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Abstract

The combination of multilingual pre-trained
representations and cross-lingual transfer
learning is one of the most effective methods
for building functional NLP systems for low-
resource languages. However, for extremely
low-resource languages without large-scale
monolingual corpora for pre-training or
sufficient annotated data for fine-tuning,
transfer learning remains an under-studied
and challenging task. Moreover, recent work
shows that multilingual representations are
surprisingly disjoint across languages (Singh
et al., 2019), bringing additional challenges
for transfer onto extremely low-resource
languages. In this paper, we propose MetaXL,
a meta-learning based framework that learns
to transform representations judiciously from
auxiliary languages to a target one and brings
their representation spaces closer for effective
transfer. Extensive experiments on real-world
low-resource languages – without access
to large-scale monolingual corpora or large
amounts of labeled data – for tasks like cross-
lingual sentiment analysis and named entity
recognition show the effectiveness of our ap-
proach. Code for MetaXL is publicly available
at github.com/microsoft/MetaXL.

1 Introduction

Recent advances in multilingual pre-trained repre-
sentations have enabled success on a wide range of
natural language processing (NLP) tasks for many
languages. However, these techniques may not
readily transfer onto extremely low-resource lan-
guages, where: (1) large-scale monolingual cor-
pora are not available for pre-training and (2) suf-
ficient labeled data is lacking for effective fine-
tuning for downstream tasks. For example, mul-
tilingual BERT (mBERT) (Devlin et al., 2018) is
pre-trained on 104 languages with many articles on

∗Most of the work was done while the first author was an
intern at Microsoft Research.
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Figure 1: First two principal components of sequence
representations (corresponding to [CLS] tokens) of
Telugu and English examples from a jointly fine-tuned
mBERT and a MetaXL model for the task of sentiment
analysis. MetaXL pushes the source (EN) and target
(TEL) representations closer to realize a more effective
transfer. The Hausdorff distance between the source
and target representations drops from 0.57 to 0.20 with
F1 score improvement from 74.07 to 78.15.

Wikipedia and XLM-R (Conneau et al., 2020) is
pre-trained on 100 languages with CommonCrawl
Corpora. However, these models still leave behind
more than 200 languages with few articles avail-
able in Wikipedia, not to mention the 6, 700 or so
languages with no Wikipedia text at all (Artetxe
et al., 2020). Cross-lingual transfer learning for
these extremely low-resource languages is essen-
tial for better information access but under-studied
in practice (Hirschberg and Manning, 2015). Re-
cent work on cross-lingual transfer learning using
pre-trained representations mainly focuses on trans-
ferring across languages that are already covered
by existing representations (Wu and Dredze, 2019).
In contrast, existing work on transferring to lan-
guages without significant monolingual resources
tends to be more sparse and typically focuses on
specific tasks such as language modeling (Adams
et al., 2017) or entity linking (Zhou et al., 2019).

Building NLP systems in these settings is chal-
lenging for several reasons. First, a lack of suf-
ficient annotated data in the target language pre-
vents effective fine-tuning. Second, multilingual
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pre-trained representations are not directly trans-
ferable due to language disparities. Though recent
work on cross-lingual transfer mitigates this chal-
lenge, it still requires a sizeable monolingual cor-
pus to train token embeddings (Artetxe et al., 2019).
As noted, these corpora are difficult to obtain for
many languages (Artetxe et al., 2020).

Additionally, recent work (Singh et al., 2019)
shows that contextualized representations of dif-
ferent languages do not always reside in the same
space but are rather partitioned into clusters in mul-
tilingual models. This representation gap between
languages suggests that joint training with com-
bined multilingual data may lead to sub-optimal
transfer across languages. This problem is further
exacerbated by the, often large, lexical and syn-
tactic differences between languages with existing
pre-trained representations and the extremely low-
resource ones. Figure 1(a) provides a visualization
of one such example of the disjoint representations
of a resource-rich auxiliary language (English) and
resource-scarce target language (Telugu).

We propose a meta-learning based method,
MetaXL, to bridge this representation gap and al-
low for effective cross-lingual transfer to extremely
low-resource languages. MetaXL learns to trans-
form representations from auxiliary languages in a
way that maximally facilitates transfer to the target
language. Concretely, our meta-learning objective
encourages transformations that increase the align-
ment between the gradients of the source-language
set with those of a target-language set. Figure 1(b)
shows that MetaXL successfully brings representa-
tions from seemingly distant languages closer for
more effective transfer.

We evaluate our method on two tasks: named
entity recognition (NER) and sentiment analysis
(SA). Extensive experiments on 8 low-resource lan-
guages for NER and 2 low-resource languages for
SA show that MetaXL significantly improves over
strong baselines by an average of 2.1 and 1.3 F1
score with XLM-R as the multilingual encoder.

2 Meta Representation Transformation

2.1 Background and Problem Definition

The standard practice in cross-lingual transfer learn-
ing is to fine-tune a pre-trained multilingual lan-
guage model fθ parameterized by θ, (e.g. XLM-R
and mBERT) with data from one or more auxiliary

languages 1 and then apply it to the target language.
This is widely adopted in the zero-shot transfer
setup where no annotated data is available in the
target language. The practice is still applicable in
the few-shot setting, in which case a small amount
of annotated data in the target language is available.

In this work, we focus on cross-lingual trans-
fer for extremely low-resource languages where
only a small amount of unlabeled data and task-
specific annotated data are available. That includes
languages that are not covered by multilingual lan-
guage models like XLM-R (e.g., Maori or Turk-
men), or low-resource languages that are covered
but with many orders of magnitude less data for
pre-training (e.g., Telegu or Persian). We assume
the only target-language resource we have access
to is a small amount of task-specific labeled data.

More formally, given: (1) a limited amount of
annotated task data in the target language, denoted
as Dt = {(x(i)t , y

(i)
t ); i ∈ [1, N ]}, (2) a larger

amount of annotated data from one or more source
language(s), denoted as Ds = {(x(j)s , y

(j)
s ); j ∈

[1,M ]} where M � N and (3) a pre-trained
model fθ, which is not necessarily trained on any
monolingual data from the target language – our
goal is to adapt the model to maximize the perfor-
mance on the target language.

When some target language labeled data is avail-
able for fine-tuning, a standard practice is to jointly
fine-tune (JT) the multilingual language model us-
ing a concatenation of the labeled data from both
the source and target languages Ds and Dt. The
representation gap (Singh et al., 2019) between the
source language and target language in a jointly
trained model brings additional challenges, which
motivates our proposed method.

2.2 Representation Transformation

The key idea of our approach is to explicitly learn
to transform source language representations, such
that when training with these transformed repre-
sentations, the parameter updates benefit perfor-
mance on the target language the most. On top
of an existing multilingual pre-trained model, we
introduce an additional network, which we call the
representation transformation network to model
this transformation explicitly.

The representation transformation network mod-
els a function gφ : Rd → Rd, where d is the di-

1We also refer to auxiliary languages as source languages
as opposed to target languages.
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Figure 2: Overview of MetaXL. For illustration, only two Transformer layers are shown for XLM-R, and the
representation transformation network is placed after the first Transformer layer. 1© source language data passes
through the first Transformer layer, through the current representation transformation network, and finally through
the remaining layers to compute a training loss with the corresponding source labels. 2© The training loss is back-
propagated onto all parameters, but only parameters of XLM-R are updated. The updated weights of XLM-R are
a function of the current representation transformation network due to gradient dependency (highlighted by the
light-purple background of the updated XLM-R). 3© A batch of target language data passes through the updated
XLM-R and the meta loss is evaluated with the corresponding labels. 4© The meta loss is back-propagated into
the representation transformation network, since the meta-loss is in effect a function of weights from that network,
and only the representation transformation network is updated.

mension of the representations. Conceptually, any
network with proper input and output sizes is fea-
sible. We opt to employ a two-layer feed-forward
network, a rather simple architecture with the in-
tention to avoid heavy parameter overhead on top
of the pre-trained model. The input to the repre-
sentation transformation network is representations
from any layer of the pre-trained model. By de-
noting representations from layer i as hi ∈ Rd, we
have a parameterized representation transformation
network as follows:

gφ(hi) = wT2 (ReLU(wT1 hi + b1)) + b2 (1)

where φ = {w1, w2, b1, b2|w1 ∈ Rd×r, w2 ∈
Rr×d, b1 ∈ Rr, b2 ∈ Rd} is the set of parame-
ters of the representation transformation network.
In practice, we set r to be bottlenecked, i.e. r <
d, so the representation transformation network
first compresses the input representation and then
projects back onto the original dimension of the
input representation.

As shown in Figure 2, by assuming that the base
model has N layers, a source example (xs, ys) ∈
Ds passes through the first i layers, then through
the representation transformation network, finally
through the lastN− i layers of the base model. We
denote the final logits of this batch as f(xs; θ, φ),

encoded by both the base model and the represen-
tation transformation network. In contrast, for a
target example xt, yt ∈ Dt, we only pass it through
the base model as usual, denoted as f(xt; θ).

Ideally, suppose that we have a representation
transformation network that could properly trans-
form representations from a source language to the
target language. In that case, the source data can
be almost equivalently seen as target data on a rep-
resentation level. Unfortunately, we cannot train
such a representation transformation network in a
supervised manner without extensive parallel data.

Architecturally, the representation transforma-
tion network adopts a similar structure to ex-
isting works on language and task adapters for
cross-lingual and multi-task transfer (Pfeiffer et al.,
2020b), a simple down- and up-projection of in-
put representations. Nevertheless, beyond net-
work architecture, the goal and training procedure
of the two approaches are significantly different.
Adapters are typically trained to encode task or
language-specific information by fixing the rest
of the model and updating the parameters of the
adapters only. Adapters allow training parameter-
efficient models that could be flexibly adapted to
multiple languages and tasks. While in our pro-
posed method, we use the representation trans-



Algorithm 1 Training procedure for MetaXL

Input: Input data from the target language Dt and the source language Ds

1: Initialize base model parameters θ with pretrained XLM-R weights, initialize parameters of the
representation transformation network φ randomly

2: while not converged do
3: Sample a source batch (xs, ys) from Ds and a target batch (xt, yt) from Dt;
4: Update θ: θ(t+1) = θ(t) − α∇θL(xs; θ

(t), φ(t))
5: Update φ: φ(t+1) = φ(t) − β∇φL(xt; θ

(t) − α∇θL(xs; θ
(t), φ(t)))

6: end while

fer network at training time to adjust the training
dynamics to maximally improve test-time perfor-
mance on the target language. The optimization
procedure and the function of the representation
transformation network will be discussed in more
detail in the next section.

2.3 Optimization
The training of the representation transformation
network conforms to the following principle: If
the representation transformation network gφ effec-
tively transforms the source language representa-
tions, such transformed representations f(xs;φ, θ)
should be more beneficial to the target task than
the original representations f(xs; θ), such that the
model achieves a smaller evaluation loss LDt on
the target language. This objective can be formu-
lated as a bi-level optimization problem:

min
φ
LDt (f(xt; θ

∗(φ)), yt) (2)

s.t. θ∗(φ) = arg min
θ
LDs (f(xs;φ, θ), ys)

where L(·) is the task loss function. In this bi-level
optimization, the parameters φ of the representa-
tion transformation network are the meta parame-
ters, which are only used at training time and dis-
carded at test time. Exact solutions require solving
for the optimal θ∗ whenever φ gets updated. This is
computationally infeasible, particularly when the
base model f is complex, such as a Transformer-
based language model. Similar to existing work
involving such optimization problems (Finn et al.,
2017; Liu et al., 2019; Shu et al., 2019; Zheng
et al., 2021), instead of solving the optimal θ∗ for
any given φ, we adopt a one-step stochastic gra-
dient descent update for θ as an estimate to the
optimal base model for a given φ:

θ′ = θ − α∇θLDs(f(xs;φ, θ), ys) (3)

where LDs(xs; ) is the loss function of the lower
problem in Equation 2 and α is the corresponding

learning rate. Note that the resulting θ′ is in effect
a function of φ. We then evaluate the updated
weights θ′ on data xt from the target language for
updating gφ:

φ′ = φ− β∇φLDt(f(xt; θ
′), yt) (4)

where LDt(xt; ·) is the loss function of the upper
problem in Equation 2 and β is its corresponding
learning rate. Note that the meta-optimization is
performed over the parameters of the representation
transformation network gφ whereas the objective is
calculated solely using the updated parameters of
the main architecture θ′. By plugging Equation 3
into Equation 4, we can further expand the gradient
term ∇φL(f(xt; θ

′), yt). We omit f and y in the
following derivative for simplicity.

∇φLDt(xt; θ
′)

=∇φLDt(xt; θ − α∇θLDs(xs; θ, φ))

=− α∇2
φ,θLDs(xs; θ, φ)∇θLDt(xt; θ

′)

=− α∇φ(∇θLDs(xs; θ, φ)T∇θLDt(xt; θ
′))

During training, we alternatively update θ with
Equation 3 and φ with Equation 4 until conver-
gence. We term our method MetaXL, for its na-
ture to leverage Meta-learning for extremely low-
resource cross(X)-Lingual transfer. Both Figure 2
and Algorithm 1 outline the procedure for training
MetaXL.

3 Experiments

3.1 Data

We conduct experiments on two diverse tasks,
namely, sequence labeling for Named Entity Recog-
nition (NER) and sentence classification task for
Sentiment Analysis (SA). For the NER task, we
use the cross-lingual Wikiann dataset (Pan et al.,
2017). For the sentiment analysis task, we use the
English portion of Multilingual Amazon Reviews



Language Code Language Related
Family Language

Quechua qu Quechua Spanish
Min Dong cdo Sino-Tibetan Chinese
Ilocano ilo Austronesian Indonesian
Mingrelian xmf Kartvelian Georgian
Meadow Mari mhr Uralic Russian
Maori mi Austronesian Indonesian
Turkmen tk Turkic Turkish
Guarani gn Tupian Spanish

Table 1: Target language information on the NER task.
The data set size of the these languages is 100.

Corpus (MARC) (Keung et al., 2020) as the high-
resource language and product review datasets in
two low-resource languages, Telugu and Persian
(Gangula and Mamidi, 2018; Hosseini et al., 2018).

WikiAnn WikiAnn (Pan et al., 2017) is a multi-
lingual NER dataset constructed with Wikipedia
articles and anchor links. We use the train, devel-
opment and test partitions provided in Rahimi et al.
(2019). The dataset size ranges from 100 to 20k
for different languages.

MARC The Multilingual Amazon Reviews Cor-
pus (Keung et al., 2020) is a collection of Amazon
product reviews for multilingual text classification.
The dataset contains reviews in English, Japanese,
German, French, Spanish, and Chinese with five-
star ratings. Each language has 200k examples for
training. Note that we only use its English dataset.

SentiPers SentiPers (Hosseini et al., 2018) is
a sentiment corpus in Persian (fa) consisting of
around 26k sentences of users’ opinions for digital
products. Each sentence has an assigned quantita-
tive polarity from the set of {−2,−1, 0, 1, 2}.

Sentiraama Sentiraama (Gangula and Mamidi,
2018) is a sentiment analysis dataset in Telugu (tel),
a language widely spoken in India. The dataset
contains example reviews in total, labeled as either
positive or negative.

Pre-processing For SA, we use SentiPers and
Sentiraama as target language datasets and MARC
as the source language dataset. To unify the la-
bel space, we curate MARC by assigning negative
labels to reviews rated with 1 or 2 and positive
labels to those rated with 4 or 5. We leave out
neutral reviews rated with 3. For SentiPers, we
assign negative labels to reviews rated with -1 and
-2 and positive labels to those rated with 1 or 2. For
SentiPers, though the dataset is relatively large, we

mimic the low-resource setting by manually con-
structing a train, development, and test set with
100, 1000, and 1000 examples through sampling.
For Sentiraama, we manually split the dataset into
train, development, and test subsets of 100, 103,
and 100 examples.2

3.2 Experimental Setup

Base Model We use mBERT3 (Devlin et al.,
2018) and XLM-R (Conneau et al., 2020) as our
base models, known as the state-of-the-art multi-
lingual pre-trained model. However, our method
is generally applicable to all types of Transformer-
based language models.

Target Language For NER, we use the same 8
low-resource languages as Pfeiffer et al. (2020c),
summarized in Table 1. These languages have only
100 examples in the WikiAnn dataset and are not
included for pre-training XLM-R. For SA, Persian
and Telugu are the target languages. For both tasks
under any setting, we only use a fixed number of
100 examples for each target language.

Source Language The selection of source lan-
guages is crucial for transfer learning. We experi-
ment with two choices source languages on NER:
English and a related language to the target lan-
guage. The related language was chosen based on
LangRank (Lin et al., 2019), a tool for choosing
transfer languages for cross-lingual learning. A list
of related languages used for each target is shown
in Table 1. In absence of training data that fit our
related-language criteria for the low-resource target
languages in SA, we use only English as the source
language.

Tokenization For all languages, either pre-
trained with XLM-R or not, we use XLM-R’s de-
fault tokenizer for tokenizing. We tried with the
approach where we train subword tokenizers for
unseen languages similar to Artetxe et al. (2020)
but obtained worse results than using the XLM-R
tokenizer as is, due to the extremely small scale
of target language data. We conjecture that the
subword vocabulary that XLM-R learns is also ben-
eficial to encode languages on which it is not even

2Details of data splits can be found at github.com/
microsoft/MetaXL.

3XLM-R as a base model leads to significantly better re-
sults for both baselines and MetaXL than mBERT, thus we
mainly present results with XLM-R in the main text. Detailed
results on mBERT can be found in Appendix C

github.com/microsoft/MetaXL
github.com/microsoft/MetaXL


Source Method qu cdo ilo xmf mhr mi tk gn average

(1) - target 57.14 37.72 61.32 59.07 55.17 76.27 55.56 48.89 56.39

(2) English
JT 66.10 55.83 80.77 69.32 71.11 82.29 61.61 65.44 69.06
MetaXL 68.67 55.97 77.57 73.73 68.16 88.56 66.99 69.37 71.13

(3) Related
JT 79.65 53.91 78.87 79.67 66.96 87.86 64.49 70.54 72.74
MetaXL 77.06 57.26 75.93 78.37 69.33 86.46 73.15 71.96 73.69

Table 2: F1 for NER across three settings where we, (1) only use the target language data; (2) use target language
data along with 5k examples of English; (3) use the target language data along with 5k examples of a related
language. JT stands for joint training and MetaXL stands for Meta Representation Transformation. We bold the
numbers with a better average performance in each setting.

Method tel fa

(1) target only 86.87 82.58

(2)
JT 88.68 85.51
MetaXL 89.52 87.14

Table 3: F1 for sentiment analysis on two settings using
(1) only the target language data; (2) target language
data along with 1k examples of English.

pre-trained on. We leave exploring the best tok-
enization strategy for leveraging pre-trained model
on unseen language as future work.

4 Results and Analysis

4.1 Main Results
NER We present results of NER in Table 2,
where we use 5k examples from English or a related
language as source data. When we only use the
annotated data of the target language to fine-tune
XLM-R (target), we observe that the performance
varies significantly across languages, ranging from
37.7 to 76.3 F1 score. Jointly fine-tuning XLM-R
with target and source data (JT) leads to a substan-
tial average gain of around 12.6 F1 score. Using
the same amount of data from a related language
(instead of English) is more effective, showing an
average improvement of 16.3 F1 score over using
target data only. Our proposed method, MetaXL,
consistently outperforms the joint training base-
lines, leading to a significant average gain of 2.07
and 0.95 F1 score when paired with English or
related languages, respectively.

SA We present results on the task of SA in Ta-
ble 3, where we use 1K examples from English as
source language data. We find that auxiliary data
from source languages brings less but still signifi-

cant gains to the joint training baseline (JT) over
using target language data only (target only), as
in the NER task. In addition, MetaXL still outper-
forms joint training by around 0.9 and 1.6 F1 score
on Telugu and Persian. These results support our
hypothesis that MetaXL can transfer representa-
tions from other languages more effectively. That,
in turn, contributes to the performance gain on the
target task.

4.2 Source Language Data Size

To evaluate how MetaXL performs with different
sizes of source language data, we perform experi-
ments on varying the size of source data. For NER,
we experiment with 5k, 10k, and 20k source exam-
ples. For SA, we test on 1k, 3k and 5k 4 source
examples.

As observed from Table 4, MetaXL delivers con-
sistent gains as the size of source data increases
over the joint training model (except on fa when
using 5k auxiliary data).5 However, the marginal
gain decreases as the source data size increases
on NER. We also note that MetaXL continues to
improve even when joint training leads to a minor
performance drop for SA.

4.3 Placement of Representation
Transformation Network

Previous works (Jawahar et al., 2019; Tenney et al.,
2019) have observed that lower and intermediate
layers encode surface-level and syntactic informa-
tion, whereas top layers are more semantically fo-
cused. These findings suggest that the placement
of the representation transformation network can
potentially affect the effectiveness of transfer. To

4No significant gains were observed for any of the models
when going beyond 5K examples.

5Please refer to Appendix C for full results.



NER (average) SA (tel) SA (fa)

# en JT MetaXL ∆ # en JT MetaXL ∆ # en JT MetaXL ∆

5k 69.06 71.13 +2.07 1k 88.68 90.53 +1.85 1k 85.51 87.14 +1.63
10k 70.11 71.63 +1.52 3k 87.13 87.23 +0.10 3k 82.88 86.19 +3.31
20k 72.31 73.36 +1.05 5k 84.91 85.71 +0.80 5k 86.34 85.63 -0.71

Table 4: F1 on various source language transfer data sizes. # en denotes the number of English examples used for
transfer. ∆ denotes the improvement of MetaXL over the joint training baseline. RTN is placed after 12th layer.

NER SA

Method Average tel fa

JT 69.06 88.68 85.51

MetaXL L0 70.02 89.52 85.41
MetaXL L6 70.27 86.00 85.80
MetaXL L12 71.13 90.53 87.14
MetaXL L0,12 69.00 84.85 86.64

Table 5: F1 when placing the transfer component at
different positions on XLM-R. Under this setting, we
use 5k English data for NER and 1K English data for
SA. L stands for layer.

this end, we conducted experiments with represen-
tation transformation networks placed at various
depths of the Transformer model.

Specifically, we experiment with placing the rep-
resentation transformation network after the 0th
(embedding layer), 6th and 12th layer (denoted by
L0, L6, L12). We also experiment with placing two
identical representation transformation networks
after both the 0th and 12th layers.

As observed from Table 5, transformations at
the 12th layer are consistently effective, suggest-
ing that transformation at a higher and more ab-
stract level results in better transfer for both tasks.6

Transferring from lower layers leads to fewer gains
for SA, coinciding with the fact that SA is more
reliant on global semantic information. Transfer-
ring at multiple layers does not necessarily lead
to higher performance, possibly because it results
in increased instability in the bi-level optimization
procedure.

4.4 Joint Training with Representation
Transformation Networks

There are two major differences between MetaXL
and joint training: (1) source language data un-

6Please refer to Appendix B.2 for full results.

NER SA

Layer Method Average tel fa

- JT 69.06 88.68 85.51

L0
JT w/ RTN 59.80 63.95 72.32
MetaXL 70.02 89.52 85.41

L12
JT w/ RTN 67.18 83.75 70.40
MetaXL 71.13 90.53 87.14

Table 6: F1 when joint training with and without the
representation transformation network in XLM-R. In
this setting, we use 5k English examples for NER
and 1k English examples for SA. NER results are ag-
gregated over 8 target languages. Bold denotes that
MetaXL outperforms both JT and JT w/ RTN baselines.

dergoes transformation via an augmented repre-
sentation transformation network; (2) we adopt a
bi-level optimization procedure to update the base
model and the representation transformation net-
work. To verify that the performance gain from
MetaXL is not attributed to increased model ca-
pacity, we conduct experiments on joint training
using the representation transformation network.
Specifically, the forward pass remains the same
as MetaXL, whereas the backward optimization
employs the standard stochastic gradient descent
algorithm. We conduct experiments on placing the
representation transformation network after the 0th
layer or 12th layer and present results in Table 6 7.

Interestingly, joint training with the representa-
tion transformation network deteriorates the model
performance compared to vanilla joint training.
Transferring after the 0th layer is even more detri-
mental than the 12th layer. This finding shows that
Transformer models are rather delicate to subtle
architectural changes. In contrast, MetaXL breaks
the restriction, pushing the performance higher for
both layer settings.

7Please refer to Appendix B.3 for full results.
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Figure 3: PCA visualization of token-level representa-
tions of Quechua and English from the joint training
mBERT model on NER. With MetaXL, the Hausdorff
distance drops from 0.60 to 0.53 and the F1 score in-
creases from 60.25 to 63.76.

4.5 Analysis of Transformed Representations

To verify that MetaXL does bring the source and
target language spaces closer, we qualitatively and
quantitatively demonstrate the representation shift
with transformation. In particular, we collect repre-
sentations of both the source and target languages
from the joint training and the MetaXL models,
with mBERT as the multilingual encoder, and
present the 2-component PCA visualization in Fig-
ure 1 for SA and Figure 3 for NER. SA models are
trained on Telugu paired with 5k English examples,
and NER models are trained on Quechua paired
with 5k English. From the figures, MetaXL merges
the representations from two languages for SA, but
the phenomenon is not as evident for NER.

Singh et al. (2019) quantitatively analyze
mBERT representations with canonical correla-
tion analysis (CCA). However, CCA does not suit
our case as we do not have access to semanti-
cally aligned data for various languages. Thus
we adopt Hausdorff distance as a metric that has
been widely used in vision and NLP tasks (Hut-
tenlocher et al., 1993; Dubuisson and Jain, 1994;
Patra et al., 2019) to measure the distance between
two distinct datasets. Informally, the Hausdorff
distance measures the average proximity of data
representations in the source language to the near-
est ones in the target language, and vice versa.
Given a set of representations of the source lan-
guage S = {s1, s2, . . . , sm} and a set of represen-
tations of the target language T = {t1, t2, . . . , tn},
we compute the Hausdorff distance as follows:

max{max
s∈S

min
t∈T

d(s, t),max
t∈T

min
s∈S

d(s, t)} (5)

where cosine distance is used as as the inner dis-
tance, i.e.,

d(s, t) , 1− cos(s, t) (6)

For SA, we observe a drastic drop of Hausdorff
distance from 0.57 to 0.20 and a substantial per-
formance improvement of around 4 F1 score. For
NER, we observe a minor decline of Hausdorff
distance from 0.60 to 0.53 as the representations
are obtained at the token level, leading to a signifi-
cant performance gain of 3 F1 score. For NER, we
observe a correlation of 0.4 between performance
improvement and the reduction in representation
distance. Both qualitative visualization and quanti-
tative metrics confirm our hypothesis that MetaXL
performs more effective transfer by bringing the
representations from different languages closer.

4.6 Additional Results on High-resource
Languages

fr es ru zh

JT 76.50 72.87 71.14 60.62
MetaXL 72.43 70.38 71.08 58.81

Table 7: F1 on mBERT rich languages in a simulated
low-resource setting.

Despite our experiments so far on extremely low-
resource languages, given by few labeled data for
fine-tuning and limited or no unlabeled data for pre-
training, MetaXL is generally applicable to all lan-
guages. To better understand the scope of applying
MetaXL to languages with varying resources, we
perform experiments on 4 target languages that do
not belong to our extremely low-resource category
for the NER task, namely, Spanish (es), French (fr),
Italian (it), Russian (ru) and Chinese (zh). These
languages are typically considered high-resource
with 20k labeled examples in the WikiAnn datasets
and large amount of unlabeled data consumed by
mBERT for pre-training. We use only 100 ex-
amples for all target languages to mimic the low-
resource setting and use 5k English examples for
transfer.

As shown in Table 7, we found slight perfor-
mance drop using MetaXL for these high-resource
languages. We conjecture that these languages have
been learned quite well with the mBERT model dur-
ing the pre-training phase, therefore, leaving less
scope for effective representation transformation in



the low-resource setup. Nonetheless, this can be
remedied with a back-off strategy by further fine-
tuning the resulting model from MetaXL on the
concatenated data from both source and target lan-
guages to match the performance of JT training. As
high-resource languages are out of the scope of this
paper, we leave further analysis and understanding
of these scenarios for future work.

5 Related Work

Unifying Language Spaces MetaXL in essence
brings the source and target representations closer.
Previous works have shown that learning invari-
ant representations across languages leads to better
transfer. On the representation level, adversarial
training is widely adopted to filter away language-
related information (Xie et al., 2017; Chen et al.,
2018). One the form level, Xia et al. (2019) show
that replacing words in a source language with the
correspondence in the target language brings sig-
nificant gains in low-resource machine translation.

Adapters Adapter networks are designed to en-
code task (Houlsby et al., 2019; Stickland and
Murray, 2019; Pfeiffer et al., 2020a), domain
(Bapna and Firat, 2019) and language (Pfeiffer
et al., 2020c) specific information to efficiently
share parameters across settings. Though RTN in
MetaXL is similar to adapter networks in archi-
tecture, in contrast to adapter networks, it plays
a more explicit role in transforming representa-
tions across languages to bridge the representation
gap. More importantly, MetaXL trains the represen-
tation transformation network in a meta-learning
based paradigm, significantly different from how
adapters are trained.

Meta Learning MetaXL falls into the category
of meta learning for its goal to learn to transform
under the guidance of the target task. Related tech-
niques have been used in Finn et al. (2017), which
aims to learn a good initialization that generalizes
well to multiple tasks and is further extended to
low-resource machine translation (Gu et al., 2018)
and low-resource natural language understanding
tasks (Dou et al., 2019). The bi-level optimization
procedure is widely adopted spanning across neu-
ral architecture search (Liu et al., 2019), instance
re-weighting (Ren et al., 2018; Shu et al., 2019),
learning from pseudo labels (Pham et al., 2020)
and mitigating negative inference in multilingual
systems (Wang et al., 2020). MetaXL is the first to

meta learn a network that explicitly transforms rep-
resentations for cross-lingual transfer on extremely
low-resource languages.

6 Conclusions and Future Work

In this paper, we study cross-lingual transfer learn-
ing for extremely low-resource languages without
large-scale monolingual corpora for pre-training or
sufficient annotated data for fine-tuning. To allow
for effective transfer from resource-rich source lan-
guages and mitigate the representation gap between
multilingual pre-trained representations, we pro-
pose MetaXL to learn to transform representations
from source languages that best benefits a given
task on the target language. Empirical evaluations
on cross-lingual sentiment analysis and named en-
tity recognition tasks demonstrate the effectiveness
of our approach. Further analysis on the learned
transformations verify that MetaXL indeed brings
the representations of both source and target lan-
guages closer, thereby, explaining the performance
gains. For future work, exploring transfer from
multiple source languages to further improve the
performance and investigating the placement of
multiple representation transformation networks
on multiple layers of the pre-trained models are
both interesting directions to pursue.
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A Hyper-parameters

We use a maximum sequence length of 200 and 256
for NER and AS respectively. We use a bottleneck
dimension of r = 384 and r = 192 for the repre-
sentation transformation network, same as Pfeiffer
et al. (2020c). During the bi-level optimization pro-
cess, we adopt a learning rate of 3e-05 for training
the main architecture and tuned the learning rate on
3e-5, 1e-6 and 1e-7 for training the representation
transformation network. We use a batch size of 16
for NER and 12 for AS, and train 20 epochs for
each experiment on both tasks. We use a single
NVIDIA Tesla V100 with a 32G memory size for
each experiment. For each language, we pick the
best model according to the validation performance
after each epoch.

B Detailed Results on Each Language

B.1 Source Data Size
The full results of using 10k and 20k English ex-
amples as transfer data are presented in Table 9.

B.2 Placement of RTN
The full results of placing the representation trans-
formation network at different layers are presented
in Table 10.

B.3 Joint Training w/ RTN
The full results of joint training with the repre-
sentation transformation network are presented in
Table 11.

C Additional Results on mBERT

We conduct experiments on mBERT (Devlin et al.,
2019), which covers 104 languages with most
Wikipedia articles. For a language that is not pre-
trained with mBERT, we train its subword tok-
enizer with the task data. Further, we combine
the vocabulary from the newly trained tokenizer
with the original mBERT vocabulary. A similar

Method tel fa

(1) target only 75.00 73.86

(2)
JT 75.13 74.81
MetaXL 77.36 76.69

Table 8: F1 for sentiment analysis on mBERT on two
settings using (1) only the target language data; (2) tar-
get language data along with 10k examples of English.

approach has been adopted in (Artetxe et al., 2020).
Table 12 and Table 8 present results for NER and
SA respectively where we finetune the tasks on
mBERT. Note that the languages of SA are both
covered by mBERT and XLM-R, while the lan-
guages of NER are not. Table 13 show MetaXL
results on mBERT with various sizes of source
data.

Nevertheless, our method consistently brings
gains on both tasks. We observe an average of 2
F1 points improvement on NER and 2.0 F1 points
improvement on SA. It shows that the improve-
ment brought by our method is consistent across
different language models.



Source Method qu cdo ilo xmf mhr mi tk gn average

(1) - target only 57.14 37.72 61.32 59.07 55.17 76.27 55.56 48.89 56.39

(2) 10k en
JT 71.49 50.21 76.19 73.39 66.36 89.34 66.04 67.89 70.11
MetaXL 72.57 57.02 81.55 65.56 70.18 90.64 66.98 68.54 71.63

(3) 20k en
JT 73.19 53.93 88.78 71.49 62.56 90.80 68.29 69.44 72.31
MetaXL 73.04 55.17 85.99 73.09 70.97 89.21 66.02 73.39 73.36

Table 9: Experiment results for NER on XLM-R across three settings where we, (1) only use the target language
data; (2) use target language data along with 10k examples of English; (3) use target language data along with 20k
examples of English. JT stands for joint training

Layer Method qu cdo ilo xmf mhr mi tk gn average

- JT 66.1 55.83 80.77 69.32 71.11 82.29 61.61 65.44 69.06

L0 MetaXL 70.43 54.76 77.14 66.09 68.72 89.53 63.59 69.86 70.02
L6 MetaXL 65.53 56.67 78.5 72.0 68.75 88.05 65.73 66.96 70.27
L0,12 MetaXL 69.83 53.97 69.44 69.26 66.96 89.41 67.92 65.18 69.00

Table 10: Experiment results for NER on XLM-R with RTN placed across multiple layer settings. (All with 5k
English examples)

Layer Method qu cdo ilo xmf mhr mi tk gn average

- JT 66.10 55.83 80.77 69.32 71.11 82.29 61.61 65.44 69.06

L0 JT w/ RTN 50.81 45.67 60.09 58.91 63.83 81.71 65.37 52.02 59.80
L12 JT w/ RTN 64.41 50.2 73.83 63.87 68.7 85.88 71.92 58.6 67.18

Table 11: Experiment results for NER on XLM-R, Joint Training (JT) with RTN. (All with 5k English examples)

Source Method qu cdo ilo xmf mhr mi tk gn average

(1) - target 58.44 26.77 63.39 32.06 53.66 82.90 52.53 46.01 51.97

(2) English
JT 60.25 35.29 73.06 43.45 60.17 86.29 60.09 57.80 59.55
MetaXL 63.76 38.63 76.36 45.14 60.63 88.96 64.81 54.13 61.55

Table 12: NER results on mBERT where we use 5k English examples as auxiliary data and place RTN after 12th
layer.

NER (average) SA (tel) SA (fa)

# en JT MetaXL ∆ # en JT MetaXL ∆ # en JT MetaXL ∆

5k 59.55 61.55 +2.00 100 75.12 77.36 +2.24 100 74.25 75.78 +1.53
10k 62.36 63.66 +1.30 1k 74.76 76.39 +1.63 1k 74.71 75.58 +0.87
20k 62.39 63.38 +0.99 5k 74.07 78.15 +4.08 5k 74.81 76.69 +1.88

Table 13: F1 on various source language transfer data sizes on mBERT. # en denotes the number of English
examples used for transfer. ∆ denotes the improvement of MetaXL over the joint training baseline.


