
To appear on ISCA 2021
This is a draft version. Camera-ready version is coming soon.

PipeZK: Accelerating Zero-Knowledge Proof
with a Pipelined Architecture

Abstract—Zero-knowledge proof (ZKP) is a promising cryp-
tographic protocol for both computation integrity and privacy.
It can be used in many privacy-preserving applications includ-
ing verifiable cloud outsourcing and blockchains. The major
obstacle of using ZKP in practice is its time-consuming step
for proof generation, which consists of large-size polynomial
computations and multi-scalar multiplications on elliptic curves.
To efficiently support ZKP and make it more practical to
use in real-world applications, we propose PipeZK, an efficient
pipelined accelerator consisting of two subsystems to handle the
aforementioned two intensive compute tasks. The first subsystem
uses a novel dataflow to decompose large kernels into smaller
ones that execute on bandwidth-efficient hardware modules,
with optimized off-chip memory accesses and on-chip compute
resources. The second subsystem adopts a lightweight dynamic
work dispatch mechanism to share the heavy processing units,
with minimized resource underutilization and load imbalance.
When evaluated in 28nm, PipeZK can achieve 10x speedup on
standard cryptographic benchmarks, and 5x on a widely-used
cryptocurrency application, Zcash.

I. INTRODUCTION

Zero-knowledge proof (ZKP) blossoms rapidly in recent
years, drawing attention from both researchers and practition-
ers. In short, it is a family of cryptographical protocols that
allow one party (called the prover) to convince the others
(called the verifiers) that a “computational statement” is true,
without leaking any information. For example, if a program P
outputs the result y on a public input x and a secret input w,
using a ZKP protocol, the prover can assure that she knows
the secret w which satisfies P (x,w) = y without revealing
the value of w.

As one of the fundamental primitives in modern cryptog-
raphy, ZKP has the potential to be widely used in many
privacy-critical applications to enable secure and verifiable
data processing, including electronic voting [50], online auc-
tion [25], anonymous credentials [22], verifiable database
outsourcing [48], verifiable machine learning [47], privacy-
preserving cryptocurrencies [21], [43], and various smart
contracts [35]. More specifically, verifiable outsourcing, as a
promising example use case of ZKP, allows a weak client
to outsource computations to the powerful cloud and effi-
ciently verify the correctness of the returned results [48], [49].
Another widely deployed application of ZKP is blockchains
and cryptocurrencies. The intensive computation tasks can
be moved off-chain and each node only needs to efficiently
verify the integrity of a more lightweight proof on the critical
path [1], [21], [43].

Since its birth [28], tremendous effort has been made by
cryptography researchers to make ZKP more practical. Among

newly invented ones, zk-SNARK, which stands for Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge,
is widely considered as a promising candidate. As its name
suggests, zk-SNARKs generate succinct proofs — often within
hundreds of bytes regardless of the complexity of the program,
and these proofs are very fast to verify. Because of these
two properties, we are seeing more and more deployments
of zk-SNARKs in real-world applications, especially in the
blockchain community. [1], [4], [7], [10], [12], [36].

Although zk-SNARK proofs are succinct and fast to verify,
their generation remains an obstacle in large-scale zk-SNARKs
adoption. To generate proofs for a program, it is typical to
first translate the program into a constraint system, the size of
which is usually several times larger than the initial program,
and could be up to a few millions. The prover then performs a
number of arithmetic operations over a large finite field. The
actual number of operations required is protocol-specific, but
is always super-linear comparing to the number of constraints
in the system, therefore it is even larger. As a result, it takes
much longer to generate the zk-SNARK proof of a program
than verifying it, sometimes up to hundreds of times longer,
and could be up to a few minutes just for a single payment
transaction [43].

In this paper, we present PipeZK, an efficient pipelined
architecture for accelerating zk-SNARK. PipeZK mainly in-
volves two subsystems, for the polynomial computation with
large-sized number theoretic transforms (NTTs), and for the
multi-scalar multiplications that execute vector inner products
on elliptic curves (ECs). These two phases are the most
compute-intensive parts in zk-SNARK. We implement them as
specialized hardware accelerators, and combine with the CPU
to realize a heterogeneous end-to-end system for zk-SNARK.

For the polynomial computation subsystem, we notice that
the large-sized NTT computations (up to a million elements)
results in sigificant challenges for both off-chip memory
accesses and on-chip compute resources, due to the irregular
strided access patterns similar to FFT computations, and the
large bitwidth (up to 768 bits) of each element. We propose
a novel high-level dataflow that decomposes the large NTT
kernels into smaller ones recursively, which can then be
efficiently executed on a bandwidth-efficient NTT hardware
module that uses lightweight FIFOs internally to realize the
strided accesses. We also leverage data tiling and on-chip
matrix transpose to improve off-chip bandwidth utilization.

For the multi-scalar multiplication subsystem, rather than
simply replicating multiple processing units for EC operations,
we exploit the large numbers of EC multiplications existing

1



in the vector inner products, and use Pippenger algorithm [40]
to share the dominant EC processing units with a lightweight
dynamic work dispatch mechanism. This alleviates the re-
source underutilization and load imbalance issues when the
input data have unpredictable value distributions. Furthermore,
we scale the system in a coarse-grained manner to allow
each processing unit to work independently from each other,
while guaranteeing that there are no stragglers even when data
distributions are highly pathological.

In summary, ourcontributions in this paper include:
� We designed a novel module, which partitions a large-

scale polynomial computation task into small tiles and
processes them in a pipeline style. It can achieve high
ef�ciency in both memory bandwidth and logic resource
utilization.

� We designed a novel pipelined module for multi-scalar
point multiplication on the elliptic curve. It leverages an
optimized algorithm and pipelined data�ow to achieve
high processing throughput. In addition, it can support
various elliptic curves with different data bit-widths.

� We implemented a prototype of the proposed architecture
in RTL and synthesized our design under a 28nm ASIC
library, and evaluated it as used with CPUs in an end-to-
end heterogeneous system. Compared to state-of-the-art
approaches, the overall system can achieve 10x speedup
for small-sized standard cryptographic benchmarks on
average, and 5x for a real-world large-scale application,
Zcash [43]. When individually executed, the two sub-
systems of PipeZK can achieve 20x to 77x speedup,
respectively.

II. BACKGROUND AND MOTIVATION

Zero-knowledge proof (ZKP) is a powerful cryptographic
primitive that has recently been adopted to real-world appli-
cations [21], [22], [25], [35], [43], [47], [48], [50], and drawn
a lot of attentions in both academia [16]–[19], [24], [27], [39],
[44] and industry [1], [4], [7], [10], [12], [36]. ZKP allows the
prover to prove to theveri�er that a given statement of the
following form is true: “given a functionF and an inputx,
I know a secret witnessw that makesF (x; w) = 0 .” More
speci�cally, the prover can generate a proof, whose validity
can be checked by the veri�er. However, even though the
veri�er gets the proof and is able to verify its validity, she
cannot obtain any information aboutw itself. The prover's
secret remains secure after the proving process. As a result, the
zero-knowledge property of ZKP provides a strong guarantee
for the prover's privacy, as she can prove to others that she
knows some private information (i.e.,w) without leaking it.

A. Applications of Zero-Knowledge Proof

As one of the fundamental primitives in modern cryptogra-
phy, ZKP can be widely used in many security applications
as a basic building block to enable real-world secure and ver-
i�able data processing. Generally speaking, ZKP allows two
or multiple parties to perform compute tasks in a cooperative
but secure manner, in the sense that one party can convince

the other that her result is valid without accidentally leaking
any sensitive information. Many real-world applications can
bene�t from these properties, including electronic voting [50],
online auction [25], anonymous credentials [22], veri�able
database outsourcing [48], veri�able machine learning [47],
privacy-preserving cryptocurrencies [21], [43], and various
smart contracts [35].

A promising example application of ZKP is veri�able
outsourcing [26], in which case a client with only weak
compute power outsources a compute task to a powerful
server, e.g., a cloud datacenter, who computes on potentially
sensitive data to generate a result that is returned to the client.
Examples include database SQL queries [48] and machine
learning jobs [47]. In such a scenario, the client would like
to ensure the result is indeed correct, while the server is not
willing to expose any sensitive data. ZKP allows the server
to also provide a proof associated with the result, which the
client can ef�ciently check the integrity. The zero-knowledge
property allows the prover to make arbitrary statements (i.e.,
compute functions) about the secret data without worrying
about exposing the secret data, therefore naturally support
theoretically general-purpose outsourcing computation.

Another widely deployed application of ZKP is blockchains
and cryptocurrencies. Conventional blockchain-based applica-
tions require every node in the system to execute the same on-
chain computation to update the states, which brings a large
overhead with long latency. ZKP enables private decentralized
veri�able computation, such that the computation can be
moved off-chain, and each node only needs to ef�ciently
check the integrity of a more lightweight proof to discover
illegal state transitions. For instance, zk-Rollup [1] packs
many transactions in one proof and allows the nodes to check
their integrity by ef�ciently verifying the proof. Other work
even enables verifying the integrity of the whole blockchain
using one succinct proof [36]. This feature greatly increases
the blockchain scalability. Furthermore, the zero-knowledge
property allows users to make con�dential transactions while
still being able to prove the validity of each transaction.
Zcash [43] and Pinocchio Coin [21] are such examples, where
the transaction details including the amount of money and the
user addresses are hidden. It offers privacy-preserving trust
instead of trust with transparency.

B. Computation Requirements of Zero-Knowledge Proof

It is natural to imagine that realizing such a counter-intuitive
ZKP functionality would require huge computation and com-
munication costs. Since its �rst introduction by Goldwasser
et al. [28], there have been signi�cant improvements in the
computation ef�ciency of ZKP to make it more practical. zk-
SNARK [30], as the state-of-the-art ZKP protocol, allows the
prover to generate asuccinctproof, which greatly reduces the
veri�cation cost. Formally speaking, the proof of zk-SNARK
has three important properties:correctness, zero-knowledge,
and succinctness. Correctness means that if the veri�cation
passes, then the prover's statement is true, i.e., the prover
does know the secretw. Zero-knowledge means that the proof

2



Fig. 1. The work�ow of the prover. The illustrated F(v,w) has an constraint
system size of �ve (i.e.n = 5 ).

does not leak any knowledge of the secret witnessw. And
succinctness means that the size of the proof is small (e.g., of
about 128 bytes) and it is also fast to verify (e.g., typically
within 2 milliseconds), regardless of how complicated the
function F might be.

Unfortunately, although the proof veri�cation can be made
fast, generating such proof at the prover side with zk-SNARK
has considerable computation overheads and can take a great
amount of time, which hinders zk-SNARK from wide adoption
in real-world applications. Therefore, this work focuses on the
work�ow and the key components of the prover's computa-
tion [30], which is our target for hardware acceleration.

For speci�c implementation of zk-SNARK, a security pa-
rameter� is �rstly decided to trade off the computation com-
plexity and security strength, by specifying the data width used
in the computation. A larger� provides a stronger security
guarantee but also introduces signi�cantly higher computation
cost. Typically,� ranges from 256-bit to 768-bit.1

As illustrated in Figure 1, the prover �rst goes through a
pre-processing phase, during which the functionF , typically
written in some high-level programming languages, is �rstly
compiled into a set of arithmetic constraints, called “rank-1
constraint system (R1CS)”. The constraint system contains a
number of linear or polynomial equations of the input and
the witness. The number of equations in the constraint system
is determined by the complexity of the functionF , which
could be as many as up to millions for real-world appli-
cations. Meanwhile, various random parameters are set up,
including the proving keys. With the prover's secret witness,
the constraint system, the proving keys, and other parameters,
the pre-processing phase would subsequently output a set of
data, which will later be used in the computation phase. These
involve two parts (Figure 1):

� Scalar vectors ~Sn ; ~An ; ~Bn ; ~Cn . Each vector includesn
� -bit numbers. The dimensionn is determined by the size
of the constraint system. Note thatn could be extremely

1Here we abuse the notion of security parameter for simplicity since it is
usually directly related to the bit width of parameters.

Fig. 2. POLY and MSM computations of the prover, which are our hardware
acceleration target.

large for real-world applications. For example, Zcash has
n as large as a few millions [33].

� Point vectors ~P n ; ~Qn . Each vector includesn points on
a pre-determined elliptic curve (EC) [31]. EC points are
commonly used in cryptographic primitives. It supports
several basic operations includingpoint addition(PADD),
point double (PDBL) and point scalar multiplication
(PMULT). By leveraging the binary representation of
the scalar, PMULT can be broken down into a series
of PADD and PDBL in the scalar's bit-serial order.
Both PADD and PDBL operations contain a bunch of
arithmetic operations over a large �nite �eld, as shown in
Figure 2. Fast algorithms for operations on EC typically
use projective coordinates to avoid modular inverse [13].
They also adopt Montgomery representations for basic
arithmetic operations over the �nite �eld [37].

With these data, the prover can now generate the proof~� .
This is the most computation-heavy phase, and therefore is
our main target for hardware acceleration. It involves large-
sized number theoretic transforms (NTTs) and complicated
EC operations, as illustrated in Figure 2. More speci�cally, the
computation phase mainly includes the following two tasks:

� Polynomial computation (POLY). It takes ~An ; ~Bn ; ~Cn

as input and calculates a resultant scalar vector~Hn ,
whose elements represent the coef�cients of a degree-
n polynomial. The state-of-the-art implementations for
this part use NTTs and inverse NTTs (INTTs), which are
similar to Fast Fourier Transforms (FFTs) but instead on
a �nite �eld. It can reduce the complexity of POLY from
O(n2) to O(n logn). Nevertheless, POLY still needs to
do NTTs/INTTs for many times, as shown in Figure 2.
And each NTT/INTT also has considerable computation
cost, given thatn could be quite large (up to millions)
and each coef�cient is a very wide integer number (e.g.,
� = 768 bits).

� Multi-scalar multiplication (MSM). This part includes
the calculation of the “vector inner products” between
~Sn and ~Qn , and between ~Hn (the output of POLY)
and ~P n , respectively. Note that the inner products are
performed on EC, i.e., using the PADD and PMULT
operations de�ned above to multiply the scalar vector and

3


	Introduction
	Background and Motivation
	Applications of Zero-Knowledge Proof
	Computation Requirements of Zero-Knowledge Proof
	Hardware Acceleration Opportunities
	Prior Work

	Accelerating Polynomial Computation
	NTT Computation
	Design Challenges
	Recursive NTT Algorithm
	Bandwidth-Efficient NTT Hardware Module
	Overall NTT Dataflow

	Accelerating Multi-Scalar Multiplication
	MSM Computation
	Design Challenges
	Algorithm Optimization and Hardware Module Design
	Overall Architecture
	Exploiting Parallelism and Balancing Loads

	Overall System
	Evaluation
	Evaluation Setup
	Evaluating NTT and MSM with Different Input Sizes
	Evaluating POLY and MSM with Workloads
	Evaluation for Zcash

	Conclusion
	References

