
When does text prediction benefit from additional context?
An exploration of contextual signals for chat and email messages
Stojan Trajanovski

Microsoft
Chad Atalla

Microsoft
Kunho Kim

Microsoft

Vipul Agarwal
Microsoft

Milad Shokouhi
Microsoft

Chris Quirk
Microsoft

{sttrajan,chatalla,kuki,vipulag,milads,chrisq}@microsoft.com

Abstract

Email and chat communication tools are in-
creasingly important for completing daily
tasks. Accurate real-time phrase completion
can save time and bolster productivity. Mod-
ern text prediction algorithms are based on
large language models which typically rely
on the prior words in a message to predict a
completion. We examine how additional con-
textual signals (from previous messages, time,
and subject) affect the performance of a com-
mercial text prediction model. We compare
contextual text prediction in chat and email
messages from two of the largest commercial
platforms Microsoft Teams and Outlook, find-
ing that contextual signals contribute to per-
formance differently between these scenarios.
On emails, time context is most beneficial
with small relative gains of 2% over baseline.
Whereas, in chat scenarios, using a tailored
set of previous messages as context yields rel-
ative improvements over the baseline between
9.3% and 18.6% across various critical service-
oriented text prediction metrics.

1 Introduction

Email and chat communication tools are increas-
ingly important for completing daily professional
and personal tasks. Given the recent pandemic
and shift to remote work, this usage has surged.
The number of daily active users in Microsoft
Teams, the largest business communication and
chat platform, has increased from 20 million (2019,
pre-pandemic) to more than 115 million in Octo-
ber (2020). On the other hand, email continues
to be the crucial driver for formal communication
showing ever increasing usage. Providing real-time
suggestions for word or phrase auto-completions is
known as text prediction. The efficiency of these
communications is enhanced by suggesting highly
accurate text predictions with low latency. Text
prediction services have been deployed across pop-
ular communication tools and platforms such as

(Microsoft Text Predictions, 2020) or GMail Smart
Compose (Chen et al., 2019).

Modern text prediction algorithms are based on
large language models and generally rely on the
prefix of a message (characters typed until cursor
position) to create predictions. We study to what
extent additional contextual signals improve text
predictions in chat and email messages in two of
the largest commercial communication platforms:
Microsoft Teams and Outlook. Our contributions
are summarized as:

• We demonstrate that prior-message context
provides the greatest lift in the Teams (chat)
scenario. A 5 minute window of prior mes-
sages from both senders works the best, with
relative gains from 9.3% up to 18.6% across
key metrics (total match and estimated charac-
ters accepted). This 5 minute window of prior
messages from both senders outperforms the
corresponding 2 and 10 minute scenarios.

• We find that context about message composi-
tion time provides the largest gains for the Out-
look (email) scenario, while adding the sub-
ject as context only marginally helps. These
relative gains are moderate (2-3% across vari-
ous metrics).

• We conclude that the different characteristics
of chat and email messages impede domain
transfer. The best contextual text prediction
models are custom trained for each scenario,
using the most impactful subset of contextual
signals.

The remainder of the paper is organized as follows.
We give an overview of state-of-the-art related re-
search in Section 2. More details on the signals
used for contextualization are provided in Section 3.
Section 4 provides information on the language
model, performance metrics, and statistical details



about the data. Experiment results and compar-
isons are presented in Section 5. We conclude in
Section 6. Ethical considerations on the data and
processes are discussed in Section 7.

2 Related work

Text prediction services have been applied for var-
ious applications, including text editor (Darragh
et al., 1990), query autocompletion on search en-
gine (Bast and Weber, 2006; Bar-Yossef and Kraus,
2011), mobile virtual keyboard (Hard et al., 2018).
Recently prediction service is applied on communi-
cation tools for composing email and chat messages
to improve user writing productivity (Kannan et al.,
2016; Deb et al., 2019; Chen et al., 2019; Microsoft
Text Predictions, 2020).

To predict correct text continuation, such ap-
plications leverage efficient lookups with pre-
generated candidates, using most popular candi-
dates (MPC) (Bar-Yossef and Kraus, 2011), or
using large-scale language models (Bengio et al.,
2003). State-of-the-art language models (Jozefow-
icz et al., 2016; Mnih and Hinton, 2009; Melis
et al., 2018) rely on the most recent deep learning
architectures, including large LSTMs (Hochreiter
and Schmidhuber, 1997) or transformers (Vaswani
et al., 2017), while prior approaches involve n-gram
modeling (Kneser and Ney, 1995; James, 2000;
Bickel et al., 2005).

In this work, we focus on the application of text
prediction on production-level online communica-
tion tools, to help users compose emails (Chen
et al., 2019; Microsoft Text Predictions, 2020), and
in addition chat messages. In particular, we fo-
cus on examining useful contextual signals to give
more accurate predicted text, using time, subject,
and prior messages. Various contextualization tech-
niques (e.g., hierarchical RNNs) have been applied
to add useful additional signals such as preced-
ing web interaction, linking pages, similar search
queries or visitor interests of a page (White et al.,
2009); previous sequence of utterances (Park et al.,
2018; Zhang et al., 2018; Yoo et al., 2020) or re-
lated text snippets (Ke et al., 2018).

3 Contextualization concepts

We examine several signals accompanying the main
message text: message compose time, subject,
and previous messages. We combine these sig-
nals with the message body into a single "contex-
tualized" string, using special tokens to separate

signals, as shown in Figure 1a. This approach is
inspired by (Chen et al., 2019), as they showed
that concatenating contextual signals into a single
input string gave a comparable result to more com-
plex methods encoding these signals separately1.
The remainder of this section explains details about
each contextual signal we use.

Time Composition time is a contextual signal
which can provide added value for text prediction,
enabling suggestions with relevant date-time words,
like "weekend", "tonight". We encode local date
and time, as shown in Figure 1a, and use <BOT>
and <EOT> to separate from other signals.

Subject Message subjects often contain the pur-
pose or summarized information of a message. In
the email scenario, we use subject as context. In
the chat scenario, subject is not available, so we
use the chat window name as a proxy for subject
(can be auto-generated or manually set by users).
In both cases, the subject context is wrapped with
<BOU> and <EOU> special tokens.

Previous email messages Previous messages
can provide valuable background information
which influences the text of the current message be-
ing composed. In the email case, we create pairs of
messages and replies. These pairs are concatenated
with a <COT> special token to create a single con-
textual string. In cases where the email was the first
in a thread, the prior email context is left blank.

Previous chat messages Prior message contex-
tualization for chat scenario is much more complex.
Chat conversations typically consist of many small
messages sent in quick succession. Given the email
and chat message length statistics in Section 4, we
expect chat messages to be about 10× smaller than
emails. So, we limit chat histories to 20 messages,
which is roughly equivalent to an email-reply pair
in length. Among these prior messages, any num-
ber and any order could be from the current sender,
or the other participant.

We segment chat histories by message blocks
and time windows. A series of uninterrupted mes-
sages sent by one sender is considered as a single
message block. Messages sent within the past N
minutes are within a time window, which enforces
recency as a proxy for relevance.

We define three prior message context aggre-
gation modes in the chat scenario (visualized in

1They also use subject and previous email as contexts.



(a) Context extraction and encoding. (b) Aggregating a 5 min prior chat window in various context modes.

Figure 1: Examples of (a) context encoding pipeline and (b) chat prior message aggregation modes.

Figure 1b), mimicking prior email context:

(i) Ignore-Blocks: chat messages from the cur-
rent sender, in the past N minutes, ignoring
any message block boundaries.

(ii) Respect-Blocks: chat messages from the cur-
rent sender, in the past N minutes, confined
to the most recent message block.

(iii) Both-Senders: chat messages from both
senders, in the past N minutes. When the
sender turn changes, strings are separated by
a space or a special token <COT>.

For each mode, we consider time windows of N =
{2, 5, 10} minutes.

Figure 2: Box-plot statistics: number of tokens in a
context-aggregated message from Microsoft Teams and
Outlook. Green diamond markers represent the mean,
bold red lines are the medians, margins of the boxes are
lower and upper quartiles while whiskers end-points
are the minimums and maximums.

4 Data and Language Model

4.1 Data
Our model training depends on real messages from
two of the largest commercial communication plat-
forms Microsoft Teams and Outlook; this involves
a multi-pronged system for ensuring our customers’

privacy. We work within rigorous privacy rules,
using tools with privacy features built in, and pre-
processing all data through multiple privacy pre-
cautions before it is digested by our models. User
data from our communication platforms is never
visible to humans for analysis, in any raw or pre-
processed format. We run this data through our
pipelines and are only able to view resulting text
prediction metrics. Section 7 contains more details
about these privacy precautions.

Chat messages We sample Teams data from
more than 3.8 billion curated one-on-one chat mes-
sages that span 6 months (say May - October 2020),
followed by privacy precautions and noise filters.
The data is sorted by time and split into train, vali-
dation, and test sets in non-overlapping time peri-
ods. We use over 90% of the data for training, hold-
ing out 75,000 samples for validation and 25,000
samples for testing. Each message is recorded in
its respective dataset along with all associated con-
text. In a statistical analysis of the chat message
lengths (see Figure 2, blue box) we find that mean
tokens number is 9.15 (length in characters is 48),
while median tokens number is 6 (with character
length 31). Therefore, when iterating character-
by-character through the messages, as done in in-
ference for text predictions, the test set has over
1M evaluation points (resampled periodically, see
Section 7.1).

Email messages In email experiments, we use
approximately 150 million Outlook commercial
emails from a period of 6 months, which go through
the same privacy precautions mentioned above and
in Section 7. The emails are then sorted, filtered
for noise, and cut into train, validation, and test
sets by their date ranges. A statistical analysis of
email lengths (see Figure 2, green box) reveals that
mean number of tokens is 94 (with length in char-



acters being 561), while the median is 53 tokens
(and 316 characters). This is roughly 10× larger
than chat messages. When splitting train, test, and
validation sets, over 90% of the data is allocated to
the training set. The test set is subsampled to 3,000
emails (unlike the 25,000 messages for the chat test
set) since this roughly leads to final contextualized
datasets of the same size. Each resulting test set
contains just over 1 million evaluation points, as in
the chat setting.

Additionally, we use the Avocado dataset as a
publicly available dataset, which consists of emails
from 279 accounts of a defunct IT company re-
ferred to as "Avocado" see details in (Oard et al.,
2015), for debugging and validation, allowing us
to directly view data and outputs. This dataset is
split into validation and test sets, each with roughly
3,000 emails for evaluation.

4.2 Prior-message aggregation statistics
When applying the chat-specific prior-message
grouping modes defined in Section 3, the number
of prior messages fetched as context varies. Ta-
ble 1 presents details on how many messages the
different aggregation modes end up grouping. Both
single-sender modes introduce smaller volumes of
context than the Both-Senders mode. For example,
the amount of prior messages grouped in the 5 min-
utes Ignore-Blocks mode is similar to the 2 minutes
Both-Senders mode; where 2.5 chat messages are
combined on average, and 56-59% of chat mes-
sages have at least one message as context. For
emails, only around 50% have prior email context.

The number of tokens per contextualized mes-
sage (including current and aggregated prior mes-
sages) varies between the email scenario and var-
ious aggregation modes in the chat scenario. Fig-
ure 2 provides statistics on these aggregated mes-
sage lengths. In the chat case, the Both-Senders
mode with a 10 minute time window results in the
largest aggregate length, with a median around 27
tokens, and mean above 40 tokens. The Respect-
Blocks mode does not show significant length in-
creases as the time window grows, due to the mes-
sage block boundary limits. For emails, the median
total tokens remains similar regardless of includ-
ing the previous message. This is because half of
emails are not part of an email-reply pair.

4.3 Language model
Once the message data is preprocessed and jointly
encoded with contextual signals, it is passed as an

Configuration
% msgs

with context
mean msgs
as context

2 min Respect-Blocks 30.76% 1.44
5 min Respect-Blocks 34.19% 1.54
10 min Respect-Blocks 35.54% 1.59
2 min Ignore-Blocks 43.31% 1.76
5 min Ignore-Blocks 55.94% 2.51
10 min Ignore-Blocks 63.24% 3.23
2 min Both-Senders 58.90% 2.51
5 min Both-Senders 70.20% 3.99
10 min Both-Senders 76.10% 5.40

Table 1: Microsoft Teams chat message statistics -
amount of aggregated context per message.

input to the Language Model. The production sys-
tem uses a two-layer (550, 550) LSTM (with 6000
sampled softmax size loss) which is optimized to
maximize the Estimated Characters Accepted met-
ric (described in Section 5.1). All contextualization
experiments use the production model architecture
as the baseline. Both baseline and contextual mod-
els are trained on 16 GPUs.

We have conducted experiments with more com-
plex language models (e.g., transformers, deeper
LSTMs), but we use the production model in this
paper as (i) its simpler architecture enables large-
scale low-latency text prediction serving and (ii)
the goal of this work is to explore how different
contextual signals add to the baseline performance.

5 Experiments and results

We conduct experiments for both email and chat
messages with individual contextual signals (time,
subject, prior messages) and combinations of those.

5.1 Performance Metrics

In all experiments, we level the Suggestion Rate
(SR) (number of suggestions per message), then
evaluate model variant performance against the fol-
lowing text prediction metrics:

• MR: Match Rate is the ratio of the number of
matched suggestions and the total number of
generated suggestions.

• ChM / sugg: Characters Matched per
suggestion is the average number of matched
characters per given suggestion

• Est. ChS / sugg: Estimated Characters
Saved per suggestion is the estimated num-
ber of characters that the user is saved from
typing, per suggestion. (Based on observed
acceptance probabilities from real users.)



Configuration / context mode MR ChM / sugg Est. ChS / sugg TM ChM Est. ChA
Chat name +5.38%↑ +6.05%↑ +7.83%↑ +5.22%↑ +5.99%↑ +7.86%↑
Time -3.49%↓ -4.28%↓ -6.33%↓ -3.48%↓ -4.25%↓ -6.36%↓
Time+Chat name -13.98%↓ -14.72%↓ -16.57%↓ -13.96%↓ -14.67%↓ -16.57%↓

2 min Respect-Blocks +5.91%↑ +7.65%↑ +12.65%↑ +5.95%↑ +7.72%↑ +12.62%↑
2 min Ignore-Blocks +5.91%↑ +7.68%↑ +12.95%↑ +5.78%↑ +7.62%↑ +12.84%↑
2 min Both-Senders +5.91%↑ +8.77%↑ +16.87%↑ +6.01%↑ +8.77%↑ +17.01%↑

5 min Respect-Blocks +5.65%↑ +7.79%↑ +13.86%↑ +5.56%↑ +7.74%↑ +13.72%↑
5 min Ignore-Blocks +6.72%↑ +9.01%↑ +15.66%↑ +6.59%↑ +8.96%↑ +15.48%↑
5 min Both-Senders +9.41%↑ +11.76%↑ +18.67%↑ +9.30%↑ +11.72%↑ +18.67%↑
10 min Respect-Blocks +5.65%↑ +7.79%↑ +13.55%↑ +5.63%↑ +7.67%↑ +13.53%↑
10 min Ignore-Blocks +6.99%↑ +9.32%↑ +15.66%↑ +6.92%↑ +9.24%↑ +15.56%↑
10 min Both-Senders +8.06%↑ +10.57%↑ +17.77%↑ +7.86%↑ +10.51%↑ +17.55%↑

Time+ 5 min Respect-Blocks +3.76%↑ +5.51%↑ +10.24%↑ +3.84%↑ +5.51%↑ +10.22%↑
Chat name+5 min Respect-Blocks +5.11%↑ +6.36%↑ +9.34%↑ +5.13%↑ +6.35%↑ +9.40%↑

Time+Chat name+5 min Respect-Blocks +5.38%↑ +7.79%↑ +14.16%↑ +5.43%↑ +7.82%↑ +14.26%↑
Time+Chat name+5 min Ignore-Blocks +5.11%↑ +6.97%↑ +12.05%↑ +5.15%↑ +6.99%↑ +12.00%↑
Time+Chat name+5 min Both-Senders +8.87%↑ +11.53%↑ +18.37%↑ +8.91%↑ +11.52%↑ +18.36%↑

Table 2: Microsoft Teams chat messages experiment results with various contextualization modes. First column
is the experiment configuration, other columns are relative gains, over the noncontextual baseline, of the perfor-
mance metrics (Section 5.1) with a leveled suggestion rate of 0.5.

• TM: Total Matches is the number of sugges-
tions which match the upcoming text.

• ChM: Characters Matched is the number of
matched characters from all suggestions.

• Est. ChA: Estimated Characters Accepted
is the estimated2 total number of suggested
characters accepted by users.

5.2 Experiments with chat messages

The performance results for chat messages from
Microsoft Teams compared to the non-contextual
baseline model are shown in Table 2. For compa-
rability, we train the model’s confidence threshold
to level each model’s suggestion rate (SR) at 0.5
suggestions / message.

Contextualization with just the chat window
name (subject) yields moderate gains, possibly
because the typically short chat messages are so
sparse on context that a chat topic name, or partici-
pant names from a chat header, provides a starting
foothold for relevance. In contrast, from the last
table rows, we see that the benefits from subject
context diminish once prior messages are used as a
context, suggesting that the subject proxy is much
weaker than prior message context. Table 2 also
shows that compose-time can act as a confound-
ing context signal for chat messages, especially in
experiments with no prior messages as a context.
This is possibly due to the numerically-heavy time
encoding confusing the model in contrast to the
short text of chat messages. The experiments also

2Based on observed acceptance probabilities on large-scale
production traffic, users tend to accept longer suggestions.

show that the benefits of these contextual signals
are not additive.

All three prior message aggregation modes
(Ignore-Blocks, Respect-Blocks, and Both-Senders)
show gains across all performance metrics, with all
time window sizes. Both-Senders mode achieves
the most significant relative gains: above 9.3%
for Match Rate and the Total Matches; more than
11.7% for the character match and character match
per suggestion; and more than 18.6% for the charac-
ters saved per suggestion and character acceptance.
This indicates that messages from the other sender
provide significant value, when used with a well-
tuned time window. It provides relevant conversa-
tion context from all senders, eliminating confusing
gaps between messages, and enables suggestions
in response to questions posed by the other sender.
In particular, the Ignore-Blocks mode does worse
than Both-Senders, since Ignore-Blocks can vio-
late conversation continuity, including messages
[k, k + 2] from the current sender, and skipping
message k + 1 from the other sender.

For the single-sender modes, Respect-Blocks
generally performs slightly worse as it utilizes only
part of the messages taken by the Ignore-Blocks
mode. This indicates that seeing a longer prefix of
the current message block (more similar to writing
a long email) makes an impact on text prediction in
chat messages. Lastly, we observe that a 5 minute
time window works better than 2 and 10 minute
time windows. Shorter time windows seem to miss
important prior context while a larger windows lead



Configuration / context mode MR ChM / sugg Est. ChS / sugg TM ChM Est. ChA
Subject -0.81%↓ -0.36%↓ +0.76%↑ -0.74%↓ -0.35%↓ +0.76%↑
Time +2.02%↑ +2.25%↑ +2.88%↑ +2.01%↑ +2.22%↑ +2.83%↑
Previous Email -9.72%↓ -10.56%↓ -13.05%↓ -9.65%↓ -10.56%↓ -13.12%↓
Time+Subject +0.20%↑ +0.47%↑ +1.06%↑ +0.23%↑ +0.49%↑ +1.11%↑

Table 3: Microsoft Outlook email messages experiment results with various contextualization modes. First column
is experiment configuration, other columns are relative gains, over the noncontextual baseline, of the performance
metrics (Section 5.1) with a leveled suggestion rate of 3.8.

Configuration / context mode MR ChM / sugg Est. ChS / sugg TM ChM Est. ChA
Subject -1.46%↓ -0.21%↓ +1.77%↑ -1.58%↓ -0.22%↓ +1.80%↑
Time +0.24%↑ +1.59%↑ +4.87%↑ +0.20%↑ +1.55%↑ +4.75%↑
Previous Email -3.89%↓ -3.50%↓ -2.43%↓ -3.85%↓ -3.42%↓ -2.43%↓
Time+Subject +1.70%↑ +2.32%↑ +3.32%↑ +1.75%↑ +2.34%↑ +3.41%↑

Table 4: Avocado test set (Oard et al., 2015) messages experiment results for various contextualization modes.
First column is experiment configuration, other columns are relative gains, over the noncontextual baseline, of
performance metrics (Section 5.1) with a leveled suggestion rate of 2.5.

to over-saturation of irrelevant information.

5.3 Experiments with email messages

The gains from the contextualization in email mes-
sages are more moderate compared to those from
chat messages. The comparison of the contextu-
alized models with the baseline on commercial
Microsoft Outlook emails and Avocado dataset
are given in Table 3 and 4 respectively. For
emails, the results suggest that time as a context (or
time+subject in the Avocado dataset) offers most
promising relative gains of 2-3%. This contrasts the
observed trend from chat messages. Time is more
important for emails since emails are often longer,
contain greetings, farewells, and meeting requests
with time-related keywords (e.g., "tomorrow", "last
night", "after the weekend"). Additionally, numer-
ical tokens from the time context are less likely
to outnumber the message content tokens, since
emails are about 10×longer than chat messages.

With the chosen architecture, neither subject nor
prior message context signals provide value in the
email scenario. Subjects may introduce keywords,
but the implemented method of encoding context
and body into a single string did not demonstrate an
ability to pull out those key words for suggestions.
Likewise, prior message context did not benefit the
email scenario. As Figure 2 shows, emails with
prior messages are significantly longer than any of
the chat context aggregations. Prior emails may
have critical information steering the direction of
an email thread, but our production-oriented metric
are not significantly affected. The implemented
architecture may not be strong enough to isolate
and make use of those cues, instead becoming con-
founded by the vast influx of tokens from another

sender. This emphasizes that the email and chat
scenarios require different context signals, and may
benefit from different underlying architectures.

Qualitative analysis with the Avocado set
Given our commercial data-visibility constraints
due to the privacy considerations, we perform
a qualitative analysis on the public Avocado
dataset (Oard et al., 2015). Using this public data,
we evaluate text predictions from one of the promis-
ing email context modes: time context. As shown
in Table 5, we use diff tools to identify when the
time context model and baseline model create (i)
correct suggestions, (ii) wrong suggestions, and
(iii) no suggestions. We see that the time con-
text model improves on all three columns. When
directly examining cases where the time-context
model renders a new correct suggestion, com-
pared to the baseline, we observe a trend of time-
related n-grams. Words like "tomorrow", "avail-
able", "September" are seen more frequently in
correct suggestions (see Figure 3). The same trend
is also observed in the Time+Subject model.

Time as context / Baseline in Avocado test set

cases correct / wrong correct / no sugg no sugg / wrong

context win 256 1494 2825
context loss 239 1400 2553

Table 5: Comparing text predictions of time-context
model vs baselines. "Context win" row holds counts
of cases where contextual model suggestions beat base-
line suggestions.

6 Conclusions

We study the role of context in text prediction for
chat and email platforms. Testing with previous
messages, subject, time as additional contextual



Figure 3: The 20 most common new suggestions trig-
gered by the time-context model, on data points from
the Avocado test set (Oard et al., 2015) where the base-
line renders zero suggestions.

signals, we find that the different characteristics
of emails and chat messages influence the selec-
tion of contextual signals to use. Previous message
contextualization leads to significant gains for chat
messages from Microsoft Teams, when using an
appropriate message aggregation strategy. By us-
ing a 5 minute time window and messages from
both senders, we see a 9.4% relative increase in
the match rate, and an 18.6% relative gain on es-
timated characters accepted. Chat messages are
often short and can lack context about a train of
thought; previous messages can bring necessary
semantics to the model to provide a correct predic-
tion. Benefits are comparatively insignificant for
subject and compose time as contextual signals in
chat messages.

In the email scenario based on Microsoft Out-
look, we find that time as a contextual signal yields
the largest boost with a 2.02% relative increase on
the match rate, while subject only helps in conjunc-
tion with time, and prior messages yields no im-
provement. More complex models may be needed
to reap subject and prior message gains for emails,
but the current architecture was chosen for large-
scale serving latency.

Future work involves exploring different encod-
ings for contextual signals, such as utilizing hier-
archical RNNs (Park et al., 2018; Yoo et al., 2020)
to better capture context, or using more advanced
architectures such as transformers or GPT-3.

7 Ethical Considerations

When working with sensitive data and running a
service which generates text predictions for the gen-
eral public, we are responsible for preserving user
privacy and serving fair and inclusive suggestions.

Figure 4: Initial blocklist trigger rates for various con-
textualization merging modes in Microsoft Teams chat
messages.

7.1 Privacy considerations on user data

Our service framework follows the regulatory
requirements of internal company-wise stan-
dards and General Data Protection Regulation
(GDPR) (2018) to meet the user privacy regula-
tions and customer premises. All customer chat
and email data, from Teams and Outlook, used in
this work are classified as customer content, which
is not visible to humans for any purpose. Only
system byproduct data, which is not linkable to
specific users or groups, is obtained and viewed
for quantitative evaluation. This includes internal
service logs or numerical metrics (shown in Sec-
tion 5.1). We also regularly re-sample training and
test data due to our privacy and data retention poli-
cies, preserving similar data set sizes. We strictly
use only publicly available data, such as the Avo-
cado dataset (Oard et al., 2015), for debugging and
visible qualitative evaluation.

7.2 Blocklisting

In pursuit of fair, respectful, and responsible sug-
gestions, we employ a blocklist. This blocklist step
in our text prediction system consists of a large
dictionary containing denigrative, offensive, con-
troversial, sensitive, and stereotype-prone words
and phrases. Text from the message body and con-
textual signals serves as input to the blocklist. Then,
if any word or phrase from the blocklist is found in
the input, all further suggestions are suppressed for
the message.

In the email scenario, the full body and context
is used for blocklist checks, resulting in a blocklist
trigger rate of 47.42%. This means that 47.42%
of our data points contain a blocklisted term in
their input text, and we avoid triggering suggestions
on those points. Naturally, this rate of blocklist



triggering increases as more context is added to the
pool of text being checked.

This phenomenon introduces an added complex-
ity to the chat scenario. A noncontextual baseline
chat model would fail to trigger the blocklist on a
response to an offensive statement from two mes-
sages ago. Figure 4 shows how the blocklist trigger
rate varies as larger windows of chat history are
used as context. We ensure that all chat models
check the past 5 messages against the blocklist, no
matter how many prior messages are used for text
prediction inference. With 5 prior messages fed
to the blocklist in chat conversations, the blocklist
trigger rate is 25.08%, instead of 5.89% with no
added prior messages.

Acknowledgements

We would like to thank the members of Microsoft
Search, Assistant and Intelligence (MSAI) group
for their useful comments and suggestions.

References
Ziv Bar-Yossef and Naama Kraus. 2011. Context-

sensitive query auto-completion. In Proc. of the 20th
Intl. Conf. on World Wide Web (WWW), pages 107–
116.

Holger Bast and Ingmar Weber. 2006. Type less, find
more: fast autocompletion search with a succinct in-
dex. In Proc. of the 29th Annual Intl. ACM Conf. on
Research and Development in Information Retrieval
(SIGIR), pages 364–371.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Jour. of Machine Learning Research,
3:1137–1155.

Steffen Bickel, Peter Haider, and Tobias Scheffer.
2005. Learning to complete sentences. In Euro-
pean Conf. on Machine Learning (ECML), pages
497–504. Springer.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail Smart Compose: Real-time Assisted Writing.
In Proc. of the 25th ACM SIGKDD Intl. Conf. on
Knowledge Discovery & Data Mining, pages 2287–
2295.

John J. Darragh, Ian H. Witten, and Mark L. James.
1990. The reactive keyboard: A predictive typing
aid. Computer, 23(11):41–49.

Budhaditya Deb, Peter Bailey, and Milad Shokouhi.
2019. Diversifying reply suggestions using a
matching-conditional variational autoencoder. In

Proc. of Conf. of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
40–47. Association for Computational Linguistics.

European Commission. 2018. EU data protection rules.
https://ec.europa.eu/info/law/law-topi
c/data-protection/eu-data-protection-r
ules_en. Online; accessed 6 January 2021.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv:1811.03604.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Frankie James. 2000. Modified kneser-ney smoothing
of n-gram models. Technical report, RIACS.

Jared Spataro. 2019. 5 attributes of successful teams.
https://www.microsoft.com/en-us/micros
oft-365/blog/2019/11/19/5-attributes-s
uccessful-teams/. Online; accessed 6 January
2021.

Jared Spataro. 2020. Microsoft Teams reaches 115 mil-
lion DAU—plus, a new daily collaboration minutes
metric for Microsoft 365. https://www.micros
oft.com/en-us/microsoft-365/blog/2020/
10/28/microsoft-teams-reaches-115-mill
ion-dau-plus-a-new-daily-collaborati
on-minutes-metric-for-microsoft-365/.
Online; accessed 6 January 2021.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. arXiv:1602.02410.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufman, Balint Miklos, Greg Corrado, Andrew
Tomkins, Laszlo Lukacs, Marina Ganea, Peter
Young, and Vivek Ramavajjala. 2016. Smart reply:
Automated response suggestion for email. In Proc.
of the ACM SIGKDD Conf. on Knowledge Discovery
and Data Mining (KDD), page 955–964.

Nan Rosemary Ke, Konrad Żołna, Alessandro Sor-
doni, Zhouhan Lin, Adam Trischler, Yoshua Ben-
gio, Joelle Pineau, Laurent Charlin, and Christopher
Pal. 2018. Focused hierarchical RNNs for condi-
tional sequence processing. In Proc. of the 35th
Intl. Conf. on Machine Learning (ICML), volume 80,
pages 2554–2563, Stockholm, Sweden.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Intl.
Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), volume 1, pages 181–184.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. In 6th Intl. Conf. on Learning Representa-
tions (ICLR), Vancouver, BC, Canada.

https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/1148170.1148234
https://doi.org/10.1145/1148170.1148234
https://doi.org/10.1145/1148170.1148234
https://dl.acm.org/doi/10.5555/944919.944966
https://dl.acm.org/doi/10.5555/944919.944966
https://link.springer.com/chapter/10.1007/11564096_47
https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1109/2.60879
https://doi.org/10.1109/2.60879
https://doi.org/10.18653/v1/n19-2006
https://doi.org/10.18653/v1/n19-2006
https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1811.03604
https://doi.org/10.1162/neco.1997.9.8.1735
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.324.2275&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.324.2275&rep=rep1&type=pdf
https://www.microsoft.com/en-us/microsoft-365/blog/2019/11/19/5-attributes-successful-teams/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/11/19/5-attributes-successful-teams/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/11/19/5-attributes-successful-teams/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/10/28/microsoft-teams-reaches-115-million-dau-plus-a-new-daily-collaboration-minutes-metric-for-microsoft-365/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/10/28/microsoft-teams-reaches-115-million-dau-plus-a-new-daily-collaboration-minutes-metric-for-microsoft-365/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/10/28/microsoft-teams-reaches-115-million-dau-plus-a-new-daily-collaboration-minutes-metric-for-microsoft-365/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/10/28/microsoft-teams-reaches-115-million-dau-plus-a-new-daily-collaboration-minutes-metric-for-microsoft-365/
https://www.microsoft.com/en-us/microsoft-365/blog/2020/10/28/microsoft-teams-reaches-115-million-dau-plus-a-new-daily-collaboration-minutes-metric-for-microsoft-365/
https://arxiv.org/abs/1602.02410
https://arxiv.org/abs/1602.02410
https://doi.org/10.1145/2939672.2939801
https://doi.org/10.1145/2939672.2939801
http://proceedings.mlr.press/v80/ke18a.html
http://proceedings.mlr.press/v80/ke18a.html
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://arxiv.org/abs/1707.05589
https://arxiv.org/abs/1707.05589
https://arxiv.org/abs/1707.05589


Microsoft Text Predictions. 2020. Write faster using
text predictions in Word, Outlook. https://insi
der.office.com/en-us/blog/text-predi
ctions-in-word-outlook. Online; accessed 7
April 2021.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), pages 1081–1088.

Douglas Oard, William Webber, David A. Kirsch, and
Sergey Golitsynskiy. 2015. Avocado research email
collection LDC2015T03. Philadelphia: Linguistic
Data Consortium.

Yookoon Park, Jaemin Cho, and Gunhee Kim. 2018. A
hierarchical latent structure for variational conversa-
tion modeling. In Proc. of the Conf. of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 1792–1801, New Orleans, LA,
USA. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 5998–6008.

Ryen W. White, P. Bailey, and Liwei Chen. 2009. Pre-
dicting user interests from contextual information.
In Proc. of the 32nd Intl. ACM Conf. on Research
and development in information retrieval (SIGIR).

Kang Min Yoo, Hanbit Lee, Franck Dernoncourt,
Trung Bui, W. Chang, and Sang-goo Lee. 2020.
Variational hierarchical dialog autoencoder for di-
alogue state tracking data augmentation. In Proc.
of the Conf. on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018. Modeling multi-
turn conversation with deep utterance aggregation.
In Proc. of the 27th Intl. Conf. on Computational
Linguistics (COLING), pages 3740–3752, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

https://insider.office.com/en-us/blog/text-predictions-in-word-outlook
https://insider.office.com/en-us/blog/text-predictions-in-word-outlook
https://insider.office.com/en-us/blog/text-predictions-in-word-outlook
https://dl.acm.org/doi/10.5555/2981780.2981915
https://dl.acm.org/doi/10.5555/2981780.2981915
https://doi.org/https://doi.org/10.35111/wqt6-jg60
https://doi.org/https://doi.org/10.35111/wqt6-jg60
https://doi.org/10.18653/v1/N18-1162
https://doi.org/10.18653/v1/N18-1162
https://doi.org/10.18653/v1/N18-1162
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.1145/1571941.1572005
https://doi.org/10.1145/1571941.1572005
https://research.adobe.com/publication/variational-hierarchical-dialog-autoencoder-for-dialog-state-tracking-data-augmentation/
https://research.adobe.com/publication/variational-hierarchical-dialog-autoencoder-for-dialog-state-tracking-data-augmentation/
https://www.aclweb.org/anthology/C18-1317
https://www.aclweb.org/anthology/C18-1317

