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Physical computing is a powerful technique that motivates engagement with technology, supports learning, and allows users to build 

useful interactive devices. Here we propose new approaches hardware design and programming environment design to make physical 
computing more accessible to people who are blind or visually impaired. 

1 INTRODUCTION 

Physical computing platforms like the micro:bit, Arduino, and the Raspberry Pi are making it easier for people to 

build interactive devices that can sense and respond to the real world. Each platform broadly consists of a central 
re-programmable microcontroller board, to which additional electronic components and modules can be connected. 
Makers and hobbyists from all backgrounds and geographies use physical computing to express creativity or to tackle 

real world problems. Physical computing is also a powerful tool for learning; for example it has seen extensive adoption 

in education as an engaging way to teach computer science concepts to students. 
A core value of physical computing is making electronics and programming more hands-on and engaging, thereby 

inspiring people while empowering them to build their own devices. This value is consistent with the goals of many 

people with disabilities; do-it-yourself creation of accessibility technologies has long been a value in the disability 

community [4]. However, digital technology designed by those who are blind or visually impaired (BVI) has historically 

focused on software engineering. This has begun to change recently under the leadership of innovators such as Joshua 

Miele [16] and Chancey Fleet [11, 14]. Recent eforts have addressed skills development such as soldering [13] and 

building with the Arduino [12] despite inaccessibility of the tools needed to complete these tasks. One direction being 

researched to make these tasks non-visually accessible is tactile schematics [11] and circuits [5]. 
In this paper, we discuss the challenge of improving the accessibility of physical computing to the BVI community. 

Using standard re-programmable physical computing boards typically relies on non-tactile silk-screen markings and 

other predominantly visual features, making electrical wiring challenging for BVI users. Discrete through-hole and 

surface mount components are hard to identify without good vision because markings are small and/or are color-coded. 
One promising domain for addressing this—physical computing modules, which are larger—are also often hard to use 

without good vision. Below, we discuss how modules could be designed for accessibility and what types of modifcations 
to physical computing IDEs could help support this. 

2 MODULE HARDWARE DESIGN 

As mentioned above, the frst challenge is to make hardware elements themselves accessible—things like sensors, 
indicators, actuators and communications modules. With platforms that make use of individual electronic components, 
learning electronics is often a core part of the physical computing experience. However, wiring up individual components 
can be challenging irrespective of visual abilities. Modular electronics ecosystems like Stemma and Grove expedite 

prototyping by shifting the focus away from learning electronics to building functional devices. This makes physical 
computing simpler and more rewarding for non-experts, without compromising on fexibility in terms of what to build. 
We also expect module-based circuits to be well-suited for addressing BVI accessibility challenges in the following 

ways: 
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Conveyable module state Module-based systems can communicate information about connected modules, the 

state of each module, and input or output data for each module as appropriate to support full non-visual 
discoverability. A combination of tactile exploration and digital audio feedback could enable these experiences. 
An ideal BVI experience would announce when a module has been connected; this could be done through a 

dedicated accessibility module, or through the programming environment detecting a connection event. When a 

module receives input or starts producing output, a BVI user should be able to browse the data corresponding to 

each device on-demand. To increase discoverability, BVI users should also be able to get a non-visual summary 

of connected modules. The hardware support required for all the above is achieveable. 
Distinct module identifcation The modules of current modular electronics platforms often look homogeneous 

and can only be diferentiated by text, the color of the module itself, or through LED indicators—all forms of 
visual appearance. One might consider changing the physical shape of modules to correspond to functionality 

but it would be hard to standardize this attribute in a scalable way. An alternative might be on-module capacitive 

sensing combined with IDE-based spoken output to ease module identifcation for BVI users. Physical attributes, 
such as distinct arrangements of electronics component on a module or tangible PCB edge markings, could 

convey orientation information. A hybrid of digital augmentation with physical attributes might be better yet. A 

dedicated accessibility module or programming environment could provide additional support by identifying 

and vocalising information about diferent hardware modules. 
Any connector, any topology Current modular electronics ecosystems that have dedicated connectors and multi-

wire cables, like Grove, Qwiic and Stemma, make it easy to connect modules together. However, modules must 
often be wired up in certain ways, again indicated to the user through symbols and text on modules. Prior work 

with blind makers mention the use of landmarks to enable non-visual soldering [13]; this same technique could 

be applied to connectors to denote suitable connection points. However, this ultimately requires additional 
learning for the BVI user to map electrical connections correctly. An alternative solution would be to allow any 

module to be cabled to any connector in any topology. 

3 PROGRAMMING ENVIRONMENT 

Non-visual programming to support young BVI learners has been studied extensively [8, 9], to understand challenges 
faced by BVI software developers [1] and to support them to be more productive [3, 10]. Recent work explores ways of 
supporting BVI people to perform tasks that historically assume visual abilities like 3-D printing [15] and block-based 

programming [7, 8] (a programming paradigm that is extensively used in physical computing [6]). 
At a basic level, non-visual support for programming traditionally assumes self-voicing (or Braille output) capabilities 

and screen readable output e.g., output that can be printed to the command line. Additionally, in the domain of physical 
computing, there has recently been a push towards web-based programming experiences [6], that can leverage the 

wealth of accessibility technologies embedded inside modern web browsers [14]. For example, ARIA (accessible rich 

Internet applications) live regions could be used to announce connected modules and other useful hardware information. 
However, even when an experienced BVI programmer is using a relatively accessible web-based IDE, several important 
challenges must still be solved: 

Sensor data representations Funnelling high volumes of data through ARIA-live regions would be a mistake, as 
this would result in a noisy non-visual programming experience. BVI users should instead have the opportunity 

to consume data in a variety of formats like Desmos graphs, CSV fles, or spreadsheets. A BVI accessible physical 
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Fig. 1. A conceptual vision of a BVI accessible physical computing environment, showing a web-based accessible programming editor 
and hardware modules connected together by a reversible, low-cost multi-wire cable. Modules include: a braille display module, 
a sounder module for audio output, a haptic module for vibrational feedback, an accelerometer for orientation detection, and a 
re-programmable microcontroller module that controls operation of all other modules. 

computing environment should also be extensible to support diferent information representations. This could 

be facilitated through hooks (e.g., http endpoints or rest API calls) so that could pull continuous data streams and 

render them in a format of their choice. 
A digital cursor for physical prototyping Non-visual programming relies heavily on a cursor. For screen 

reader users, the cursor dictates the object of focus to perform actions on. In a typical scenario, this cursor-based 

navigation paradigm ofers the ability to navigate by diferent units e.g., characters and words in general-purpose 

text navigation and functions, and code blocks in software IDEs. With a functional digital-to-physical cursor, a 

BVI accessible IDE could display code segments, commands, and data streams pertaining to the module currently 

in focus. Such a cursor would need to synchronize IDE and physical component selection, and also support a 

way to navigate physical circuits at diferent granularities e.g., by component or by pins of a component. 
Digital-physical co-design In recent web-based IDEs like Microsoft MakeCode, a device simulator proves in-

valuable [2]. The simulator allows users to test out code without interacting with physical hardware, allowing 

for faster program development and iteration. Simulators for MakeCode programming environments typically 

deal with a single device, but there are benefts to simulating a multi-module ecosystem. Tight integration 

between physical modules and programming environment could give BVI users more insights into their system. 
For example, virtualization of hardware modules would allow BVI users to use any module, regardless of its 
accessibility. Additionally, mimicking sensor changes in a BVI accessible IDE would allow for more tactile 

experimentation (e.g., real-time temperature changes could invoke simulated code actions in the IDE). 
Untethered development continuity Though much of program creation may happen in the browser, there 

comes a point where a new physical computing device needs to be evaluated in context. It may no longer be 

possible to use a web-browser or personal computing device, and thus no screen reader or digital cursor will be 

available to the BVI user. Nevertheless, non-visual feedback will be valuable to ensure the physical computing 

device is working as expected. In this scenario, a dedicated accessibility hardware module could verbalise module 

state and act as a digital cursor to swap focus between modules. This would allow BVI users to debug physical 
computing devices in situ without a personal computing device and/or a web browser. 

3 



Potluri et al. 

4 DISCUSSION 

We believe the vision presented in this paper and in Figure 1 can empower BVI users to author custom physical 
computing experiences. It is underpinned by modular hardware components that can be modeled, simulated, and 

controlled through software. Real world constraints such as the manufacturability and cost of these modules will of 
course lead to trade ofs, but we think these are manageable. Of course, an ideal making experience should make a 

variety of tasks accessible, including circuit and PCB design, and soldering; in this short paper we have not been able to 

discuss these. As we lay out our approach to non-visual accessible physical computing, we would like to engage with 

other workshop attendees regarding two key aspects of our vision: 

(1) What additional sensory experiences should physical computing platforms support, in addition to audio and 

haptics? How can we support creation of such multi-modal experiences? 
(2) How might accessible physical computing platforms enable experiences that may not have been envisioned due 

to the use of sight as a primary modality? 
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