
To appear on ISCA 2021
This is a draft version. Camera-ready version is coming soon.

PipeZK: Accelerating Zero-Knowledge Proof
with a Pipelined Architecture

Abstract—Zero-knowledge proof (ZKP) is a promising cryp-
tographic protocol for both computation integrity and privacy.
It can be used in many privacy-preserving applications includ-
ing verifiable cloud outsourcing and blockchains. The major
obstacle of using ZKP in practice is its time-consuming step
for proof generation, which consists of large-size polynomial
computations and multi-scalar multiplications on elliptic curves.
To efficiently support ZKP and make it more practical to
use in real-world applications, we propose PipeZK, an efficient
pipelined accelerator consisting of two subsystems to handle the
aforementioned two intensive compute tasks. The first subsystem
uses a novel dataflow to decompose large kernels into smaller
ones that execute on bandwidth-efficient hardware modules,
with optimized off-chip memory accesses and on-chip compute
resources. The second subsystem adopts a lightweight dynamic
work dispatch mechanism to share the heavy processing units,
with minimized resource underutilization and load imbalance.
When evaluated in 28nm, PipeZK can achieve 10x speedup on
standard cryptographic benchmarks, and 5x on a widely-used
cryptocurrency application, Zcash.

I. INTRODUCTION

Zero-knowledge proof (ZKP) blossoms rapidly in recent
years, drawing attention from both researchers and practition-
ers. In short, it is a family of cryptographical protocols that
allow one party (called the prover) to convince the others
(called the verifiers) that a “computational statement” is true,
without leaking any information. For example, if a program P
outputs the result y on a public input x and a secret input w,
using a ZKP protocol, the prover can assure that she knows
the secret w which satisfies P (x,w) = y without revealing
the value of w.

As one of the fundamental primitives in modern cryptog-
raphy, ZKP has the potential to be widely used in many
privacy-critical applications to enable secure and verifiable
data processing, including electronic voting [50], online auc-
tion [25], anonymous credentials [22], verifiable database
outsourcing [48], verifiable machine learning [47], privacy-
preserving cryptocurrencies [21], [43], and various smart
contracts [35]. More specifically, verifiable outsourcing, as a
promising example use case of ZKP, allows a weak client
to outsource computations to the powerful cloud and effi-
ciently verify the correctness of the returned results [48], [49].
Another widely deployed application of ZKP is blockchains
and cryptocurrencies. The intensive computation tasks can
be moved off-chain and each node only needs to efficiently
verify the integrity of a more lightweight proof on the critical
path [1], [21], [43].

Since its birth [28], tremendous effort has been made by
cryptography researchers to make ZKP more practical. Among

newly invented ones, zk-SNARK, which stands for Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge,
is widely considered as a promising candidate. As its name
suggests, zk-SNARKs generate succinct proofs — often within
hundreds of bytes regardless of the complexity of the program,
and these proofs are very fast to verify. Because of these
two properties, we are seeing more and more deployments
of zk-SNARKs in real-world applications, especially in the
blockchain community. [1], [4], [7], [10], [12], [36].

Although zk-SNARK proofs are succinct and fast to verify,
their generation remains an obstacle in large-scale zk-SNARKs
adoption. To generate proofs for a program, it is typical to
first translate the program into a constraint system, the size of
which is usually several times larger than the initial program,
and could be up to a few millions. The prover then performs a
number of arithmetic operations over a large finite field. The
actual number of operations required is protocol-specific, but
is always super-linear comparing to the number of constraints
in the system, therefore it is even larger. As a result, it takes
much longer to generate the zk-SNARK proof of a program
than verifying it, sometimes up to hundreds of times longer,
and could be up to a few minutes just for a single payment
transaction [43].

In this paper, we present PipeZK, an efficient pipelined
architecture for accelerating zk-SNARK. PipeZK mainly in-
volves two subsystems, for the polynomial computation with
large-sized number theoretic transforms (NTTs), and for the
multi-scalar multiplications that execute vector inner products
on elliptic curves (ECs). These two phases are the most
compute-intensive parts in zk-SNARK. We implement them as
specialized hardware accelerators, and combine with the CPU
to realize a heterogeneous end-to-end system for zk-SNARK.

For the polynomial computation subsystem, we notice that
the large-sized NTT computations (up to a million elements)
results in sigificant challenges for both off-chip memory
accesses and on-chip compute resources, due to the irregular
strided access patterns similar to FFT computations, and the
large bitwidth (up to 768 bits) of each element. We propose
a novel high-level dataflow that decomposes the large NTT
kernels into smaller ones recursively, which can then be
efficiently executed on a bandwidth-efficient NTT hardware
module that uses lightweight FIFOs internally to realize the
strided accesses. We also leverage data tiling and on-chip
matrix transpose to improve off-chip bandwidth utilization.

For the multi-scalar multiplication subsystem, rather than
simply replicating multiple processing units for EC operations,
we exploit the large numbers of EC multiplications existing

1

in the vector inner products, and use Pippenger algorithm [40]
to share the dominant EC processing units with a lightweight
dynamic work dispatch mechanism. This alleviates the re-
source underutilization and load imbalance issues when the
input data have unpredictable value distributions. Furthermore,
we scale the system in a coarse-grained manner to allow
each processing unit to work independently from each other,
while guaranteeing that there are no stragglers even when data
distributions are highly pathological.

In summary, our contributions in this paper include:
• We designed a novel module, which partitions a large-

scale polynomial computation task into small tiles and
processes them in a pipeline style. It can achieve high
efficiency in both memory bandwidth and logic resource
utilization.

• We designed a novel pipelined module for multi-scalar
point multiplication on the elliptic curve. It leverages an
optimized algorithm and pipelined dataflow to achieve
high processing throughput. In addition, it can support
various elliptic curves with different data bit-widths.

• We implemented a prototype of the proposed architecture
in RTL and synthesized our design under a 28nm ASIC
library, and evaluated it as used with CPUs in an end-to-
end heterogeneous system. Compared to state-of-the-art
approaches, the overall system can achieve 10x speedup
for small-sized standard cryptographic benchmarks on
average, and 5x for a real-world large-scale application,
Zcash [43]. When individually executed, the two sub-
systems of PipeZK can achieve 20x to 77x speedup,
respectively.

II. BACKGROUND AND MOTIVATION

Zero-knowledge proof (ZKP) is a powerful cryptographic
primitive that has recently been adopted to real-world appli-
cations [21], [22], [25], [35], [43], [47], [48], [50], and drawn
a lot of attentions in both academia [16]–[19], [24], [27], [39],
[44] and industry [1], [4], [7], [10], [12], [36]. ZKP allows the
prover to prove to the verifier that a given statement of the
following form is true: “given a function F and an input x,
I know a secret witness w that makes F (x,w) = 0.” More
specifically, the prover can generate a proof, whose validity
can be checked by the verifier. However, even though the
verifier gets the proof and is able to verify its validity, she
cannot obtain any information about w itself. The prover’s
secret remains secure after the proving process. As a result, the
zero-knowledge property of ZKP provides a strong guarantee
for the prover’s privacy, as she can prove to others that she
knows some private information (i.e., w) without leaking it.

A. Applications of Zero-Knowledge Proof

As one of the fundamental primitives in modern cryptogra-
phy, ZKP can be widely used in many security applications
as a basic building block to enable real-world secure and ver-
ifiable data processing. Generally speaking, ZKP allows two
or multiple parties to perform compute tasks in a cooperative
but secure manner, in the sense that one party can convince

the other that her result is valid without accidentally leaking
any sensitive information. Many real-world applications can
benefit from these properties, including electronic voting [50],
online auction [25], anonymous credentials [22], verifiable
database outsourcing [48], verifiable machine learning [47],
privacy-preserving cryptocurrencies [21], [43], and various
smart contracts [35].

A promising example application of ZKP is verifiable
outsourcing [26], in which case a client with only weak
compute power outsources a compute task to a powerful
server, e.g., a cloud datacenter, who computes on potentially
sensitive data to generate a result that is returned to the client.
Examples include database SQL queries [48] and machine
learning jobs [47]. In such a scenario, the client would like
to ensure the result is indeed correct, while the server is not
willing to expose any sensitive data. ZKP allows the server
to also provide a proof associated with the result, which the
client can efficiently check the integrity. The zero-knowledge
property allows the prover to make arbitrary statements (i.e.,
compute functions) about the secret data without worrying
about exposing the secret data, therefore naturally support
theoretically general-purpose outsourcing computation.

Another widely deployed application of ZKP is blockchains
and cryptocurrencies. Conventional blockchain-based applica-
tions require every node in the system to execute the same on-
chain computation to update the states, which brings a large
overhead with long latency. ZKP enables private decentralized
verifiable computation, such that the computation can be
moved off-chain, and each node only needs to efficiently
check the integrity of a more lightweight proof to discover
illegal state transitions. For instance, zk-Rollup [1] packs
many transactions in one proof and allows the nodes to check
their integrity by efficiently verifying the proof. Other work
even enables verifying the integrity of the whole blockchain
using one succinct proof [36]. This feature greatly increases
the blockchain scalability. Furthermore, the zero-knowledge
property allows users to make confidential transactions while
still being able to prove the validity of each transaction.
Zcash [43] and Pinocchio Coin [21] are such examples, where
the transaction details including the amount of money and the
user addresses are hidden. It offers privacy-preserving trust
instead of trust with transparency.

B. Computation Requirements of Zero-Knowledge Proof

It is natural to imagine that realizing such a counter-intuitive
ZKP functionality would require huge computation and com-
munication costs. Since its first introduction by Goldwasser
et al. [28], there have been significant improvements in the
computation efficiency of ZKP to make it more practical. zk-
SNARK [30], as the state-of-the-art ZKP protocol, allows the
prover to generate a succinct proof, which greatly reduces the
verification cost. Formally speaking, the proof of zk-SNARK
has three important properties: correctness, zero-knowledge,
and succinctness. Correctness means that if the verification
passes, then the prover’s statement is true, i.e., the prover
does know the secret w. Zero-knowledge means that the proof

2

Pre-processing

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑆𝑦𝑠𝑡𝑒𝑚 ⇐ F
𝑃𝑎𝑟𝑎.⇐ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑆𝑦𝑠𝑡𝑒𝑚

Prover’s Computation (𝜫 is the output)

Polynomial computation: 𝐻𝑛 ⇐ (𝐴𝑛 𝑥 ∗ 𝐵𝑛 𝑥 − 𝐶𝑛 𝑥)/𝐷𝑛(𝑥)

Multi-scalar multiplication: 𝜫 = *𝑆𝑛 ∙ 𝑷𝑛 = 𝑆𝑖𝑷𝒊
𝑛
1 , 𝐻𝑛 ∙ 𝑸n= 𝐻𝑖𝑸𝒊

𝑛
1 }

𝑆𝑛 , 𝐴𝑛 , 𝐵𝑛 , 𝐶𝑛

{𝑷𝑛 , 𝑸𝑛 +

F(input , witness) = 0
def F (input=v, witness=w):

 return w4 + w2 - v

Constraint System

 w * w = var1

 var1 * w = var2

 var2 * w = var3

var2 + var1 = var4

 var4 – v = out

Fig. 1. The workflow of the prover. The illustrated F(v,w) has an constraint
system size of five (i.e. n = 5).

does not leak any knowledge of the secret witness w. And
succinctness means that the size of the proof is small (e.g., of
about 128 bytes) and it is also fast to verify (e.g., typically
within 2 milliseconds), regardless of how complicated the
function F might be.

Unfortunately, although the proof verification can be made
fast, generating such proof at the prover side with zk-SNARK
has considerable computation overheads and can take a great
amount of time, which hinders zk-SNARK from wide adoption
in real-world applications. Therefore, this work focuses on the
workflow and the key components of the prover’s computa-
tion [30], which is our target for hardware acceleration.

For specific implementation of zk-SNARK, a security pa-
rameter λ is firstly decided to trade off the computation com-
plexity and security strength, by specifying the data width used
in the computation. A larger λ provides a stronger security
guarantee but also introduces significantly higher computation
cost. Typically, λ ranges from 256-bit to 768-bit.1

As illustrated in Figure 1, the prover first goes through a
pre-processing phase, during which the function F , typically
written in some high-level programming languages, is firstly
compiled into a set of arithmetic constraints, called “rank-1
constraint system (R1CS)”. The constraint system contains a
number of linear or polynomial equations of the input and
the witness. The number of equations in the constraint system
is determined by the complexity of the function F , which
could be as many as up to millions for real-world appli-
cations. Meanwhile, various random parameters are set up,
including the proving keys. With the prover’s secret witness,
the constraint system, the proving keys, and other parameters,
the pre-processing phase would subsequently output a set of
data, which will later be used in the computation phase. These
involve two parts (Figure 1):

• Scalar vectors ~Sn, ~An, ~Bn, ~Cn. Each vector includes n
λ-bit numbers. The dimension n is determined by the size
of the constraint system. Note that n could be extremely

1Here we abuse the notion of security parameter for simplicity since it is
usually directly related to the bit width of parameters.

𝐻𝐻𝑛𝑛

INTT

INTT

INTT

M

POLY

𝑆𝑆𝑛𝑛

PMULT

PADD

…

PMULT

MSM
𝑷𝑷𝒏𝒏

𝑸𝑸𝒏𝒏

𝜫𝜫

PMULT
PADD

PDBL

M
U
X

PADD

𝐴𝐴𝑛𝑛
𝐵𝐵𝑛𝑛
𝐶𝐶𝑛𝑛

M

M

NTT

NTT

NTT

INTT M

PMULT

…

Fig. 2. POLY and MSM computations of the prover, which are our hardware
acceleration target.

large for real-world applications. For example, Zcash has
n as large as a few millions [33].

• Point vectors ~Pn, ~Qn. Each vector includes n points on
a pre-determined elliptic curve (EC) [31]. EC points are
commonly used in cryptographic primitives. It supports
several basic operations including point addition (PADD),
point double (PDBL) and point scalar multiplication
(PMULT). By leveraging the binary representation of
the scalar, PMULT can be broken down into a series
of PADD and PDBL in the scalar’s bit-serial order.
Both PADD and PDBL operations contain a bunch of
arithmetic operations over a large finite field, as shown in
Figure 2. Fast algorithms for operations on EC typically
use projective coordinates to avoid modular inverse [13].
They also adopt Montgomery representations for basic
arithmetic operations over the finite field [37].

With these data, the prover can now generate the proof ~Π.
This is the most computation-heavy phase, and therefore is
our main target for hardware acceleration. It involves large-
sized number theoretic transforms (NTTs) and complicated
EC operations, as illustrated in Figure 2. More specifically, the
computation phase mainly includes the following two tasks:

• Polynomial computation (POLY). It takes ~An, ~Bn, ~Cn
as input and calculates a resultant scalar vector ~Hn,
whose elements represent the coefficients of a degree-
n polynomial. The state-of-the-art implementations for
this part use NTTs and inverse NTTs (INTTs), which are
similar to Fast Fourier Transforms (FFTs) but instead on
a finite field. It can reduce the complexity of POLY from
O(n2) to O(n log n). Nevertheless, POLY still needs to
do NTTs/INTTs for many times, as shown in Figure 2.
And each NTT/INTT also has considerable computation
cost, given that n could be quite large (up to millions)
and each coefficient is a very wide integer number (e.g.,
λ = 768 bits).

• Multi-scalar multiplication (MSM). This part includes
the calculation of the “vector inner products” between
~Sn and ~Qn, and between ~Hn (the output of POLY)

and ~Pn, respectively. Note that the inner products are
performed on EC, i.e., using the PADD and PMULT
operations defined above to multiply the scalar vector and

3

the point vector together. MSM is computation-intensive,
because the cost of the inner products is proportional
to n, and PADD/PMULT operations on EC are also
quite expensive, with arithmetic operations between wide
integer numbers on a large finite field.

As Figure 1 shows, the prover’s witness, after pre-
processing, is used as the input for both POLY and MSM.
The output of POLY will be included as the input of MSM.
The final proof is the output of MSM.

C. Hardware Acceleration Opportunities

As we can see from the workflow in Section II-B, the
prover’s computation is particularly complicated and requires
significant compute time. In Zcash [33], the size n of the
constraint system is about two million. It takes over 30 seconds
to generate a proof for each anonymous transaction. As a
result, ordinary users sometimes prefer sending transparent
transactions instead, to avoid the high cost of generating
the proof, which trades off privacy for better performance.
In Filecoin [23], the function F is even larger. It contains
over 128 million constraints and requires an hour to generate
the proof. Actually, these blockchain applications usually
use crypto-friendly functions that have well-crafted arithmetic
computation flows, which are easier to be transferred into
smaller constraint systems. For real-world, general-purpose
applications such as those in Section II-A, the problem
sizes will be even larger, with extremely high computation
overheads. This is the primary reason that hinders the wide
adoption of ZKP. It is therefore necessary to consider hardware
acceleration for ZKP workloads, especially on the prover side.

In the proving process, the pre-processing typically takes
less than 5% time [8]. We hence focus mostly on the POLY
and MSM computations. The POLY part takes about 30% of
the proving time. As shown in Figure 2, it mostly invokes the
NTT/INTT modules for seven times. Other computations like
multiplications and subtractions only contribute less than 2%
time. These large-size NTTs are extremely expensive. Similar
to FFTs, NTTs have complicated memory access patterns with
different strides in each stage. Moreover, all the arithmetic
operations (multiplications, exponentiations, etc.) inside NTTs
are performed over a large finite field, making them also
compute-intensive. Thus, the main focus of hardware accel-
eration in POLY is the large-sized NTTs/INTTs (Section III).

The MSM part takes about 70% of the proving time,
which makes it the most computation-intensive part in prov-
ing. It requires many expensive PMULT operations on EC.
Though several previous works have been accelerating a single
PMULT [14], [15], [34], [38], MSM additionally requires
adding up the PMULT result points, i.e., an inner product.
This brings the opportunity to use more efficient algorithms
rather than simply duplicating multiple PMULT units. Also, in
zk-SNARK, the scalar vectors exhibit certain distributions that
we can take advantage of to improve performance. We propose
a new hardware framework for MSM which can make full use
of the hardware resources (Section IV).

Why not just CPUs/GPUs? The basic operations of both
POLY and MSM are arithmetics over large finite fields which
are not friendly to traditional general-purpose computing plat-
forms like CPUs and GPUs. CPUs have an insufficient compu-
tation throughput and they cannot exploit the parallelism inside
these operations well enough. GPUs, on the other hand, have a
large computation throughput but mostly for floating numbers.
Moreover, the memory architecture of modern GPUs is also
not efficient for POLY and MSM operations. Each thread can
only access a very limited size of software cache (i.e., shared
memory) and the irregular global memory access patterns
in each component will slow down the operations in GPUs
significantly. In contrast, large integer arithmetic operations
have been well studied in the literature of circuit design. It’s
also more flexible to generate customized designs for different
memory access patterns. Thus, a domain-specific accelerator
is more promising to achieve better performance and energy
efficiency.

D. Prior Work

Prior work has achieved significant performance improve-
ment for polynomial computation in homomorphic encryp-
tion using customized hardware [41], [42]. Accelerating EC
operations has also been well studied in the literature of
circuit design [14], [15], [34], [38]. However, it is inefficient
to directly employ the prior designs for zk-SNARK due to
two issues. First, the scale of polynomial computations in zk-
SNARK is much larger than those needed in homomorphic
encryption. Thus, it induces intensive off-chip memory ac-
cesses, which cannot be satisfied in prior design. In addition,
the data bitwidth in zk-SNARK is much larger, thus it is
inefficient to use large-scale multiplexers to select proper input
elements for different butterfly operations like before. Second,
directly duplicating EC hardware cannot leverage state-of-
the-art algorithm optimizations for zk-SNARK. Besides, the
sparsity in scalars may cause a lot of resource underutilization
in the pipelines that compute MSM. A detailed discussion is
in Section III and Section IV.

A recent work called DIZK has proposed to leverage
Spark for distributing the prover’s computation to multiple
machines [46]. Though it can reduce the latency for the
proving process, the primary goal for DIZK is supporting
zk-SNARK for super large-scale applications, such as ma-
chine learning models. Large cloud computing is inefficient
for ordinary-sized applications like anonymous payment and
privacy-preserving smart contracts due to network latency
and computation cost. Therefore DIZK can be regarded as
complementary work to our design, while ours could achieve
better efficiency for each distributed machine using our design.

Recently, a few approaches in industry try to accelerate the
prover with the dedicated hardware (GPU [11] or FPGA [5])
by leveraging the parallelism inside zk-SNARK. For example,
Coda held a global competition for accelerating the proving
process using GPU with high rewards ($ 100k) [11]. However,
the final acceleration result of the competition is even worse
than our CPU benchmark (See Section VI for more details)

4

𝑎𝑎[0]

Stage 1 Stage 2 Stage 3

𝑎𝑎[1]

𝑎𝑎[2]

𝑎𝑎[3]

𝑎𝑎[4]

𝑎𝑎[5]

𝑎𝑎[6]

𝑎𝑎[7]

�𝑎𝑎[0]

�𝑎𝑎[4]

�𝑎𝑎[2]

�𝑎𝑎[6]
�𝑎𝑎[1]

�𝑎𝑎[5]

�𝑎𝑎[3]

�𝑎𝑎[7]

Fig. 3. The data access pattern of NTT (similar to FFT).

and the FPGA one does not contain a complete end to end
implementation. In summary, there is still a considerable gap
between the existing performance and the requirement in
practical usage.

III. ACCELERATING POLYNOMIAL COMPUTATION

The POLY part of zk-SNARK mainly consists of multiple
NTTs and INTTs. To overcome the design challenges of the
large-sized NTTs, we introduce a recursive NTT algorithm
with an optimized overall dataflow. We also design efficient
hardware NTT modules to alleviate the off-chip bandwidth
and on-chip resource requirements.

A. NTT Computation

The NTT computation â
def
= NTT(a) is defined on

two N -sized arrays a and â, with their elements â[i] =∑N−1
j=0 a[j]ωijN . Here a[j] and â[i] are λ-bit scalars in a finite

field. And ωN is the N th root of unity in the same field.
All possible exponents of ωN are called twiddle factors,
which are constant values for a specific size of N . Since we
use off-chip memory to store them, we assume all twiddle
factors for all possible Ns are pre-computed. This may only
introduce tens of MB storage for N up to several millions.
Typical implementations of NTT utilize the property of the
twiddle factor to compute the results recursively. The access
patterns are similar to the standard FFT algorithms, as shown
in Figure 3. In this example, the NTT size is N = 2n. In
stage i, two elements with a fixed stride 2n−i will perform
a butterfly operation and output two elements to the next
stage. The overall NTT computation completes in n stages.
The different strides in different stages result in complicated
data access patterns, which makes it challenging to design an
efficient hardware accelerator.

As shown in Figure 3, the output elements on the right side
are out-of-order and need to be reordered through an operation
called bit-reverse. Alternatively, we can reorder the input array
and generate the output elements in order [20]. If we need to
perform multiple NTTs in a sequence, it is possible to properly
chain the two styles alternately and eliminate the need for the
bit-reverse operations in between.

B. Design Challenges

NTT is an important kernel commonly used in cryptography.
As a result, there exist many hardware accelerator designs

for NTT. One state-of-the-art NTT hardware design can be
found in HEAX [41], which is specialized for homomorphic
encryption workloads. However, the POLY computation in zk-
SNARK has a substantially larger scale than that addressed
in HEAX. It requires multiple NTTs of up to a few million
elements, with the data width normally more than 256-bit.
Such high scalability can hardly be satisfied by any previous
NTT hardware design and poses new challenges that must be
properly addressed.

First, the total size of zk-SNARK NTT data can be too large
to keep on-chip and should be stored in off-chip memory.
For example, a million-sized NTT with 256-bit data width
will need over 64 MB data storage for the input data and
the twiddle factors. If we need to access 1024 elements in
each cycle from the off-chip memory to feed a 1024-sized
NTT module, the accelerator has to support at least 3.2 TB/s
bandwidth, even with a relatively low 100 MHz frequency.
This is unrealistically high in existing systems, let alone
that the complicated stride accesses may further reduce the
effective bandwidth. Therefore, it is critical to optimize the
off-chip data access patterns of the NTT hardware module
to minimize the bandwidth requirement and balance between
computation and data transfers. In contrast, prior work like
HEAX assumes all data can be buffered on-chip in most cases
and does not specially design for off-chip data access [41].

Second, the large bitwidth of NTT elements also requires
significant on-chip resources on the computation side. The
original HEAX design only works with data no wider than
54-bit. It, therefore, adopts an optimized on-chip dataflow
that uses a set of on-chip multiplexers before the computation
units to choose the correct input elements for each butterfly
operation [41]. If we naively scale up the bitwidth beyond
256 as required in zk-SNARK, the area and energy overheads
of such multiplexers will increase significantly. Furthermore,
the required computation resources for the butterfly operation
itself in the NTT module also scale in a super-linear fashion.
Both make it inefficient to support large NTTs with high
throughput.

C. Recursive NTT Algorithm

To overcome the above challenges, we adopt a parallel
NTT algorithm from [20], [45] to recursively decompose a
large NTT of arbitrary size (e.g., 1M-sized) into multiple
smaller NTT kernels (e.g., 1024-sized). This allows us to
only implement smaller NTT modules, which can fit into the
on-chip computation resources and also satisfy the off-chip
bandwidth limitation. We then iteratively use the smaller NTT
modules to calculate the original large NTT. The hardware
NTT module in Section III-D can work with different sizes of
NTT kernels, therefore supporting flexible decomposition.

We give a high-level overview of the algorithm as shown
in Figure 4. A more precise description can refer to the
literature [20], [45]. In this example, the large NTT size is
N = I × J . We can then decompose an N -sized NTT into
several I-sized and J-sized small NTTs. For convenience, we
represent the original 1D input array a as a row-major I × J

5

J

0 1

J J+1

J-1

2J-1

N-1

…

…

…
…

…
…I

J-sized NTT

J-sized NTT

J-sized NTT

…

I-sized
NTT

I-sized
NTT

I-sized
NTT

Step(1)

Step(3)

…
Step(2)

𝑎𝑎 𝑖𝑖 𝑗𝑗 = 𝑎𝑎 𝑖𝑖 𝑗𝑗 ∗ 𝜔𝜔𝑖𝑖𝑖𝑖
𝜔𝜔0 𝜔𝜔𝑖𝑖 𝜔𝜔𝑖𝑖(𝐽𝐽−1)

(I-1)J+1(I-1)J

…

Fig. 4. The recursive NTT algorithm.

matrix in Figure 4. We first do an I-sized NTT for each of
the J columns (step 1). Then we multiply the output with
the corresponding twiddle factors (step 2). Next, we do a J-
sized NTT for each of the I rows (step 3). Finally, we output
each element in the column-major order, as the final output
1D array â.

D. Bandwidth-Efficient NTT Hardware Module

With the above decomposition, we only need to design a
relatively small-size NTT hardware module that works on
I and J array elements. Previous work like HEAX [41]
implemented such NTT modules following the data access
pattern in Figure 3, using a set of on-chip multiplexers
to deliver each of the elements of the input array to the
correct multiplier. However, recall that I and J could still be
large (e.g., 1024). Directly fetching these data from off-chip
memory in every cycle would result in significant bandwidth
consumption, as described in Section III-B. Therefore, we
adopt a bandwidth-efficient pipelined architecture for our NTT
module. We choose a design similar to [32] as the basic
building block. It is a fully pipelined architecture that reads
one input element and outputs one element sequentially in each
clock. Instead of using many multiplexers as in HEAX [41],
we use FIFOs with different depths to deal with the different
strides in each stage.

Figure 5 shows the simplified design for a 1024-sized NTT
pipeline module. It contains 10 stages. Each stage has an NTT
core that does the butterfly operation between two elements
with a certain stride, as in Figure 3, and output two new
elements for the next stage. The core has a 13-cycle latency
for the arithmetic operations inside. The depth of the FIFO
in each stage matches the stride needed, i.e., 512 for the first
stage, 256 for the second stage, and so on. The pipeline keeps
reading one element per cycle from the memory. In the first
512 cycles, the 512 elements are stored in the FIFO in the
first stage. In the next 512 cycles, we enable the NTT core,
which uses the newly read element and pops the head of the
FIFO as its two inputs, with the desired stride 512. In this
way, the stride is correctly enforced with a FIFO instead of
multiplexers. The NTT core generates two output elements in

each cycle, one of which is directly sent to the next stage. The
other output needs to be buffered and sent to the next stage at
a later point (see the orders in Figure 3). We reuse the FIFO
in the first stage for this purpose, as the input elements in the
FIFO can be discarded after use. The next stage follows the
same behavior but with a different FIFO depth to realize a
different stride. The last stage writes the output back to the
memory.

With the above design, we reduce the bandwidth needed
to only one element read and one element write per cycle.
With 256-bit elements and 100 MHz, this is just 6.4 GB/s,
much more practical to satisfy than before. Also, we reduce
the superlinear multiplexer cost to linear memory cost. Not
only the resource utilization is decreased, but also the type of
resource changes from complex logic units to regular RAM.

The overall latency for a N -sized NTT module includes
the 13 logN cycles for the logN stages, and N cycles for
buffering the data across all stages. It requires another N
cycles to fully process all elements, which can be overlapped
with the next NTT kernel if any. If there are multiple such
modules in parallel, it takes 13 logN + N + NT

t cycles to
compute T NTT kernels with t modules.

Supporting INTT. We also need to support INTT in POLY.
An INTT module is almost the same as NTT, except that (1)
the execution order in the butterfly NTT core is different;
(2) the control unit operates in the reversed stage order;
and (3) the twiddle factors are inversed. We design one
butterfly core for both NTT and INTT with different control
logic, but shared computation resources such as the expensive
multipliers, which is the dominant component. In POLY, NTTs
and INTTs are chained together, as in Figure 2. Thus we
can alternately adopt the two reordering styles of input and
output arrays in our modules as described in Section III-A to
eliminate the need for the bit-reverse operations.

Various-sized kernels. Moreover, our NTT module can
easily support various-sized NTT kernels that are smaller than
N . The NTT kernels in POLY are always padded by software
to power-of-two sizes. For a power-of-two size smaller than N ,
we can bypass the previous stages in the module and start from
a later stage. For example, a 512-sized NTT starts from the
second stage. Thus the module can flexibly support different
I-sized and J-sized NTTs after decomposition.

E. Overall NTT Dataflow

We follow the recursive algorithm in Figure 4 to process
large-sized NTT kernels in a decomposed manner on small
NTT hardware modules in Section III-D. However, the overall
data access pattern in each of the steps does not match well
with the data layout stored in the off-chip memory and would
result in inefficient large-stride accesses that poorly utilize the
available bandwidth. To illustrate this issue, we consider the
original input matrix in Figure 4, whose layout in memory is
row-major, generated from the 1D array a (up to a million
elements). In step 1, each I-sized column NTT kernel needs
to process one column of data. This would make J-strided
accesses (up to 1024) on the row-major layout. The output

6

Core

512

D
E
M
U
X

MUX

Core

256

Core

2… M
U
X

Core

1

D
E
M
U
X

D
E
M
U
X

D
E
M
U
X

MUX MUX MUX

M
U
X

M
U
X

Fig. 5. The architecture of a 1024-sized bandwidth-efficient NTT module.

0 32

2 34

t elements

0
…… …

…

…
I

t elements

I-sized 𝐍𝐍𝐍𝐍𝐍𝐍𝟎𝟎
… ……

0

…

clk 1 clk tOutput:

…
…

…… …

…

…

… …

…

…… … … …

… …

I

Read

I-1t-1

I-sized 𝐍𝐍𝐍𝐍𝐍𝐍𝒕𝒕-𝟏𝟏

0

t-1

DDR memory

On-chip
Transpose

Fig. 6. The overall dataflow of NTT processing.

data of this step naturally form a column-major matrix. Step
2 is a simple pass of element-wise multiplication. However, in
step 3, each J-sized row NTT kernel should access the data
in a row, again resulting in large strides on the column-major
layout. Finally, the output of step 3, which is in row-major after
the row NTT kernels, should go through another transpose to
be read out in the column order, leading to another round of
strided accesses.

To alleviate the problem and make better use of the band-
width, we effectively block the data to balance between the
two choices of layouts (row-major and column-major) and
initiate on-chip SRAM buffers to improve input data reuse and
aggregate output data before storing back. We also implement
multiple NTT modules to process in parallel and to fully utilize
the data fetched together from memory each time.

For simplicity, suppose I = J and the original NTT size
N = I × I . We implement t NTT modules of size I as
shown in Figure 6. The data are still stored in the off-chip
memory in a row-major order without changes. First, we fetch
t columns together from the off-chip memory and process
them in the t NTT modules. Each memory access reads a
t-sized range of elements, resulting in better sequential access
bandwidth. Recall from Section III-D that each NTT module
only reads one new input element at each cycle, and outputs
one element per cycle after the initial pipeline filling. We use
an on-chip buffer of size t× t to resolve the data layout issue,
by performing a small matrix transpose before writing data
back to off-chip memory. In each cycle, the t modules output
t elements and write a column in the on-chip buffer. When
the buffer is filled up, we write back each row to off-chip
memory, resulting in at least t-sized access granularity. This
allows us to always keep the data in the off-chip memory in
row-major formats, while still achieving at least t-sized access
granularity for high effective bandwidth.

Figure 6 shows the details during the processing. The green

P 2P 4P 8P 16P 32P

1 0 1 0 0 1

PDBL

PADD P 5P 37P

Fig. 7. An example of bit-serial PMUT computation.

block of t× t elements are already processed and the results
are written to the on-chip buffer on the right side. They were
pushed into the buffer by columns and popped out to the
memory by rows. The gray elements, including the beginning
of the second group of t columns, are being processed in the
NTT module pipelines (Figure 5). In such a way, we see that
the t NTT modules are fully pipelined and well utilized. The
pressure on the off-chip bandwidth is also alleviated with our
bandwidth-efficient NTT module design.

IV. ACCELERATING MULTI-SCALAR MULTIPLICATION

In this section, we first introduce the computation task and
design challenges for MSM. Then, we present the algorithm
and the corresponding architecture to accelerate it.

A. MSM Computation

As illustrated in Section II-B, the MSM computation is
defined as Q =

∑n
i=1 kiPi, where all Pi’s are points on a

pre-determined EC and ki’s are λ-bit scalars on a large finite
field. Each pair kiPi is a point scalar multiplication (PMULT),
and MSM needs to add up (PADD) the resultant points of all
PMULT operations to get one final point. zk-SNARK requires
several times of MSM with different scalar vectors. One is
from the result of POLY (Hn) and the other is from the witness
(Sn). Note that the point vectors are known ahead of time as
fixed parameters; only the scalar vectors change according to
different witnesses in different applications.

As we can see, the most expensive operations in MSM are
PMULT and PADD on the EC. Similar to the fast exponen-
tiation algorithm [29], the more expensive PMULT can be
decomposed into a series of PADD and PDBL in a bit-serial
fashion. An example is shown in Figure 7, where we want to
compute 37P where P is a point on EC. We represent 37 in
its binary form (100101)2. At each bit position, we execute
a PDBL to double the point. If the bit is 1, we add it to the
result using a PADD. We can find that PMULT invokes PADD
and PDBL sequentially according to each bit of the scalar ki.
Thus, the sparsity of the scalar ki impacts the overall latency.
If the binary form of ki contains more 1’s, then the ith PMULT
needs more PADD operations and thus more time.

7

𝑸𝑸 = �𝑘𝑘𝑖𝑖 𝑷𝑷𝒊𝒊

𝑸𝑸𝟏𝟏 = 1010 1010 1110 * 𝑷𝑷𝟏𝟏
𝑸𝑸𝟐𝟐 = 1010 0001 0101 * 𝑷𝑷𝟐𝟐
𝑸𝑸𝟑𝟑 = 0101 0001 0101 * 𝑷𝑷𝟑𝟑
𝑸𝑸𝟒𝟒 = 0010 0100 0101 * 𝑷𝑷𝟒𝟒
𝑸𝑸𝟓𝟓 = 0001 0101 0101 * 𝑷𝑷𝟓𝟓
… … … …

𝑮𝑮𝟎𝟎 = �𝐶𝐶𝑩𝑩𝒊𝒊 = 𝑩𝑩𝟏𝟏 + 𝟐𝟐𝑩𝑩𝟐𝟐 + ⋯+ 𝟏𝟏𝟓𝟓𝑩𝑩𝟏𝟏𝟓𝟓

… 51 1514
𝑷𝑷𝟏𝟏𝑷𝑷𝟐𝟐

𝑷𝑷𝟑𝟑
𝑷𝑷𝟒𝟒
𝑷𝑷𝟓𝟓

𝑩𝑩𝟏𝟏 𝑩𝑩𝟓𝟓 𝑩𝑩𝟏𝟏𝟓𝟓𝑩𝑩𝟏𝟏𝟒𝟒

𝑵𝑵 scalar multiplications
𝝀𝝀 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶 𝒔𝒔 𝑏𝑏𝐶𝐶𝐶𝐶𝑆𝑆

𝑮𝑮𝟐𝟐 𝑮𝑮𝟏𝟏 𝑮𝑮𝟎𝟎

𝟒𝟒

…

Fig. 8. Pippenger algorithm.

B. Design Challenges

While EC is a commonly used kernel in a wide range
of cryptographic applications, most of them only need a
single PMULT to encrypt values. Thus, none of the previous
accelerators or ASICs have specially designed for MSM,
which involves a large number of PMULT operations whose
results are finally accumulated with PADD. For such a pattern,
directly duplicating existing PMULT accelerators is inefficient.
Because the computation demands of PADD and PDBL de-
pend on each input scalar, not only the utilization of each
PMULT module would be quite low for sparse scalars, but
the multiple PMULT modules would also suffer from load
imbalance issues, further decreasing the overall performance.

C. Algorithm Optimization and Hardware Module Design

Instead of directly replicating inefficient PMULT modules,
we adopt the Pippenger algorithm [40] to achieve high re-
source utilization and better load balancing. We firstly repre-
sent the scalar ki under radix 2s, where s is a chosen window
size. This is equivalent to divide the λ-bit scalar ki into λ

s
columns with s bits each. An example is shown in Figure 8,
where λ = 12 and s = 4. Computing Q can be done with the
following steps: First, sum up the elements in each column
(s-bit wide each) to get Gi. Then, sum up 2i×sGi to get the
final result, with 2i×s as the weights.

In this way, we convert the original computation to a set
of smaller sub-tasks of computing Gi. For each sub-task, the
Pippenger algorithm groups the elements in the s-bit column
by to the scalars, and put those Pi with the same scalar into
the same bucket, as shown in Figure 8 right side. Since the bit
width of the scalars is s, there are 2s − 1 different buckets in
total. Note that if the scalar is zero, we can directly skip the
corresponding points. Then we add up all the points assigned
to the same bucket, to get one sum point Bi per each bucket.
Then Gi can be computed by adding up Bi weighted by the
corresponding scalar i to that bucket. As long as the number
of original PMULT operations (i.e., the length of the point and
scalar vectors) is much larger than the number of buckets (2s−
1), in this way we can convert the many expensive PMULT
operations into more lightweight PADD within each bucket.
The detailed maths is shown below, where bi[j] represents the
j-th digit of ai radix 2s.

… …
1024 Scalar: 1024 x 256 bit = 32KB

768 bit

1…
256 bit 768 bit

256 bit

1024 Point: 1024 x 768 bit = 96KB

2
clk1

Buffer:
15 x 1 x 768 = 1.4kB

4 bit

PADD

72clk
pipeline

……

DDR

…

1

5

3

… …

…

1 …2 15
…

1

5

3

… …
…

1

5

3

… … FIFO

Fig. 9. Overall architecture of the Pippenger algorithm for MSM.

n∑
i=1

aiPi =

λ
s−1∑
j=0

[

n∑
i=1

(bi[j] ∗Pi)] ∗ 2js =

λ
s−1∑
j=0

Gj ∗ 2js

Gj =

n∑
i=1

(bi[j] ∗Pi) =

2s−1∑
k=0

k ∗ [

n∑
i=1

(bi[j] == k) ∗ Pi] (1)

With the Pippenger algorithm, the MSM computation be-
comes PADD-intensive. We design efficient PADD modules.
The PADD module is heavily pipelined due to the expensive
arithmetic modular operations such as modular multiply. We
result in a 72-stage pipeline. Since the datapath of PADD is
deterministic, we alleviate the resource underutilization and
load imbalance issues. There are still a few PDBL operations
when summing up i × Bi and 2i×sGi, but their cost is
negligible (less than 0.1% in our evaluation).

D. Overall Architecture

While we convert the expensive PMULT into cheaper PADD
operations, the overall architecture still faces a few design
challenges. First, the group-by operation requires an efficient
implementation, especially considering that the size of the
MSM (i.e., the length of the scalar and point vectors) could be
very large, up to a few millions. The control logic is also non-
trivial. Second, while each PADD operation is deterministic,
the number of points assigned to each bucket, and hence
the number of PADD operations needed, can be skewed.
The workloads between buckets can therefore be possibly
imbalanced.

To solve the above problems, we propose a novel architec-
ture for the Pippenger algorithm. Firstly, we divide a large
MSM into smaller segments to fit in the on-chip memory. For
example, as shown at the top of Figure 9, a MSM with 1M
scalars and points can be divided, and each time we load one
segment of 1024 scalars (256-bit each) and points (768-bit
each using projective coordinates) to the on-chip global buffer
from the off-chip memory.

Then, in each cycle, we read two scalars and two corre-
sponding points from the global buffer. We put the points
into different buckets according to the last four bits of the
corresponding scalar. The depth for the bucket buffer is only
one. Once there are two points that would appear in the

8

same bucket, they will be transferred into a centralized FIFO
together with the bucket number as their label, as the green
area shown in Figure 9. Each entry of the FIFO contains a 4-
bit label (bucket number) and two points from the same bucket
waiting to be added together. There are two 15-entry FIFOs
prepared for the two scalar-point pairs read in the same cycle.

The entries in the FIFO are sent to a shared PADD module
to be processed in the long pipeline. When the result sum
is ready, it will be written back to the corresponding bucket
according to the label. These output results also need another
15-entry FIFO to buffer in case of conflicting with the already
existing data in the destination bucket. Basically, the newly
obtained sum result can be immediately sent back to this FIFO
together with the existing data in the bucket, for another round
of PADD operation. Therefore, the PADD module can read
from three FIFOs in total, two for newly loaded data and one
for PADD results. After 512 cycles, the last 4-bit column of
all 1024 scalars has been processed. We then move forward
to the next lower 4 bits and repeat the above workflow again.

Overall, our architecture for the Pippenger algorithm uses
a centralized and shared PADD module between all buckets,
and dynamically dispatch work from the buckets to achieve
load balance. Because the PADD module is the performance
and area dominant components, sharing them would result in
a much better resource utilization than having separate private
PADD modules in each bucket. Our work dispatch mechanism
is also lightweight. We avoid physically sorting the points
as typical group-by algorithms require. We mostly rely on a
small number of buffers and FIFOs to stash the data to be
accumulated. Carefully provisioning the buffer and FIFO sizes
allows us to avoid most stalls and achieves high throughput.

E. Exploiting Parallelism and Balancing Loads

The PADD module in our architecture in Section IV-D is
clearly a performance bottleneck. Now, we extend the design
to use multiple PADD modules in parallel. A straightforward
way to make use of those PADDs is to provision multiple
PADD for the same FIFOs and distribute the work from the
FIFOs among them. However, this will result in a complicated
synchronization control logic. Also, increasing the number of
PADD modules may lead to more idle cycles when the FIFOs
are empty, thus decreasing the utilization of resources.

We use a different way to balance the workloads among
different PADD modules. Notice that we only read 4 bits of
a scalar in one round and then read the next 4 bits in the
next round. Each round is independent of each other, and thus
can be processed in parallel. Therefore, we replicate the entire
design in Section IV-D as multiple processing elements (PEs),
each with a separate set of buckets, the FIFOs, and a PADD
module. For t PEs, we can read 4t bits of the scalar each time
in one round. Each PE works exactly the same as previously
described, and processes its own 4 bits with the same set of
points. The control logic is greatly simplified in this way.

Considering the workload balance between different PEs,
the worst situation is that all points in one PE are put into
a single bucket. Thus, it has the longest PADD dependency

chain, with 1023 PADD operations to get the final result. The
best situation is that all points in one round have a uniform
distribution and they are put into the 15 buckets evenly, each
with 64 or 65 points. This requires 1024 − 15 = 1009 PADD
operations. As the PADD module is shared across all buckets
and is not aware of which bucket the pair of points is from, the
end-to-end latency difference between these two cases with
similar numbers of required PADD operations is negligible.
Therefore, the load balance between multiple PEs is well
maintained.

As shown in Figure 2, one scalar Hn is from the polynomial
computation, and the other Sn is from the expended witness
directly. Hn is dense and can be regarded as a uniform dis-
tribution since doing NTT will bring uncertainty to the input.
Consequently, the possibility of the worst case is extremely
low. Sn is very sparse. In fact, more than 99% of the scalars
are 0 and 1. This is because the arithmetic circuit usually has
a lot of bound checks and range constraints. It uses the binary
form of values for computation. The above will bring 0 and 1
to the expended witness vector. Note that the cases for 0 and
1 can be directly computed without sending into the pipelined
acceleration hardware. Thus, they are processed separately.

V. OVERALL SYSTEM

The overall acceleration system of PipeZK is shown in
Figure 10. The CPU first expands the witness and then
transfers the data to the accelerator’s DDR memory. Next, the
accelerator reads from the DDR memory to do NTT/INTTs
for the POLY phase. After the POLY is done, the MSM part
processes the scalar vectors and point vectors from the DDR
memory. In the end, it outputs the partial sums of Bi from each
bucket (see Figure 9), and the CPU deals with the remaining
additions, which is less than 0.1% of the execution time.

Note that there are two types of ECs (G1 and G2) in real
implementations of zk-SNARK [9]. Both G1 and G2 have
exactly the same high-level algorithm thus they can use the
same architecture as we introduced in Section IV. The differ-
ence is that G2 has different basic units, i.e., the multiplication
on G2 needs four modular multiplications whereas G1 only
needs one. It needs more resources to implement G2. However,
G2 often takes less than 10% of the overall MSM time and
the scalar vectors for this part are very sparse. Therefore we
move the G2 part to CPU considering the trade-off between
resources and speed. Now, when the accelerator is computing
MSM and NTT/INTTs, the CPU is computing the G2 part for
MSM at the same time. This is a heterogeneous architecture
with few interactions. In summary, the CPU generates the
witness and processes the MSM for G2, and the accelerator
processes the POLY and the MSM for G1.

VI. EVALUATION

The evaluation consists of two parts. First, we present the
microbenchmark results with various input sizes (i.e. constraint
system sizes) for NTT/MSM modules, along with the results
of typical workloads shown in Table V. Second, a real-
world application, Zcash, is showcased with three end-to-end

9

On Chip
Buffer

Expand
witness

CPU

INTT M/DMul NTT NTT

Accelerator

G2
MSM

Left part

PADD

PADD PADD

PADD

DDR

Fig. 10. The overall architecture of PipeZK.

TABLE I
CONFIGURATIONS AND SUPPORTED CURVES OF PLATFORMS

Platforms Detailed Configurations Supported Curves

ASIC (ours)
Synopsys DC, UMC 28nm library,

DDR4 @2400MHz (4 channels, 2 ranks)

BN-128, BLS-381,

MNT4753

CPU [9]
Intel(R) Xeon(R) Gold 6145 @2.00G Hz,

80 logical cores, 377G RAM

BN-128, MNT4753

([2] supports BLS-381)

8GPUs [3] eight Nvidia GTX 1080 TI cards BLS-381

1GPU [6] single Nvidia GTX 1080 TI card MNT4753

evaluated workloads to demonstrate the practicality of our
design and implementation.

A. Evaluation Setup

For NTT and MSM, we have a full-stack Verilog implemen-
tation, which includes the low-level operations such as PADD,
PDBL, and PMULT (with Montgomery optimizations [37]
and projective coordinates [13]). We synthesized our design
using Synopsys Design Compiler under UMC 28nm library
(details in Table I), and ramulator is used to simulate the
performance of DDR memory. We integrate our core NTT
and MSM modules on ASIC along with other modules (such
as trusted setup and witness generation) from libsnark [9] to
derive an end-to-end prototype, as Figure 10 illustrates.

We compare our designs (denoted as “ASIC”) with the
state-of-the-arts, including a single GPU implementation [6]
(denoted as “1GPU”), an 8-GPU implementation [3] (de-
noted as “8GPUs”), and libsnark [9] (denoted as “CPU”)
and bellman [2] on a CPU server, respectively. Note that due
to the limitations of baseline implementations, in the rest of
the paper, we only show corresponding results for supported
curves (details in Table I).

TABLE II
LATENCY (IN SECONDS) AND CORRESPONDING SPEEDUP FOR NTT

MODULE WITH DIFFERENT INPUT SIZES

Size λ= 768bit λ = 256bit
CPU ASIC CPU ASIC

214 0.050 0.004 (12.7X) 0.008 0.329ms (24.3X)
215 0.062 0.008 (7.91X) 0.015 0.667ms (22.8X)
216 0.151 0.016 (9.66X) 0.030 0.002 (22.8X)
217 0.284 0.031 (9.08X) 0.056 0.003 (21.45X)
218 0.471 0.063 (7.54X) 0.104 0.005 (19.65X)
219 0.845 0.125 (6.76X) 0.195 0.011 (18.5X)
220 1.368 0.250 (5.47X) 0.333 0.022 (15.75X)

TABLE III
LATENCY (IN SECONDS) AND CORRESPONDING SPEEDUP FOR MSM

MODULE WITH DIFFERENT INPUT SIZES

Size λ = 768bit λ = 384bit λ = 256bit
CPU ASIC 8GPUs ASIC CPU ASIC

214 0.449 0.012 (39.00X) 0.223 0.004 (77.70X) 0.018 0.001 (18.69X)
215 0.642 0.023 (27.93X) 0.233 0.006 (40.50X) 0.029 0.002 (15.24X)
216 1.094 0.046 (23.82X) 0.246 0.011 (21.42X) 0.047 0.004 (12.27X)
217 2.002 0.092 (21.78X) 0.265 0.023 (11.55X) 0.083 0.008 (10.86X)
218 3.253 0.184 (17.70X) 0.343 0.046 (7.47X) 0.180 0.016 (11.76X)
219 5.972 0.369 (16.26X) 0.412 0.092 (4.47X) 0.308 0.032 (10.05X)
220 11.334 2.206 (15.42X) 0.749 0.184 (4.08X) 0.485 0.061 (7.92X)

TABLE IV
RESOURCE UTILIZATION AND POWER OF ASIC

Curve Modules Frequency Area(mm2) DP(W) LP(mW)

BN128 (256)

POLY 300MHz 15.04 (29.63%) 1.36 0.68
MSM 300MHz 35.34 (69.64%) 5.05 0.33

Interface 600MHz 0.37 (0.73%) 0.03 0.01
Overall - 50.75 6.45 1.02

BLS381 (384)

POLY 300MHz 15.04 (30.51%) 1.36 0.68
MSM 300MHz 33.72 (68.40%) 4.75 0.31

Interface 600MHz 0.54 (1.10%) 0.04 0.01
Overall - 49.30 6.15 1.00

MNT4753 (768)

POLY 300MHz 9.69 (18.31%) 0.88 0.43
MSM 300MHz 42.95 (81.18%) 6.14 0.40

Interface 600MHz 0.27 (0.51%) 0.02 500uW
Overall - 52.91 7.04 0.84

B. Evaluating NTT and MSM with Different Input Sizes

This section presents the microbenchmark results for our
NTT and MSM implementations on ASICs. We vary the input
size from 214 to 220 to demonstrate the scalability of our
design. For both NTT and MSM, we evaluate them with
different underlying elliptic curves: BN-128, BLS-381, and
MNT4753, where security parameter λ = 256, 384 and 768,
respectively. For BN-128 and MNT4753, we use libsnark [9]
on CPUs while bellperson [3] for BLS-381 on GPUs.2

The results for NTT and MSM are shown3 in Table II
and Table III. The speedup number w.r.t. the baseline is also
attached in each latency number of the ASIC, which equals
the latency ratio between the baseline and the ASIC. To con-
clude, compared to the CPU/GPU implementation, our ASIC
implementation demonstrates a speedup up to 24.3x and 77.7x
for the NTT and MSM, respectively. And with the increasing
input size, our implementation still shows superiority.

We achieve the superiority by tailoring the trade-off between
ASIC resources and speed. For the 256bit curve BN-128,
we implement 4 PEs for MSM and 4 NTT pipelines while
only 1 PE for MSM/NTT in the MNT4753 (768bit curve).
For BLS-381, we implement 2 PEs for MSM (384bit) and 4
NTT pipelines (256bit). This is determined by the resource
utilization of different sizes of curves: the basic module for

2Since the eight-GPU implementation [3] on BLS-381 is much faster
than that of CPU [2], we omit corresponding latency results of CPU for
simplicity. However, the one-GPU-card implementation [6] demonstrates
weaker performance than that of our CPU server (80-core). Thus, we only
list the CPU results for BN-128 and MNT4753 in Table II and Table III.

3For BLS381 where λ = 384, the scalar field is still 256 bit. Thus we
only compare the performance of 256 and 768 bit for NTT part in Table II.

10

TABLE V
EVALUATION FOR DIFFERENT WORKLOADS

CPU 1GPU ASIC Acceleration Rate
Application Size POLY MSM Proof Proof POLY MSM (w/o G2) Proof (w/o G2) MSM G2 Proof ASIC/CPU ASIC/GPU

AES 16384 0.301 0.835 1.137 1.393 0.018 0.021 0.039 0.097 0.097 11.768 14.420
SHA 32768 0.545 0.984 1.529 1.983 0.036 0.027 0.063 0.102 0.102 14.935 19.365

RSA-Enc 98304 1.882 3.403 5.290 5.157 0.146 0.080 0.229 1.230 1.230 4.302 4.193
RSA-SHA 131072 1.935 3.578 5.514 5.958 0.146 0.105 0.250 0.822 0.822 6.705 7.246

Merkle Tree 294912 6.623 8.071 14.695 16.287 0.584 0.226 0.810 2.697 2.697 5.449 6.040
Auction 557056 13.875 10.817 24.692 30.573 1.167 0.445 1.612 2.053 2.053 12.025 14.890

TABLE VI
EVALUATION FOR ZCASH

CPU ASIC Acceleration Rate
Application Size Gen Witness POLY MSM Proof MSM G2 POLY MSM (w/o G2) Proof (w/o G2) Proof ASIC/CPU ASIC/CPU (w/o G2)

Zcash Sprout 1956950 1.010 3.652 5.147 9.809 0.677 0.295 0.136 0.431 1.687 5.815 6.809
Zcash Sapling Spend 98646 0.187 0.441 0.766 1.393 0.167 0.018 0.014 0.032 0.354 3.937 6.368
Zcash Sapling Output 7827 0.043 0.107 0.115 0.266 0.034 0.001 0.001 0.003 0.077 3.480 5.863

768bit takes more resources than that of the 256bit curve,
especially for the integer modular multiplications (details
in Table IV). Large integer modular multiplication plays a
dominant part in the resource utilization, the performance will
be largely improved with careful resource-efficient design for
the modular multiplications.

C. Evaluating POLY and MSM with Workloads

We also evaluate POLY and MSM of zk-SNARK4 over
typical workloads [8], which is shown in Table V. We also
list the proof time, which sums up the MSM and the POLY
latency. These workloads are compiled with jsnark [8] and
executed with libsnark as our backend. Both CPU and GPU
baseline [6] are evaluated with the curve MNT4753 where
λ = 768. And as addressed in Section V, MSM G2 is offloaded
to CPU either in the GPU baseline and our design. We list
the time for POLY, MSM, and MSM G2, respectively. We
only provide the proof time for [6] due to the intertwined
timings of MSM/POLY on GPU/CPU and the lack of detailed
information with GPU IDE tools.

For our implementation, the latency for proof without G2
(which runs on ASIC) and the latency for MSM G2 (which
runs on CPU) are both presented. We can see that in most
workloads, the latencies of the two parts can be almost
overlapped. The final proof time for our design is determined
by the maximum latency of the two parts since the two parts
can execute simultaneously. We can find that Table V shows
a considerable acceleration of our implementation over the
baselines.

D. Evaluation for Zcash

Last, we evaluate a real-world application in industry, Zcash,
and compare the end-to-end results with a CPU implementa-
tion (currently, there are no available GPU implementations
for Zcash). The results are shown in Table VI.

4Note that in the rest of the paper, MSM of zk-SNARK or MSM for short
denotes the computations of four G1-type MSMs and one G2-type MSM,
which differ from “MSM” in Section VI-B that consists of only one G1-type
MSM.

There are three kinds of workloads (sprout, sapling spend,
sapling output) in Zcash. To make a shielded transaction,
a compound proof is required (i.e. a combination of those
workloads). The time for the transaction is adding up the
proving time for different types of proofs. Other latency
in a transaction such as generating signatures occupies less
than 0.5% portion. For the largest workload, sprout, we can
accelerate the time to generate shielded transactions by 6x. For
circuits sapling spend and sapling output , we can reduce the
latency of making shielded transactions over 4x.

We can also find that the accelerating rate is much lower
compared to the acceleration rate of single module (NTT,
MSM) because the latency for G2 typed elliptic curve and
generating witness on CPU dominate after our acceleration
for other parts (“MSM G2” and “Gen Witness”). As we
mentioned in the previous section, G2 typed elliptic curve
can use exactly the same architecture as G1 and get a similar
acceleration rate if needed. In addition, generating witness is
highly parallelizable with software optimizations, which takes
10% of the overall time and one only needs to accelerate this
part for 3 or 4 times to match the overall speedup achieved
by our implementation. Therefore, we expect the effort to be
technically trivial for ASIC-based MSM G2 and software-
optimized witness generating. We leave these for future work.

VII. CONCLUSION

Zero-knowledge proof has been introduced for decades and
widely considered as one of the most useful weapons for
trust/privacy. However, the limited performance of ZKP has
impeded its wider applications in practice. In this paper, we
propose PipeZK, the first architectural effort to significantly
accelerate zk-SNARK, the state-of-the-art ZKP protocol. We
introduce and implement various techniques to efficiently
streamline key operations (NTTs, MSMs, etc.) in zk-SNARK.
Our empirical results demonstrate considerable speedup com-
pared to state-of-the-art work.

11

REFERENCES

[1] “barrywhitehat. roll up: Scale ethereum with snarks,” https://github.com/
barryWhiteHat/roll up/.

[2] “bellman: a crate for building zk-snark circuits,” https://github.com/
zkcrypto/bellman.

[3] “bellperson: Gpu parallel acceleration for zk-snark,” https://github.com/
zkcrypto/bellman.

[4] “Filecoin company,” https://filecoin.io/.
[5] “Fpga snark prover targeting the bn128 curve,” https://github.com/

bsdevlin/fpga snark prover.
[6] “Gpu groth16 prover,” https://github.com/CodaProtocol/gpu-groth16-

prover-3x.
[7] “J.p. morgan quorum,” https://www.goquorum.com/.
[8] “jsnark: A java library for building snarks,” https://github.com/akosba/

jsnark.
[9] “libsnark: a c++ library for zksnark proofs,” https://github.com/scipr-

lab/libsnark.
[10] “Qed-it,” https://qed-it.com/.
[11] “The snark challenge: A global competition to speed up the snark

prover,” https://coinlist.co/build/coda.
[12] “Zcash company,” https://z.cash/.
[13] “Ieee standard specifications for public-key cryptography,” IEEE Std

1363-2000, pp. 1–228, 2000.
[14] H. Alrimeih and D. Rakhmatov, “Fast and flexible hardware support for

ecc over multiple standard prime fields,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2661–2674,
2014.

[15] B. Baldwin, R. R. Goundar, M. Hamilton, and W. P. Marnane, “Co-
Z ECC scalar multiplications for hardware, software and hardware–
software co-design on embedded systems,” Journal of Cryptographic
Engineering, vol. 2, no. 4, pp. 221–240, 2012.

[16] E. Ben-Sasson, I. Bentov, A. Chiesa, A. Gabizon, D. Genkin,
M. Hamilis, E. Pergament, M. Riabzev, M. Silberstein, E. Tromer
et al., “Computational integrity with a public random string from quasi-
linear pcps,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2017, pp. 551–
579.

[17] E. Ben-Sasson, A. Chiesa, and N. Spooner, “Interactive oracle proofs,”
in Theory of Cryptography Conference. Springer, 2016, pp. 31–60.

[18] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky, “Succinct
non-interactive arguments via linear interactive proofs,” in Theory of
Cryptography Conference. Springer, 2013, pp. 315–333.

[19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward,
“Marlin: Preprocessing zksnarks with universal and updatable srs,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2020, pp. 738–768.

[20] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[21] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
coin: building zerocoin from a succinct pairing-based proof system,”
in Proceedings of the First ACM workshop on Language support for
privacy-enhancing technologies. ACM, 2013, pp. 27–30.

[22] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cin-
derella: Turning shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 235–254.

[23] B. Fisch, J. Bonneau, N. Greco, and J. Benet, “Scaling proof-of-
replication for filecoin mining,” Benet//Technical report, Stanford Uni-
versity, 2018.

[24] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge.” IACR Cryptol. ePrint Arch., vol. 2019, p. 953, 2019.

[25] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on
the ethereum blockchain,” in International Conference on Financial
Cryptography and Data Security. Springer, 2018, pp. 265–278.

[26] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[27] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 626–645.

[28] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on computing, vol. 18, no. 1,
pp. 186–208, 1989.

[29] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of
algorithms, vol. 27, no. 1, pp. 129–146, 1998.

[30] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2016, pp. 305–326.

[31] D. Hankerson and A. Menezes, Elliptic curve cryptography. Springer,
2011.

[32] S. He and M. Torkelson, “A new approach to pipeline fft processor,” in
Proceedings of International Conference on Parallel Processing. IEEE,
1996, pp. 766–770.

[33] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” GitHub: San Francisco, CA, USA, 2016.

[34] K. Javeed and X. Wang, “Low latency flexible fpga implementation of
point multiplication on elliptic curves over gf (p),” International Journal
of Circuit Theory and Applications, vol. 45, no. 2, pp. 214–228, 2017.

[35] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839–858.

[36] I. Meckler and E. Shapiro, “Coda: Decentralized cryptocurrency at
scale,” O (1) Labs whitepaper. May, vol. 10, p. 4, 2018.

[37] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[38] G. Orlando and C. Paar, “A scalable gf (p) elliptic curve processor
architecture for programmable hardware,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2001, pp.
348–363.

[39] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 238–252.

[40] N. Pippenger, “On the evaluation of powers and related problems,”
in 17th Annual Symposium on Foundations of Computer Science (sfcs
1976). IEEE, 1976, pp. 258–263.

[41] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture
for Computing on Encrypted Data,” in Proceedings of the 25th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2020, pp. 1295–1309.

[42] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2019, pp.
387–398.

[43] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp.
459–474.

[44] S. Setty, “Spartan: Efficient and general-purpose zksnarks with-
out trusted setup,” in Annual International Cryptology Conference.
Springer, 2020, pp. 704–737.

[45] T.-W. Sze, “Schönhage-strassen algorithm with mapreduce for multiply-
ing terabit integers,” in Proceedings of the 2011 International Workshop
on Symbolic-Numeric Computation, 2012, pp. 54–62.

[46] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica,
“DIZK: A distributed zero knowledge proof system,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 675–692. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/wu

[47] J. Zhang, Z. Fang, Y. Zhang, and D. Song, “Zero knowledge proofs
for decision tree predictions and accuracy,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 2039–2053.

[48] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “vsql: Verifying arbitrary sql queries over dynamic outsourced
databases,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 863–880.

[49] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“A zero-knowledge version of vsql.” IACR Cryptol. ePrint Arch., vol.
2017, p. 1146, 2017.

[50] Z. Zhao and T.-H. H. Chan, “How to vote privately using bitcoin,” in
International Conference on Information and Communications Security.
Springer, 2015, pp. 82–96.

12

https://github.com/barryWhiteHat/roll_up/
https://github.com/barryWhiteHat/roll_up/
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://filecoin.io/
https://github.com/bsdevlin/fpga_snark_prover
https://github.com/bsdevlin/fpga_snark_prover
https://github.com/CodaProtocol/gpu-groth16-prover-3x
https://github.com/CodaProtocol/gpu-groth16-prover-3x
https://www.goquorum.com/
https://github.com/akosba/jsnark
https://github.com/akosba/jsnark
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://qed-it.com/
https://coinlist.co/build/coda
https://z.cash/
https://www.usenix.org/conference/usenixsecurity18/presentation/wu

	Introduction
	Background and Motivation
	Applications of Zero-Knowledge Proof
	Computation Requirements of Zero-Knowledge Proof
	Hardware Acceleration Opportunities
	Prior Work

	Accelerating Polynomial Computation
	NTT Computation
	Design Challenges
	Recursive NTT Algorithm
	Bandwidth-Efficient NTT Hardware Module
	Overall NTT Dataflow

	Accelerating Multi-Scalar Multiplication
	MSM Computation
	Design Challenges
	Algorithm Optimization and Hardware Module Design
	Overall Architecture
	Exploiting Parallelism and Balancing Loads

	Overall System
	Evaluation
	Evaluation Setup
	Evaluating NTT and MSM with Different Input Sizes
	Evaluating POLY and MSM with Workloads
	Evaluation for Zcash

	Conclusion
	References

