRAM for caching. This work, however, does not support GPU
based training executions with replicated hot embeddings and does
not deal with perceptive input pre-processing to reduce the over-
head of communication between devices. Recent work in [58–60]
has also proposed solutions to accelerate near-memory processing
for embedding tables, but do not facilitate distributed training of
entire recommender models using GPUs.

7 CONCLUSIONS
Recommendation models aim to learn user preferences and provide
a targeted user experience by employing very large embedding
tables. Even though these tables often cannot fit on GPU memory,
these models also comprise neural network layers that are well
suited for GPUs. These contrasting requirements splits the training
execution on CPUs (for memory capacity) and GPUs (for compute
throughput). Fortunately, for real-world data, we observe that em-
bedding tables exhibit a skewed data access pattern. This can be
attributed to certain training inputs (users and items) that are much
more popular than the others. This observation allows us to develop
a comprehensive framework, namely FAE, that uses statistical tech-
niques to quantify the hotness of embedding entries based on the
input dataset. This hotness of embedding tables in turn allows the
framework to optimally layout embedding so that the GPU memory
is efficiently utilized to store highly accessed data close to the
compute. To capture most of the performance benefits, FAE bundles
hot inputs and cold inputs in separate mini-batches. This helps FAE
accelerate the hot mini-batch by executing the whole model on
GPU and eliminate any GPU-GPU embedding data transfers. The
training for these hot inputs happens entirely on GPUs, thus reduc-
ing any GPU-GPU communication overhead between CPU-GPU
and GPU-GPU from embedding and neural network layers. Our
experiments on DLRM and TBSM recommender models with real
datasets show that FAE reduces the overall training time by 2.3×
and 1.52x in comparison to XDL CPU-only and XDL CPU-GPU execution while maintaining baseline accuracy.

REFERENCES


