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Algebraic effect handlers are a novel technique for adding composable computational effects to functional

languages. While programming with distinct effects is concise, using multiple instances of the same effect is

difficult to express. This work studies named effect handlers, such that an operation can explicitly yield to a

specific handler by name. We propose a novel design of named handlers, where names are first-class values

bound by regular lambdas, and are guaranteed not to escape using standard rank-2 polymorphism. We also

formalize dynamically instantiated named handlers, which can express first-class isolated heaps with dynamic

mutable references. Finally, we provide an implementation of named handlers in the Koka programming

language, showing that the proposed ideas enable supporting named handlers with moderate effort.

1 INTRODUCTION
“What’s in a name? That which we call a rose by any other name would smell as sweet.”

– William Shakespeare

Algebraic effect handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] are en vogue as

a means to add composable computational effects to functional languages. By default, an effect

operation is handled by the innermost handler that encloses it. As such, programming with distinct

effects is concise. However, if one wishes an operation to be handled by a non-innermost handler,

things become cumbersome. Such demand arises when programming with multiple instances of the
same effect, which is necessary for modeling multiple mutable cells, multiple opened files, multiple

sources of randomness, etc.

As an approach to handling multiple effect instances, Biernacki et al. [2019] and Zhang and

Myers [2019] propose a generalization of effect handlers, where handlers are given explicit names,

and where operations can name their preferred handler directly. This generalization is useful for

implementing aforementioned examples, but it also complicates the theory and implementation

of the language. Specifically, one must keep track of handler names that are currently available,

and make sure that they do not escape their scope during evaluation. In previous studies, these are

addressed by introducing names as second-class values using a special binder, and by employing a

sophisticated type system with a form of dependent typing. Unfortunately, such treatment makes

it harder to incorporate named handlers into an existing framework.

In this paper, we study a novel design of named handlers, where handler names are first-class
values, and where well-scopedness of handler names is guaranteed without any non-standard

binding or typing mechanism. The first-class status and well-scopedness guarantees are obtained

via orthogonal extensions, and each of them is useful by itself. We combine these extensions in two

different ways, both of which lead to a higher-order typed lambda calculus much like System F𝜔
but extended with row-polymorphic algebraic effects [Hillerström and Lindley 2016; Leijen 2014].

Our specific contributions can be summarized as follows:

• Named handlers: We propose a novel design of named effect handlers, where handler names are

first-class, lambda-bound values. In Section 2.3, we give an overview of our design, and illustrate

the flexibility of first-class names.

• Scoped effects: We next introduce scoped effects, which are a useful concept for associating

resources to handlers. In Section 2.4, we show that scopes can be handled using standard rank-2
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polymorphism [Jones 1996; McCracken 1984]. We then demonstrate that scoped effects allow us

to implement a safe resource interface by modeling locally isolated state using scoped effects and

masking [Biernacki et al. 2017; Convent et al. 2020; Leijen 2014; Wu et al. 2014].

• Named handlers with scoped effects: We then solve the name escaping problem of plain named

handlers by incorporating scoped effects into the named handler calculus. In Section 2.5, we

illustrate the design of the resulting system, focusing on how rank-2 types help us ensure well-

scopedness of handler names. Then in Section 3, we formalize the system as System F𝜖+sn, and
prove its type soundness.

• Named handlers under scoped effects: We further support dynamic creation of named handlers

by incorporating the notion of umbrella effects [Leijen 2018]. In Section 2.6, we discuss im-

plementation of reference cells as a motivation for dynamic named handlers, and show that

umbrella effects allow us to implement isolated heaps with dynamically created references. Then

in Section 4, we formalize the system as System F𝜖+u, and prove that a practical subset of the

system enjoys type soundness.

• We have implemented all the named handler variants, as well as locally isolated state, in the

Koka programming language [Koka 2019]. We detail the implementation and provide examples

in Section 5.

Finally, Section 6 discusses related work and Section 7 concludes.

Notes on the appendix. In the appendix of the supplementary material, we provide the full typing

rules and soundness proofs of System F𝜖+sn and System F𝜖+u. We also present the specification of

two systems that are not detailed in the paper, one featuring plain named handlers (Section 2.3)

and the other featuring plain scoped effects (Section 2.4). These form the basis of the combinations

discussed in Sections 3 and 4, but are not necessary for understanding this paper.

2 OVERVIEW
In this section, we shortly introduce algebraic effects and handlers, and outline the key ideas of our

work.

2.1 Algebraic Effects
Algebraic effects [Plotkin and Power 2003] and handlers [Plotkin and Pretnar 2013] are a powerful

abstraction of user-defined effects. When programming in a language with support for algebraic

effects, one declares a new effect via an effect signature, consisting of a label and a list of operations.
For example, an integer read effect has the following signature:

read { ask : () →read int }
The effect has label read and a single operation ask. The type of ask tells us that this operation

receives a unit argument, returns an integer value, and produces a read effect. To call the ask
operation, one uses the perform keyword as shown below

1
:

x ← perform ask (); x + 1

An effect signature only defines the type of operations; their interpretation is given separately by a

handler . A handler takes the form handler h e, where e is the computation to be handled (which we

call an action), and h is a list of operation implementations
2
. Each operation implementation is a

1
In examples we use the following syntactic sugar to express binding and sequencing: (1) x ← e1; e2 ≜ (_x . e2) e1 and (2)

e1; e2 ≜ (__. e2) e1. For better illustration we often omit type (effect) abstractions, applications and annotations, but all

examples can be rewritten and fully typed in our formalized systems presented later.

2
For simplicity, we leave out the return clause of handlers. This does not cause loss of expressiveness, because we can

always perform the computation of the return clause after obtaining a value from the handler.
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function _x . _k. e′, where x stands for the argument of the operation, and k represents the delimited

continuation within the handler, which can be used to resume the computation surrounding an

operation. The following handler handles ask by applying k to 42, meaning that a call to ask is

always interpreted as 42.

handler { ask ↦→ _x . _k. k 42 } (x ← perform ask (); x + 1)
↦−→∗ k 42 where k = _w. handler { ask ↦→ _x . _k. k 42 } (x ← w; x + 1)
↦−→∗ 43

Instead of resuming the continuation, a handler may abort the computation by discarding the

continuation. Exceptions are a typical example of handlers that do not resume.

exn { throw : ∀𝛼. () →exn 𝛼 }
Below is a handler for exceptions that converts any exceptional computation to a default value 42.

handler { throw ↦→ _x . _k. 42 } (perform throw ())
↦−→∗ 42

Explicit handling of continuations also allows us to encode state. Here we implement polymorphic
state by associating the label st with a type parameter 𝛼 .

st 𝛼 { get : () →st 𝛼 𝛼, set : 𝛼 →st 𝛼 () }

hst ≜ { get ↦→ _x . _k. (_y. k y y))
, set ↦→ _x . _k. (_y. k () x)) }

The above implementation directly corresponds to the monadic encoding [Kammar and Pret-

nar 2017]. In particular, performing an operation returns a function that takes in the current state.

Below is an example illustrating how evaluation of get goes; note that the handler returns a function
_z. x that ignores the final state z:

handler hst (x ← perform get () + 1; _z. x) 42
↦−→∗ (_y. k y y) 42 where k = _w. handler hst (x ← w + 1; _z. x)
↦−→∗ 43

There exist many other applications of algebraic effects and handlers, including iterators/generators,

async/await, coroutines, and probabilistic programming [Bauer and Pretnar 2015a; Leijen 2017;

Pretnar 2015; Xie et al. 2020a]. In general, algebraic effects and handlers can express any control-

flow manipulation that can be expressed using monads, at least in an untyped setting [Forster et

al. 2019].

2.2 Named Handlers
It is sometimes inconvenient to work with plain effects and handlers, in particular when dealing

with multiple handlers for a single effect. Let us consider the following program, which uses two

handlers for the read effect:

handler { ask ↦→ _x . _k. k 1 } (
handler { ask ↦→ _x . _k. k 2 } (perform ask ()))

Operations are by default handled by the innermost handler. That means, the call to the ask
operation in the above program is interpreted as 2, and thus the entire program evaluates to 2. But

what if we wish ask to be handled by the outer handler? One possible solution is to use a technique

called masking [Convent et al. 2020] (also called injection [Leijen 2014] and lifting [Biernacki et

al. 2017] in the literature). Intuitively, masking allows one to skip the innermost handler surrounding
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an operation. For instance, the following program interprets ask using the outer reader handler,
and thus evaluates to 1:

handler { ask ↦→ _x . _k. k 1 } (
handler { ask ↦→ _x . _k. k 2 } (maskread (perform ask ())))

Programming with masking is however both cumbersome and fragile. In general, if we usemask to
choose among nested handlers, we must know the exact number and order of handlers surrounding

an expression.

A solution to the above problem is to name handlers explicitly and perform operations directly

on named handlers. This has been attempted by previous work [Biernacki et al. 2019; Zhang and

Myers 2019]. For instance, in the calculus of Biernacki et al. [2019], one can explicitly specify the

handler we want to use through names a and b:
handlera { ask ↦→ _x . _k. k 1 }
(handlerb { ask ↦→ _x . _k. k 2 } (performa ask ()))

As a different approach, Zhang and Myers [2019] adopt implicit naming for the user language

and internally elaborate programs to use explicit names. The elaboration forces operations to be

handled by the closest, lexically enclosing handler, enabling modular reasoning in the presence of

higher-order functions.

While existing studies [Biernacki et al. 2019; Zhang and Myers 2019] support selecting a specific

handler, they both require a special binding mechanism for handlers names. Moreover, these

studies treat handler names as second-class values. For example, consider the syntax of values and

expressions in the calculus of Biernacki et al. [2019] (adapted to our notations):

v ::= x | _x . e | Λ𝛼. e | __a. e
e ::= v | e e | e [𝜎] | e a | performa op v | handlera h e

Notice that the syntax includes a new binder (__) and application (e a) for handler names a. The
special binding mechanism for names makes these systems deviate from standard lambda calculus,

complicating both the meta-theory and implementation. As such, the syntax prohibits first-class

use of handler names: we cannot return a name from a function (as in __a. a), pass a name to a data

type constructor (e.g., Just a), or create a list of names (e.g., [a1, a2]) and pick a handler from that

list at runtime.

2.3 First-class Names
We propose a simpler approach to supporting named handlers. In our calculus, handler names

are first-class values, and a handler uses a normal lambda binding to pass the handler name to an

action. Performing an operation then takes the explicit handler name as a regular application. For

example, the example with two read handlers is written as:

handler { ask ↦→ _z. _k. k 1 } (_x .
handler { ask ↦→ _z. _k. k 2 } (_y. perform ask x ()))

The action being handled now receives the name of the handler as its argument (x and y), instead
of a unit value. When performing ask, we specify the handler we want to use, in this case x.
During evaluation, a handler generates an internal frame handlex marked by its (uniquely

instantiated) concrete handler name x. A perform can then search for the matching handler in the

evaluation context.

handler { ask ↦→ _z. _k. k 1 } (_x .
handler { ask ↦→ _z. _k. k 2 } (_y. perform ask x ()))

↦−→∗ handlex { ask ↦→ _z. _k. k 1 }
handley { ask ↦→ _z. _k. k 2 } (perform ask x ())

↦−→∗ 1
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The generative semantics for handlers is a generalization of the semantics designed by Xie et

al. [2020a]. In their calculus, handler receives a unit-taking function representing a suspended com-

putation. The idea of using unit-taking functions to represent computations has a close connection

with call-by-push-value calculi [Levy 2006], which feature a strict value-computation distinction

useful for modeling algebraic effect systems [Kammar and Pretnar 2017; Plotkin and Pretnar 2013].

In our calculus, we use unit-taking actions for unnamed handlers, and name-taking actions for

named handlers. The generalized generative semantics is essential for preventing name escaping,

as we will see in Section 3.2.

From a typing perspective, handler names are given an evidence type (ev). For instance, a named

reader handler that always returns a specific constant x is defined as:

reader : ∀𝛼 `. int → (ev read → ⟨read | `⟩ 𝛼) → ` 𝛼

reader x f = handler { ask ↦→ _(). _k. k x } f
We see that the name argument of the action f has type ev read, meaning that a read handler is

available during evaluation of f . Other parts of the type signature are based on the standard, row-

polymorphic effect system [Hillerström and Lindley 2016; Leijen 2005 2014; Xie et al. 2020a]. Here

we see that action f has effect ⟨read | `⟩, which means it can perform the read effect and possibly

more effects, denoted by the polymorphic effect variable `. The handler construct discharges the
read effect, hence the final effect is just `. The empty effect is denoted by the empty row ⟨⟩ and is

often omitted.

Now the differences between our work and previous work by Biernacki et al. [2019] and Zhang

and Myers [2019] become clear. First, name bindings and evidence types in our system are treated

as normal bindings and types. Second, names are plain variables (e.g., x, y), which can be used

as first-class values. The latter means that we can easily construct a term like _x : ev read . x to

pass names around, or build a list of reader evidences [x1, x2] : [ev read] (where x1 and x2 are of
type ev read) and pick one of them at runtime. This can be used to, for example, dispatch handlers

according to configurations or specific applications.

2.4 Scoped Effects
Having handler names as first-class values is convenient, but it is also dangerous, as names can

escape the scope of their handler. For instance, the following program fails to evaluate to a value.

reader 1 (_x . (reader 2 (_y. (_z. perform ask y ()))) ())
↦−→∗ handlex { ask ↦→ _y. _k. k 1 }

(handley { ask ↦→ _y. _k. k 2 } (_z. perform ask y ()) ())
↦−→∗ handlex { ask ↦→ _y. _k. k 1 } ((_z. perform ask y ()) ())
↦−→∗ handlex { ask ↦→ _y. _k. k 1 } (perform ask y ())
̸↦−→

Observe that handley returns a function that performs ask with name y. When this performing

happens, however, the handler with name y is no longer present. This results in a failure of searching
for a matching handler, which in turn makes the entire program get stuck.

Previous studies by Biernacki et al. [2019] and Zhang and Myers [2019] solve the name escaping

issue in the following way. First, they expose handler names in the effect information of expressions.

For example, Biernacki et al. [2019] would assign performa ask v a type that mentions effect

reada, which implies the calculus must support a limited form of dependent typing. Second, they

augment typing judgments with a separate environment for names. These have proven sufficient

for ensuring well-scopedness of handler names, but from a practical point of view, the demand for

limited dependent types and a separate name environment makes it difficult to implement handler
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type ix = Ix int

vec{ push : string→vec ix
, find : ix →vec string }

withvec : ∀𝛼 `. (() → ⟨vec | `⟩ 𝛼) → ` 𝛼

withvec = handler [] {
push ↦→ _x k. v← perform get ();

perform set (v ++ [x]);
k (Ix (length v))

, find ↦→ _(Ix i) k. v← perform get ();
k (v [i])

}
(a) Unsafe interface

type ix [ = Ix int // index associated with scope [

vec{ push : string→vec[ ix [
, find : ix [ →vec[ string } // scoped effect

withvec : ∀𝛼 `. (∀[. () → ⟨vec[ | `⟩ 𝛼) → ` 𝛼 // rank-2 type
withvec f = handler [] {
push ↦→ _x k. v← perform get ();

perform set (v ++ [x]);
k (Ix (length v))

, find ↦→ _(Ix i) k. v← perform get ();
k (v [i])

} f
(b) Safe interface with scoped effects

Fig. 1. A string vector resource using locally isolated state

names in an existing framework. Moreover, the approach cannot be taken when we like to use

names are first-class values.

We propose to guarantee well-scopedness of names by scoped effects. As we will show in this

section, scoped effects are useful on their own, and we treat naming and scoping as orthogonal

concepts. In what follows, we take three steps to achieve our goal. First, we describe a novel way of

using local state in a handler (Section 2.4.1), and motivate the need for scoping as an independent

concept (Section 2.4.2). Next, we introduce scoped effects (Section 2.4.3), showing that they enable

implementing a scope-safe resource interface. Note that the main focus of these sections is scoped

effects themselves, hence handlers in these sections are all unnamed. Then, in Section 2.5, we

combine scoped effects and named handlers as a solution to the name escaping problem.

2.4.1 Locally Isolated Handler State. Often a handler needs a form of local state. In the algebraic

effects literature, an elegant solution is provided by parameterized handlers [Bauer and Pretnar 2015b;
Leijen 2017; Pretnar 2010], which enable passing around a local parameter (i.e. state) when handling

an operation or resuming a continuation. However, the threading of such handler parameters

requires new evaluation rules for performing and handling, and increases the complexity of the

semantics.

Here we present a new approach that requires no extensions to the core calculus. The idea is to

use standard masking (discussed in Section 2.2) and a regular state handler (given in Section 2.1).

More specifically, we handle any state-related effects using two handlers: an outer one as the

regular state handler, and an inner one for the user-defined effect. The inner handler uses the state

provided by the outer hst , while wrapping its action around maskst 𝜎 to make the state local. For

convenience, we define a syntactic sugar (handler e h f ), denoting a handler h handling action f
with a local state initialized to e3:

handler e h f ≜ handler hst (__.
x ← handler h (__. maskst 𝜎 (f ())); _z. x) e

With mask, the state used in its handler h is no longer exposed to f ; it is only available to the

handler operations.

3
A small restriction on the encoding is that h cannot be a st 𝜎 handler itself, or otherwise maskst 𝜎 would mask the wrong

handler. The restriction is however not important in practice, as in that case h can store resources on its own without

needing locally isolated state.
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Using the above definition, we can define a handler for the tick effect, which counts the number

of times its operation tick is performed:

tick { tick : () →tick int }

handler 0 { tick ↦→_x . _k. i← perform get ();
perform set (i + 1); k i }

This is convenient in practice, and provides a full alternative to parameterized handlers. In a language

with support for mutable state, we can further reduce the overhead caused by the monadic encoding

by implementing the standard state handler using native state [Xie and Leijen 2020].

2.4.2 An Unsafe Resource Interface. While the use ofmask guarantees local isolation of the state of

a handler, the handler itself cannot yet isolate its own resources from other handlers. Consider the

vec effect in Figure 1a, which is inspired by an example from Dreyer [2018]. The effect associates

an abstract index (ix) with a string resource using locally isolated state
4
. In the definition of the

withvec handler, we use a locally isolated list of strings, which is initially set to the empty list. The

push operation appends a new string to the local list and returns its index, while find uses the index

to look up the string again in the local state. Unfortunately, this interface is unsafe as indices are

not bound to specific handlers. The following program shows how find may cause an out-of-bound

error at runtime:

withvec ( __. i← perform push ”hello”;
withvec (__. perform find i)) // out of bound

The find operation is called with the index i obtained from the outer handler, but the operation is

to be handled by the inner handler, whose state is the empty list. To avoid such unsafe lookups, we

need to somehow associate indices with specific handlers.

2.4.3 A Safe Resource Interface. Fortunately, we already have the required expressive power

in System F: we can manage the association between resources and handlers through rank-2
polymorphic types [Jones 1996; McCracken 1984] together with phantom types [Hinze 2003; Leijen
and Meijer 1999]. This is a well-understood technique used by Haskell’s runST monad [Peyton Jones

and Launchbury 1995] and other work on state isolation [Kammar et al. 2017; Launchbury and

Sabry 1997; Timany et al. 2017].

To implement a safe vec effect, we use scoped effects with rank-2 polymorphism. First, we add

a scoped type parameter [ to vec effect, resulting in vec[ (Figure 1b).
5
We then assign handler in

withvec a rank-2 type ∀𝛼 `. (∀[. () → ⟨vec[ | `⟩ 𝛼) → ` 𝛼 . Here, the scoped type parameter [ is

fully abstract in the expression over which withvec is applied. That is, if ` is instantiated to some

effect 𝜖 , and 𝛼 to some type 𝜎 , we know [ ̸∈ ftv(𝜖, 𝜎) by capture-avoiding substitution. Finally, we

attach scope parameter [ to the indices ix [ to associate an index to a specific handler scope.

Assuming the type ix is abstract (e.g., the constructor Ix is private), it is now guaranteed that the

lookup v [i] in find can never fail at runtime – the index i is always within the bounds of the local

list. This is because each index ix [ is uniquely associated with the current handler instance vec[ ,
preventing us from passing to find an index returned from the push in some other instance:

withvec (__. i← perform push ”hello”;
withvec (__. perform find i)) // statically rejected

Note that it is essential to attach a scoped type parameter [ to not only the associated index (ix [)
but also the effects (vec[ ). If we kept vec unscoped, we could let resources escape the scope of the

4
We use the keyword type to define a new type, and use [], ++, and v [i] to mean the empty list, list append, and list lookup.

5
Note the difference between polymorphic effects, e.g., st 𝛼 , where the effect st 𝛼 is parameterized by 𝛼 , and scoped effects,

e.g., vec[ , where the effect vec (without [) is scoped by [.
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ref { // scoped effect
getref : () →ref [ int

, setref : int →ref [ () }
makeref : ∀𝛼. int →

(∀[. ev ref [ → ⟨ref [ | `⟩ 𝛼) → ` 𝛼

makeref i f =

handler i { // scoped and named handler
getref ↦→ _(). _k. k (perform get ())

, setref ↦→ _x . _k. k (perform set x)
} f

(a) Mutable references

heap { // scoped effect
newref : 𝛼 →heap[ (ev (ref 𝛼)[) }

ref { // perform the heap effect
getref : () →heap[ int

, setref : int →heap[ () }
makeref : ∀𝛼 [. int → (ev ref [ → ` 𝛼) → ` 𝛼

makeref i f =

handler i { // named but unscoped handler
getref ↦→ _(). _k. k (perform get ())

, setref ↦→ _x . _k. k (perform set x)
} f

hp : ∀𝛼. (∀[. () → ⟨heap[ | `⟩ 𝛼) → ` 𝛼

hp f =

handler { // scoped but unnamed handler
newref ↦→ _x . _k. makeref x k
} f
(b) First-class heap using umbrella effects

Fig. 2. Mutable references and first-class heap

handler by returning a lambda that performs find on an index captured by that lambda (as now the

type of the lambda would not reflect the use of [ anymore). If we scope vec as vec[ , any use of a

resource must be reflected in the type of functions and data types, and the rank-2 polymorphic

type of withvec prevents any possible resource escaping.

2.5 Combining Scoped Effects and Named Handlers
Wehave discussed the combination of scoped effects and unnamed handlers, showing that they allow

for a safe implementation of resource interfaces. Now we look at the combination of scoped effects

and named handlers, demonstrating that the former can be used to guarantee the well-scopedness

of handler names.

In a calculus with scoped effects and named handlers, effect labels carry a scope parameter, and

actions have a rank-2 type abstracting over their scope. For instance, the type of the named reader
handler from Section 2.3 is redefined to:

reader : ∀𝛼 `. int → (∀[. ev read[ → ⟨read[ | `⟩ 𝛼) → ` 𝛼

reader = _x . _f . handler { ask ↦→ _(). _k. k x } f

Now, the problematic example from Section 2.4, repeated below, is statically rejected, since the

scope variable for name y would appear in the return type 𝛼 of the handler.

// statically rejected
reader 1 (_x . (reader 2 (_y. _z. perform ask y ())) ())

Importantly, names in the combined system are still first-class values, and since they are guaranteed

to be well-scoped by the use of rank-2 polymorphic types, we can prove that the combined system

is type sound. This can be done without any special binding mechanism or dependent typing.
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2.6 Scoping Named Handlers under Umbrella Effects
We have seen that the combination of named handlers and scoped effects gives us the well-

scopedness guarantee of handler names. We now outline a different way of combining the two

concepts, which enables us to express dynamic instantiation of named handlers.

In the existing type systems for algebraic effects [Biernacki et al. 2019; Leijen 2017; Zhang and

Myers 2019], handlers manifest themselves in their type by discharging the effects being handled.

A consequence of this design is that there can only be a static number of handlers at any time. As

an example, consider an implementation of mutable reference cells based on scoped effects and

named handlers (Figure 2a), and a program that uses those references:

tworef : (∀[1 [2. ev ref [1 → ev ref [2 → ⟨ref [1 | ref [2 | `⟩ 𝛼) → ` 𝛼

tworef f = makeref 1 (_r1. makeref 2 (_r2. f r1 r2)

Here, the existence of the two makeref handlers is directly reflected in the type of tworef , which
discharges two distinct ref effects (ref [1 and ref [2 ).

Whilemakeref correctly implements the operations getref and setref , it does not allow us to use

reference cells as flexibly as in a calculus with native support for heap references. For instance, we

must use references under their own ref handler, which means we need to statically instantiate

as many handlers as the number of distinct references required. Moreover, when references are

implemented via scoped effects, different reference cells cannot be put in a homogeneous list as in

[r1, r2], since their types carry different scope variables ([1 and [2 respectively). Finally, there is no

means to create fresh reference cells dynamically at runtime.

We propose a novel way of combining named handlers and scoped effects, where we can

instantiate named handlers dynamically, and where different instances of a reference cell can share

the same scope effect. The core idea is to scope all named handlers under a single scoped effect,

which we call the umbrella effect. The notion of umbrella effects was first proposed by Leijen [2018],

but not as a combination of named handlers and scoped effects, and without the well-scopedness

guarantee for handler names.

2.6.1 A First-class Isolated Heap. It turns out umbrella effects are very expressive. Here we illustrate

the expressiveness by implementing full first-class isolated heaps using scoped effects, and dynamic
mutable references using named handlers. Figure 2b shows the implementation. First, we define

the heap effect, which is a scoped effect with a single operation newref that returns a new name

for a fresh reference cell. Second, we define the ref effect, whose getref and setref operations

produce their umbrella effect heap[ rather than ref [ . This is key to enabling dynamic instantiation

of references: it allows us to give a uniform effect type to all reference cells.

Having defined the two effects, we refine the signature (but not the implementation) of the

makeref handler. Specifically, we move the universal quantification over the scope variable [

outside of the action type, making ref [ connected to the heap effect heap[ that scopes over all

dynamic references. Even though makeref still handles the operations of a particular reference, it

no longer discharges the ref [ effect – all operations on references are instead reified under a single

umbrella effect, namely heap[ .
Finally, we define the hp handler for the heap effect. We interpret the operation newref as a call

to the makeref handler, with the action being the resumption k itself! This means a new named

handler for ref is instantiated, and its name serves as the result of the call to newref – remember that

an action of a named handler receives a name; using a resumption as an action is thus equivalent

to passing a name to a resumption.
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Example. Below, we give an example showing how the first-class heap works. Note that hheap
[

and href
[

denote the handler of heap and ref defined in Figure 2b.

handler hheap
[ (__. // heap

r1← perform newref 1;

r2← perform newref 2;

perform getref r1 () + perform getref r2 ())

↦−→∗ handler1 1 h
ref [ ( // dynamically insert a new named handler (handler1 )

handle hheap
[ (

r2← perform newref 2;

perform getref r1 () + perform getref r2 ()))

↦−→∗ handler1 1 h
ref [ (

handler2 2 h
ref [ ( // dynamically insert a new named handler (handler2 )

handle hheap
[ (

perform getref r1 () + perform getref r2 ())))

↦−→∗ 3
At each call to the operation newref , heap effectively pushes a new reference handler directly on

top of hheap
[

. This corresponds to creating a new reference cell, denoted as a boxed area.

Note that the use of an umbrella effect is crucial in this example – without an umbrella effect,

any newly pushed reference handler would dynamically change the effect type of the computation.

Furthermore, the reification of the ref [ types under a single umbrella effect means we can use them

homogeneously, for example putting them into a list, as in [r1, r2] : [ev ref [].

2.7 Desirable Properties
The aim of our work is to explore the design space of effect handlers with first-class names. As

we saw in Section 2.4, naive named handlers suffer from the name escaping problem. To ensure

well-scopedness of names with minimal effort, we develop an orthogonal concept called scoped

effects, which are implemented via standard rank-2 polymorphism and are useful for enforcing safe

usage of resources. We then combine named handlers and scoped effects in two different ways: by

making every instance of a named handler scoped under its own effect, and by allowing multiple

instances of a named handler to be scoped under an umbrella effect. While naive named handlers

and scoped effects can be formalized independently (as we do in the appendix), in this paper we

focus on the two combinations of the named handlers and scoped effects.

Given the novel design of our combined systems, it is important to guarantee that the systems

are well-behaved. In this paper, we establish the following properties:

Well-scopedness of handler names. We show that names can never escape the scope of their handler.

This property is subsumed by the type soundness theorem, which can be proved by showing the

preservation and progress properties [Wright and Felleisen 1994]. Preservation guarantees that

the well-typedness of expressions is preserved by reduction. Progress ensures that a well-typed

expression always takes a step, which, in our context, means an operation performing always

finds the corresponding named handler. One thing to note here is that type soundness of umbrella

effects needs extra care. In particular, while the interface in Figure 2b is type-safe, general umbrella

effects may result in accidental escaping of names. In Section 4.3, we discuss two type-theoretic

restrictions on umbrella effects for ensuring type soundness, without losing the expressiveness

required to encode first-class heaps.
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Expression e ::= v | e e | e [𝜎]
| handle𝜖m hℓ

[

e
Value v ::= x | _𝜖 (x :𝜎). e | Λ𝛼^ . v

| handler𝜖 hℓ

| perform𝜖 op 𝜎
| perform𝜖 op 𝜎 v
| (m, hℓ

[ )
Handler h ::= { opi ↦→ fi }

Type 𝜎 ::= 𝛼^ | c^ 𝜎 | 𝜎 → 𝜖 𝜎 | ∀𝛼^ . 𝜎 | ev ℓ[

Effect row 𝜖 ::= ⟨⟩ | ⟨ℓ[ | 𝜖⟩
Kind ^ ::= ∗ | ^ → ^ | lab | eff | S

Term context Γ ::= ∅ | Γ, x :𝜎
Effect context Σ ::= { ℓ i : sigℓ i }
Effect signature sigℓ ::= { opi : ∀𝛼

^i
i . 𝜎i →ℓ[ 𝜎 ′i }

Fig. 3. Syntax of System F𝜖+sn

Uniqueness of names. We show that names can never be duplicated in evaluation contexts. In

other words, the search for names is always deterministic. This property is not proved in the

previous studies on named handlers: Biernacki et al. [2019] accept programs with duplicate names,

arguing that duplication does no harm to type soundness; Zhang and Myers [2019] assume names

(in their case, labels) are unique in the first place.

3 NAMED HANDLERS WITH SCOPED EFFECTS
In this section, we present System F𝜖+sn, a calculus of scoped effects and named handlers outlined

in Section 2.5.

3.1 Syntax
Figure 3 defines the syntax of System F𝜖+sn. The system is explicitly typed; that is, every language

construct is fully annotated with the effect, type, and kind information. The constructs highlighted

in gray are internal forms generated during evaluation, and are not exposed to the user.

Expressions and Values. Expressions and values include variables, abstractions and applications

for terms and types
6
. Type abstractions Λ𝛼^ . v require a value body. This is a common requirement

for establishing type soundness of effectful calculi [Kammar and Pretnar 2017; Leijen 2017; Sekiyama

and Igarashi 2019]; in our context, it is necessary for defining a type-erasure based semantics [Xie et

al. 2020a]. To perform an effect operation op, we need to provide its type arguments 𝜎 to instantiate

the type variables in the signature of op, and pass a handler name e1 together with the operation

argument e2 via application. Thus, a fully applied operation looks like perform𝜖 op 𝜎 e1 e2; partially
applied forms perform𝜖 op 𝜎 and perform𝜖 op 𝜎 v are both considered as values.

Handlers can be found in both expression and value categories. The value form handler𝜖 hℓ rep-
resents a named handler that, when given an action (thunkified expression), handles the operations

in effect ℓ that are performed by the action. Here, we assume that hℓ has exactly one clause for

each operation of effect ℓ . The expression form handle𝜖m hℓ
[

e is an internal frame generated during

6
We do not include constants (such as integers) in the formal systems, but we assume their existence in examples.
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Γ ⊢val v : 𝜎

Γ ⊢ v : 𝜎 | 𝜖
[val]

x :𝜎 ∈ Γ
Γ ⊢val x : 𝜎

[var]
Γ ⊢val (m, hℓ

[ ) : ev ℓ[
[ev]

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖
Γ ⊢val _𝜖 (x :𝜎1). e : 𝜎1→ 𝜖 𝜎2

[abs]
Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 Γ ⊢ e2 : 𝜎1 | 𝜖

Γ ⊢ e1 e2 : 𝜎 | 𝜖
[app]

Γ ⊢val v : 𝜎 𝛼^ ̸∈ ftv(Γ)
Γ ⊢val Λ𝛼^ . v : ∀𝛼^ . 𝜎

[tabs]
Γ ⊢ e : ∀𝛼^ . 𝜎1 | 𝜖 ⊢wf 𝜎 : ^

Γ ⊢ e [𝜎] : 𝜎1 [𝛼 :=𝜎] | 𝜖
[tapp]

opi : ∀𝛼
^ . 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ) [ ∈ 𝛼^

Γ ⊢val fi : ∀𝛼^ . 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎) 𝛼^ ̸∈ ftv(𝜎)
Γ ⊢ops { op1 ↦→ f1, . . ., opn ↦→ fn } : 𝜎 | ℓ | 𝜖

[ops]

op : ∀𝛼^ . 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ) [ ∈ 𝛼^ ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (ev ℓ[ → ⟨ℓ[ | 𝜖⟩ 𝜎1→ ⟨ℓ[ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[perform]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 [ ̸∈ ftv(𝜖, 𝜎)
Γ ⊢val handler𝜖 hℓ : (∀[. ev ℓ[ → ⟨ℓ[ | 𝜖⟩ 𝜎) → 𝜖 𝜎

[handler]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | ⟨ℓ[ | 𝜖⟩
Γ ⊢ handle𝜖m hℓ

[

e : 𝜎 | 𝜖
[handle]

(a) Typing

𝜖 ≡ 𝜖
𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3

𝜖1 ≡ 𝜖2
⟨ℓ[1
1
| ℓ[2

2
| 𝜖1⟩ ≡ ⟨ℓ[2

2
| ℓ[1

1
| 𝜖2⟩

𝜖1 ≡ 𝜖2
⟨ℓ[ | 𝜖1⟩ ≡ ⟨ℓ[ | 𝜖2⟩

(b) Equivalence of row-types

Fig. 4. Typing rules of System F𝜖+sn.

evaluation
7
, and represents a specific instance of a handler. It associates the label ℓ with a scope [,

and carries a marker m as an identifier of the handler. We call a pair (m, hℓ
[ ) of a marker and a

handler evidence, and assign it the type ev ℓ[ . Such an evidence pair serves as the name of handlers.
Note that we could simply use markers as names, since they are sufficient for locating a handler.

We couple it with a handler because this helps us demonstrate the correspondence between names

and evidence in an evidence language [Xie et al. 2020a] (Section 5).

Types. Types include type variables 𝛼k
, type constructors c^ 𝜎 (where c^ is of kind ^), function

types 𝜎 → 𝜖 𝜎 , quantified types ∀𝛼^ . 𝜎 , and the evidence type ev ℓ[ . Function types 𝜎1→ 𝜖 𝜎2
consist of three components: an input type 𝜎1, an output type 𝜎2, and an effect type 𝜖 representing

7
In Section 2.3, we used handlex for better illustration. In the formalization, we use handlem to stress that the generated

handler names are fresh.
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the effects of the function’s body. An effect row is either empty ⟨⟩ (representing the total effect) or
an extension ⟨l | 𝜖⟩ (meaning that 𝜖 is extended with effect label l).
To distinguish among regular value types (of kind ∗ and ^ → ^), effect labels (ℓ[ : lab), effect

rows (𝜖 : eff), and scopes (of kind S), we use a basic kind system to ensure well-formedness of types.

We use ` to denote effect type variables 𝛼eff
, and [ to denote scope type variables 𝛼S

. The kinding

judgment ⊢wf is standard, and is defined in the appendix.

3.2 Typing Rules
Figure 4a gives the typing rules of expressions, values, and handlers. The judgment for expres-

sions Γ ⊢ e : 𝜎 | 𝜖 means expression e has type 𝜎 under context Γ, and may perform operations

associated with effect labels in 𝜖 . The judgment for values Γ ⊢val v : 𝜎 lacks the effect compo-

nent, reflecting the fact that values are effect-free. Finally, in the judgment Γ ⊢ops h : 𝜎 | ℓ | 𝜖 for
handlers, 𝜎 represents the type returned by h, ℓ represents the effect label being handled, and 𝜖

represents the effects to be handled by outer handlers.

To briefly go through the rules for expressions and values, rule val allows us to view a pure

value as an effectful expression. Rule abs concludes with a pure value while keeping the body’s

effects in the arrow type. Rule app requires that the function, the argument, and the function’s

body have the same effect. Rule ev assigns evidence a type that carries an effect label ℓ and a scope

variable [. Rule var, tabs and tapp are completely standard.

Rule ops imposes two requirements on the body of a handler. First, the types of the operation ar-

gument and the continuation of every handling function fi agree with the type of the corresponding

operation opi. Second, the output types of those functions are all equal.
Rule perform serves as the introduction rule for effects. We can see that the rule extends the

original effect 𝜖 with an additional label ℓ[ , which comes from the signature of the operation being

performed.

Rule handler serves as the elimination rule for effects, and plays a crucial role in ensuring the

type safety of named handlers. The rule derives the type 𝜎 | ℓ | 𝜖 of the handler, and concludes

with a rank-2 type, which tells us that the action it takes is polymorphic over a scope variable [.

With [ ̸∈ ftv(𝜖, 𝜎), it is guaranteed that [ cannot escape through the return type and effect. In the

type of the action, the first component ev ℓ[ represents a handler name, and since ℓ[ is associated

with [, it follows that this name cannot escape. In the effect of the action, the label ℓ[ represents

the effect to be handled, and since a handled effect is not observable outside of the handler, we

have a smaller effect 𝜖 as the return effect. The elimination of effects can also be observed in rule

handle, which takes care of an internal expression obtained by reducing handler.
Note that the representation of actions as functions are crucial in handler. If actions were compu-

tations, we could not treat handlers as first-class values; more precisely, we could not give handler h
a proper type as actions would require a computation type (in the sense of CBPV [Levy 2006]),

which does not exist in our system. Furthermore, having actions as computations makes it im-

possible to assign them a rank-2 type, which means we would need some other means to ensure

well-scopedness of names.

In addition to the typing rules, we need a set of rules for deciding whether two row types are

equivalent or not (Figure 4b). Row equivalence is defined by reflexivity, transitivity, commutativity,

and head equivalence. In calculi with row effects but unnamed handlers [Leijen 2017; Xie et

al. 2020a], commutativity is restricted in that it only applies to distinct labels. In those calculi,

an operation is always handled by the innermost handler, hence effects with the same label but

different instantiations (e.g., st int and st bool) must be put in order. Here with named handlers,

operations can be handled by an arbitrary handler specified by the user, so its label may be located

anywhere in an effect row.
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Evaluation context E ::= □ | E e | v E | E [𝜎] | handle𝜖m hℓ
[

E

(app) (_𝜖 (x :𝜎). e) v −→ e[x :=v]
(tapp) (Λ𝛼^ . v) [𝜎] −→ v [𝛼 :=𝜎]
(handler) (handler𝜖 hℓ ) v −→ handle𝜖m hℓ

[ (v [[] (m, hℓ
[ ))

where [, m fresh
(return) handle𝜖m hℓ

[

v −→ v
(perform) handle𝜖m hℓ

[

E[perform op 𝜎 (m, hℓ
[ ) v]

−→ f [𝜎] v k iff (op ↦→ f ) ∈ h
where op : ∀𝛼^ . 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ)

k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖m hℓ
[

E[x]

e −→ e′

E[e] ↦−→ E[e′]
[step]

Fig. 5. Operational Semantics of System F𝜖+sn

3.3 Operational Semantics
System F𝜖+sn is equipped with a call-by-value, typed semantics defined in Figure 5. An evaluation

context E is an expression template with a single hole □ in it. The notation E[e] stands for an
expression obtained by filling in the hole of Ewith expression e. Rule step defines one-step evaluation
( ↦−→) as a congruence of the small-step reduction (−→).

Among the small-step rules, rule app and rule tapp are standard. Rule handler is unique to our

system: it generates a fresh scope variable [ as well as a unique marker m. The scope variable is

computationally irrelevant; it is only used to make the semantics fully typed. On the other hand,

the marker plays an important role: it is used to identify a target handler in an evaluation context.

After the reduction, the handler becomes a handle, whose action is passed the scope [ and name

(m, hℓ
[ ).

Handling an action either results in a value via rule return, or triggers evaluation of an operation

clause via rule perform. In the latter case, we search for the matching handler handlem in the

evaluation context, extract the implementation f of the performed operation, and apply f to the

type instantiations 𝜎 , the operation argument v, and the resumption k. Note that application of k is

evaluated under the same handlem frame again (meaning that handlers are deep), but f is not.

3.4 Type Soundness
The combination of naming and scoping leads to a sound type system. Following Wright and

Felleisen [1994], we prove soundness through the preservation and progress theorems. Below is

the statement of preservation, which can be shown in a relatively straightforward manner:

Theorem 3.1. (Preservation of System F𝜖+sn)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.
The progress theorem is trickier. For a well-typed expression, we know from its type that all effects

are handled properly. However, the type information is not used at runtime; it is the marker that

determines the handler associated with each operation. Then, how can we be sure that a particular

marker exists in the evaluation context? Indeed, it turns out that the progress property does not
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hold for System F𝜖+sn in general. For instance, the following expression is well-typed but does not

take a step:

handlem1
hℓ

[ (perform op [ (m2, hℓ
[ ) ()) ̸−→

We find that the handler has marker m1 for effect ℓ
[
, but the operation requires marker m2 for

effect ℓ[ . The whole expression is judged well-typed by our type system, but it is stuck as there is

no handler marked m2 in the context.

On the other hand, the above program is not something that a user can write: it explicitly uses

handle and evidence, which are not accessible to the user. Then, the reader may wonder: is it

possible for a user to create an expression that causes failure of handler search? In particular, we

are interested in user-written expressions without handle, and any expressions reduced from them

during evaluation. For ease of reference, let us call such expressions handle-safe [Xie et al. 2020a]:

Definition 3.2. (Handle-safe Expressions)
A handle-safe expression is a well-typed, closed expression (with no term or type variables) that

either (1) contains no handle term; or (2) is itself reduced from a handle-safe expression.

Note that handle-safe expressions still allow occurrences of handle, but only ones that are reduced

from handler. Now we state our progress theorem as: if we start the evaluation from a handle-safe

expression, we will never get stuck.

Theorem 3.3. (Progress of Handle-safe System F𝜖+sn)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is a handle-safe expression, then either e1 is a value, or e1 ↦−→ e2 for
some e2.

Uniqueness of names. It might appear that rule (perform) renders the operational semantics non-

deterministic, as there can potentially be multiple occurrences of m. For the operational semantics

to be deterministic, all handlers must be unique in the evaluation context. This is not generally

true, as we can easily construct two handle with the same m:

handlem hℓ
[ (handlem hℓ

[ (perform op [ (m, hℓ
[ ) ()))

However, the above example is again not a proper user program, as it uses handle and evidence

directly. This makes us wonder whether we can avoid duplication of markers by considering only

handle-safe expressions. It turns out that the answer is “yes”: a handle construct produced from

handler always has a freshly generated marker, and a marker can never be duplicated during

evaluation:

Theorem 3.4. (Uniqueness of Names for Handle-safe F𝜖+sn)
For any handle-safe expression E1 [handlem1

hℓ
[
1

1 (E2 [handlem2
hℓ

[
2

2 e])] in System F𝜖+sn, we have
m1 ≠ m2.

4 NAMED HANDLERS UNDER SCOPED EFFECTS
We now formalize System F𝜖+u, which combines named handlers and scoped effects through

umbrella effects introduced in Section 2.6.

4.1 Syntax and Typing
The syntax of System F𝜖+u is basically the same as System F𝜖+sn. The only difference is that the

typing of effect-related constructs depends on whether the effect label belongs to named handlers

or scoped effects. Thus, we focus only on those constructs in this section. To distinguish between

named handlers and scoped effects, we use label ℓ for effects with named handlers, and label l for
scoped effects. For instance, in the case of the heap example in Figure 2b, we would have ref and

heap.
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op : ∀𝛼^ . 𝜎1→ l[ 𝜎2 ∈ Σ(l) [ ∈ 𝛼^ ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (𝜎1→ ⟨l[ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[u-perform]

Γ ⊢ops h : 𝜎 | l | 𝜖
Γ ⊢val handler𝜖 hl : (∀[. () → ⟨l[ | 𝜖⟩ 𝜎) → 𝜖 𝜎

[u-handler]

Γ ⊢ops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l[ | 𝜖⟩
Γ ⊢ handle𝜖 hl

[

e : 𝜎 | 𝜖
[u-handle]

(a) Scoped effects (l)

op : ∀𝛼^ . 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ) [ ∈ 𝛼^ ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (ev ℓ[ → 𝜎1→ ⟨l[ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[n-perform]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖
Γ ⊢val handler𝜖 hℓ : (ev ℓ[ → 𝜖 𝜎) → 𝜖 𝜎

[n-handler]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | 𝜖
Γ ⊢ handle𝜖m hℓ

[

e : 𝜎 | 𝜖
[n-handle]

(b) Named handlers (ℓ) under scoped effects (l)

Fig. 6. System F𝜖+u

The typing rules of System F𝜖+u are given in Figure 6. The first half takes care of scoped effects,

and the second half deals with named handlers. The separation of typing rules is unique to this

system; recall that, in System F𝜖+sn, scoped effects and named handlers are handled by a single

typing rule, namely rule handler in Figure 4.

Let us look at the rules for scoped umbrella effects (Figure 6a). To highlight the key ideas of

umbrella effects, we design these rules for scoped effects with unnamed handlers; extending them to

named handlers could be done easily. Since there are no handler names, operations are performed

without an evidence, and are always handled by the innermost handler of effect l[ (rule u-perform).

Actions are polymorphic over the scope [ (rule u-handler) as in System F𝜖+sn, but they now take a

unit value instead of an evidence due to the absence of names. A handle construct simply eliminates

effect l[ (rule u-handle).

We next turn our attention to the rules for named handlers (Figure 6b). Observe that, when we

perform an operation with an evidence for label ℓ (rule n-perform), we produce its umbrella effect l
that comes from the effect signature of ℓ . Since there is no ℓ effect, handlers do not discharge the

effect of their action (rules n-handler and n-handle), but they keep the effect l[ scoped under [,

which is the scope of its umbrella.

4.2 Operational Semantics
As with the typing rules, we have two sets of rules defining the operational semantics. The first

three rules in Figure 7 are for handlers with scoped effects. Rule (u-perform) reduces a handler into
a handle, while applying the action to a fresh scope variable and the unit value. Rule (u-return)
simply returns a value. Rule (u-perform) searches for the handle frame that handles the raised
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(u-handler) (handler𝜖 hl) v −→ handle𝜖 hl
[ (v [[] ()) where [ fresh

(u-return) handle𝜖 hl
[

v −→ v
(u-perform) handle𝜖 hl

[

E[perform op 𝜎 v]
−→ (f [𝜎] v k) iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ hl[

where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(l)
k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖 hl[ E[x]

(a) Scoped effects (l)

(n-handler) (handler𝜖 hℓ ) v −→ handle𝜖m hℓ
[ (v (m, hℓ

[ )) where m fresh
(n-return) handle𝜖m hℓ

[

v −→ v
(n-perform) handle𝜖m hℓ

[

E[perform op 𝜎 (m, hℓ
[ ) v]

−→ (f [𝜎] v k) iff (op ↦→ f ) ∈ hℓ[

where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ)
k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖m hℓ

[

E[x]
(b) Named handlers (ℓ) under scoped effects (l)

Fig. 7. System F𝜖+u: operational semantics

operation op. The condition op ̸∈ bop(E) means that E has no handler for the operation op, i.e., the
handler surrounding E is the innermost one.

The rest of the rules are for named handlers. Like (u-perform), rule (n-perform) reduces a handler
into a handle, but unlike (u-perform), it applies the action to an evidence with a fresh marker m.

Rules (n-return) and (n-perform) remain the same as the corresponding rules in System F𝜖+sn.

4.3 Type Soundness
Having walked through all the rules, we prove the meta theory of System F𝜖+u. We first prove

preservation:

Theorem 4.1. (Preservation of System F𝜖+u)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.
As in System F𝜖+sn, proving progress is much more challenging. In particular, the system is unaware

of any ℓ effect performed. On the other hand, scoping named handlers under an umbrella effect

provides a form of safety guarantee, which implies that the first-class heap example in Section

2.6 is type-safe. To see why this is the case, observe that the effect ref [ is associated with [. This

means the effect must be in the scope of the umbrella effect heap[ . Assuming the reference handler

makeref is private, the heap handler hheap
[

is the only place where a new reference handler may

be generated. As performing operations in ref [ produces the heap[ effect, it must have hheap
[

in

the scope, which in turn ensures that href
[

is in scope (since they are pushed right above hheap
[

).

Unfortunately, general umbrella effects may result in accidental name escaping. To illustrate the

problem, let us assume that heap has another operation bad, and consider the following program
8
:

(_f . f ()) ( handler1 1 href
[ (handle hheap[ (perform bad (); perform getref r1 ()))

8
While this example is judged ill-typed in System F𝜖+u , it illustrates the basic idea of this problem. A well-typed but

more involved example can be constructed by having (bad ↦→ _x k. (__. k () ()) ∈ hheap[ , and the program being

(_f . f ()) (handler1 1 href
[ (handle hheap[ (perform bad () ; perform getref r1 () ; __. ())) .
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where the bad operation in hheap
[

returns its resumption k, i.e., (bad ↦→ _x k. k ∈ hheap[ . In that

case, the result would unwind the handlers.

(_f . f ()) ( handler1 1 href
[ (handle hheap[ (perform bad (); perform getref r1 ()))

↦−→∗ (_f . f ()) ( handler1 1 href
[

k) where k = _x . handle hheap
[ (x; perform getref r1 ())

↦−→∗ (_f . f ()) k
If we would then invoke k, we would still resume under the heap handler hheap

[

(since k captures

hheap
[

), but the reference handler href
[

would no longer exist in the context.

↦−→∗ k ()
↦−→∗ handle hheap[ (perform getref r1 ())

At that point, performing an operation in r1 would get stuck.

To establish the progress property in System F𝜖+u, we equip the type system with two restrictions

drawn from the previous discussion on type-safe heaps (Section 2.6). These restrictions are: (1) an

ℓ handler can only be used inside a handler for its umbrella effect l (like makeref in hp); and (2)

for an umbrella effect, a resumption cannot be returned by a handler (so bad is statically rejected).

We believe the restrictions are reasonable, since the restricted system is still expressive enough to

encode first-class heaps, as heap satisfies both restrictions. With these restrictions, we can prove

progress for handle-safe expressions with general umbrella effects. For space reasons, we give the

full specification of the restrictions and its soundness proof in the appendix.

Theorem 4.2. (Progress of Handle-safe System F𝜖+u)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is a handle-safe expression in restricted System F𝜖+u, then either e1 is a
value, or e1 ↦−→ e2 for some e2.

Again, names can never be duplicated during evaluation.

Theorem 4.3. (Uniqueness of Names for Handle-safe F𝜖+u)
For any handle-safe expression E1 [handlem1

hℓ
[
1

1 (E2 [handlem2
hℓ

[
2

2 e])] in System F𝜖+u, we have
m1 ≠ m2.

5 IMPLEMENTATION
We have implemented named-and-scoped handlers and named-under-umbrella effect handlers in

the Koka compiler [Koka 2019]. In this section, we describe how Koka compiles named handlers,

and what programs we can write using them.

5.1 Compiling Named Handlers
Koka is a programming language with full support for algebraic effects and handlers. Its com-

piler compiles via standard C code using Perceus style reference counting for memory manage-

ment [Reinking et al. 2020]. To support effect handlers and first-class resumptions in C, the compiler

uses two transformations. The first one targets an evidence calculus Fev [Xie et al. 2020a], where
every function receives the current evidence vector , making the search for the innermost handler

explicit. The second one targets a polymorphic lambda calculus à la System F, using a standard

multi-prompt delimited control monad [Gunter et al. 1995] to yield to a specific handler while

capturing the resumption.

To see how Koka compiles unnamed handlers, let us look at the monadic translation of effect

constructs in Fev. The semantics of multi-prompt control is defined as follows, where every prompt

is identified with a unique marker m and can be yielded to directly.

prompt m v −→ v
prompt m E[yield m f v] −→ f v (_x . prompt m E[x])
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After the evidence transformation, where every function receives the current evidence vector

(denoted by w), the compiler translates unnamed handlers into a multi-prompt monad, which can

be directly implemented in C:

handler hℓ v w ⇝ prompt m (v () (insert (m, hℓ ) w)) with fresh m
perform opℓ v w ⇝ yield m f v iff (m, hℓ ) = findℓ w ∧ (op ↦→ f ) ∈ hℓ

Here, we see that a handler installs a prompt with a fresh marker m. The pair of a marker and

a handler, (m, h), serves as the evidence of handler h, and is inserted into the current evidence

vector w, which is passed to every function as a last argument. Performing an operation finds the

evidence for its effect in the evidence vector, and uses the marker m from the evidence to yield to

the corresponding prompt m.

The reason for calling the name of handlers evidence is apparent now: the representation (m, h)
of a handler name is exactly the evidence that is used internally. This also means that we can

directly translate all our variants of named handlers to the existing evidence calculus in Koka. The

only difference from the implementation of unnamed handlers is that we (1) leave out insertion

into the evidence vector in the handler rule, and (2) use handler names directly instead of searching

the evidence vector in the perform rule:

handler hℓ v w ⇝ prompt m (v (m, hℓ ) w) with fresh m
perform op (m, hℓ ) v w ⇝ yield m f v iff (op ↦→ f ) ∈ hℓ

Now, the action v in the handler transitions is passed the evidence (m, hℓ ) directly (as the name of

the handler) instead of a unit argument. The other argument to v, namely the evidence vector w, is
unchanged, as it is only used for regular, unnamed handlers. Correspondingly, the perform rule

does not look up the evidence in the evidence vector as for regular handlers, but instead gets it

directly (as the name of the handler). This is of course also the point where things can go wrong: if

a named handler escapes its scope, the yield to m will find no matching prompt m in the evaluation

context.

As we can imagine from the above description, there were very few changes that needed to

be made to either the Koka runtime system or compiler, as all internal translations already use

“names” (as evidence). The implementation is also consistent with the formalization presented in

this paper, except with regard to the following points:

• In addition to named handlers with scoping, the Koka implementation also supports named but

unscoped handlers. To ensure type safety, Koka inserts an exception effect that is raised if a

specific handler is not found at runtime.

• The Koka implementation does not impose the two restrictions for umbrella effects (Section 4.3).

Therefore, any umbrella operations induce an exception effect, which is raised if an umbrella

handler escapes its scope. We feel adding the exception effect is a reasonable implementation

tradeoff, but we may in the future add static checks to umbrella handler definitions to avoid this,

and we see no fundamental challenges in adding those checks. Note however that the current

treatment is already quite strict; for example, even in a pure language like Haskell, any demanded

value may raise an exception or not terminate.

5.2 Examples
5.2.1 Koka Syntax. We now show examples of Koka programs that use named handlers. To help

the reader understand the examples, we briefly introduce some of the syntax of Koka (see the Koka

manual [Koka 2020] for a full description). Here is how to write the reader effect from Section 2.1:

effect reader {
fun ask() : int

}
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named effect file {
fun read-line() : string

}

fun file(fname : path,
action: file → ⟨exn,fsys|e⟩ a
) : ⟨exn,fsys|e⟩ a

{
var ls := read-text-file(fname).lines
with f = named handler {

fun read-line() {
match(ls) {

Nil { "" }
Cons(x,xx) { ls := xx; x }

}
}

}
action(f)

}

fun main() {
with f1 = file("foo.txt".path)
with f2 = file("bar.txt".path)
println( f1.read-line() + "," +

f2.read-line() )
}

named scoped effect file⟨s⟩ {
fun read-line() : string

}

fun file(fname : path,
action: forall⟨s⟩ file⟨s⟩ → ⟨scope⟨s⟩,fsys|e⟩ a
) : ⟨fsys|e⟩ a

{
var ls := read-text-file(fname).lines
with f = named handler {

fun read-line() {
match(ls) {

Nil { "" }
Cons(x,xx) { ls := xx; x }

}
}

}
action(f)

}

public fun main() {
with f1 = file("foo.txt".path)
with f2 = file("bar.txt".path)
println( f1.read-line() + "," +

f2.read-line() )
}

Fig. 8. Files as named handlers in Koka: plain named handler on the left, and named-and-scoped

on the right.

fun main() {
with handler {

fun ask(){ 1 }
}
ask().println

}

The block startingwith effect reader declares a new effect type readerwith a single ask operation. The

left-associative dot syntax in ask().println is used to chain function applications, and is equivalent

to println(ask()). In Koka, we can call operations directly as regular functions, without using the

perform keyword.

The with keyword is not specific to handlers; it is just convenient sugar to wrap the statements

following it into the body of an anonymous function argument. It is defined as:

with f (e1, . . ., ei) ⇝ f (e1, . . ., ei, fn(){ ⟨body⟩ })
⟨body⟩

There is a binding variant as well:

with x = f (e1, . . ., ei) ⇝ f (e1, . . ., ei, fn(x){ ⟨body⟩ })
⟨body⟩

The first variant is often used for unnamed handlers. In the reader example above, the body of

main desugars to (handler{...})(fn(){ println(ask()) }). The expression handler { ... } returns a

function that receives an action, which, in this case, is a computation that prints the result of ask().
The second variant, on the other hand, is useful for named handlers, as we will see shortly.

Finally, the implementation of the ask operation is written as fun ask(){ 1 } in the handler. The

fun keyword is used for operations that are tail-resumptive; such operations implicitly resume with

the final result. For the more general case, Koka provides a separate keyword control, which allows
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explicit resumptions as in our formalism. In the reader example, we use fun to simplify the program,

but we can also write control ask(){ resume(1) } and obtain the same result.

5.2.2 Files as Named Handlers. Figure 8 shows how to model multiple opened files using named

handlers. The two programs implement the same example; the difference is that the one on the

left uses non-scoped named handlers, while the right one uses scoped named handlers. In both

programs, the handler definition in file opens a file using library functions (causing the fsys effect),

and stores its content as a list of lines using locally isolated state (declared with the var keyword).

Each time the operation read-line is performed, the handler either returns the first line of the file,

or returns the empty string when it reaches the end of the file. The main function uses the binding

with to bind f1 and f2 to two file handlers.

Note the difference in the type signatures of the file handling function between the two programs.

The named but unscoped handler on the left has an exn effect, as its operations can raise an exception

if they are performed outside of their handlers scope. In contrast, the named and scoped handler on

the right has no exn effect, as it guarantees well-scopedness through the rank-2 s scope parameter.

By looking at the type of the action in the scoped handler program, we further find a difference

from the formal systems. In our formalization, we would use type ev file[ for the handler name and

effect type file[ for the body effect. In the Koka implementation, on the other hand, we use file⟨s⟩
for the handler name and a generic effect type scope⟨𝜎⟩ for the body effect. We believe that the

latter is more intuitive for programmers, but it works effectively the same since file⟨s⟩ is internally
an alias for evidence.

The two implementations in Figure 8 behave differently when a name escapes its scope. Consider

the following use of the file handler.

fun wrong-escape() {
with f = file("test.txt".path)
fn(){ f.read-line() }

}

The program returns an anonymous function that captures the handler name f, which thus escapes

its scope. The scoped handler implementation rejects this program outright with a static type error

(as the action is no longer polymorphic in the scoped type parameter). In contrast, the unscoped

handler implementation accepts the program but will raise an exception when applying the returned

function.

5.2.3 First-class heap. Figure 9 shows a complete encoding of a first-class heap with dynamic muta-

ble reference cells using umbrella effects, corresponding to the example in Figure 2b (Section 2.6.1).

The implementation here is a bit more general, as ref is now a polymorphic resource. Notice also

the rank-2 type for the action in the hp handler.

In the example, the heap effect is declared as a scoped but unnamed effect using the scoped keyword.

Since it is scoped, the type of heap takes a scoped type variable s (as in heap⟨s⟩), and the handlers

for heap are rank-2 polymorphic in the scoped type parameter. The ref effect is declared as a named

effect but uses in keyword; this makes it a named effect under the umbrella heap effect and also

modifies the signature of its operations to be in the heap⟨s⟩ effect (instead of the ref effect). Finally,

the heap handler implements the new-ref operation using control, so it can pass the resumption

function resume as a first-class parameter to the make-ref handler for references.

6 RELATEDWORK
Algebraic effects and handlers. The algebraic account of effects was first given by Plotkin and

Power [2003], and later extended by Plotkin and Pretnar [2009] with handlers. In the subsequent

years, we have seen a number of programming languages dedicated to effect handlers, including
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scoped effect heap⟨s⟩ {
control new-ref( init : a ) : ref⟨s,a⟩ /* a → ⟨heap⟨s⟩|e⟩ ref⟨s,a⟩ */

}

named effect ref⟨s,a⟩ in heap⟨s⟩ {
fun get() : a /* (ref⟨s,a⟩) → ⟨heap⟨s⟩,exn⟩ a */
fun set( value : a ) : () /* (ref⟨s,a⟩,a) → ⟨heap⟨s⟩,exn⟩ a */

}

fun make-ref(init,action) {
var s := init
with r = named handler {

fun get() { s }
fun set(x){ s := x }

}
action(r)

}

fun hp(action : forall⟨s⟩ () → ⟨heap⟨s⟩|e⟩ a): e a {
with handler {

control new-ref(init){ make-ref(init,resume) }
}
action()

}

fun main() {
with hp
val r1 = new-ref(1) /* ref⟨s,int⟩ */
val r2 = new-ref(2) /* ref⟨s,int⟩ */
println( r1.get() + r2.get() )

}

Fig. 9. First-class Heap in Koka

Eff [Pretnar 2015], Koka [Leijen 2017], Frank [Lindley et al. 2017], Links [Hillerström and Lind-

ley 2016], Multicore OCaml [Dolan et al. 2017], and Effekt [Brachthäuser et al. 2020]. Recent work

by Wu et al. [2014] introduces scoped syntax to control the interaction between effects, but it

is fundamentally different from the scoped effects in our systems. Our systems are syntactically

similar to the effect system of Xie et al. [2020a], which is based on System F𝜔 . The difference is that
we have named handlers and scoped effects as additional features. The concept of umbrella effects

comes from the work by Leijen [2018]. The novelty of our work is that we formalize umbrella

effects as a combination of named handlers and scoped effects.

Type systems for named handlers. The type-safe treatment of named handlers was first considered

by Bauer and Pretnar [2014]. They design a type system for an old version of the Eff language [Pret-

nar 2015], which features effect instances. Effect instances correspond to handler names, and can be

used as first-class values. However, the formalized language does not support dynamic creation of

effect instances, which is possible in our umbrella effect calculus. Also, the type system relies on a

form of dependent typing, since it mentions effect instances in effect types.

More recently, Biernacki et al. [2019] and Zhang and Myers [2019] independently solve the

challenge with typing named handlers. As we discussed earlier, they treat names as second-class

values, and ensure well-scopedness of names by annotating every operation type with a handler

name and augmenting every typing judgment with a name context. Our approach is more powerful

and principled: we treat handler names as first class, and solve the scoping issue using standard

rank-2 types.
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Control operators with prompt tags. The notion of named handlers is closely related to multi-

prompt delimited control operators [Gunter et al. 1995; Kiselyov 2012; Sitaram 1993], which allow

one to specify the association between the control operator and the delimiter through prompt tags.
The connection implies that prompt tags suffer from the same problem with handler names: without

special care, prompt tags may escape their scope in the course of evaluation. However, none of

the existing type systems for multi-prompt control operators statically ensures well-scopedness of

prompt tags [Gunter et al. 1995; Kiselyov 2012; Takikawa et al. 2013].

Rank-2 polymorphism and encapsulation. The concept of scoped effects has a close connection

with the monadic encapsulation of Haskell, more precisely, the runST function in the ST monad [Pey-

ton Jones and Launchbury 1995]. runST has a rank-2 polymorphic type, which guarantees that

references cannot escape the scope of the monad [Launchbury and Peyton Jones 1994]. Timany et

al. [2017] present a logical relations model of a higher-order functional programming language

featuring a Haskell-style ST monad type with runST, and prove that programs encapsulated by

runST are independent of state. It has also been proved that programs encapsulated by runST are

independent of state [Timany et al. 2017].

Reference cells as algebraic effects. An algebraic-effect-based implementation of reference cells

has previously described by Kiselyov and Sivaramakrishnan [2017] as an application of dynamic
effects. The implementation is in OCaml, and uses a library for multi-prompt delimited control

operators [Kiselyov 2012]. As OCaml does not have effect typing, scoping of handler names is not

statically enforced.

7 CONCLUSION
We explored the design space of named effect handlers, where names are first-class and well-scoped.

The first property is obtained by using regular lambdas to bind names, while the latter is enforced by

assigning handlers a rank-2 type. We look forward to investigating new programming techniques

enabled by named effect handlers.
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⊢wf 𝛼^ : ^
[wf-var]

⊢wf c^ : ^
[wf-con]

⊢wf 𝜎1 : ^1→ ^2 ⊢wf 𝜎2 : ^1

⊢wf 𝜎1 𝜎2 : ^2
[wf-app]

⊢wf 𝜎1 : ∗ ⊢wf 𝜎2 : ∗ ⊢wf 𝜖 : eff

⊢wf 𝜎1→ 𝜖 𝜎2
[wf-arrow]

⊢wf 𝜎 : ∗
⊢wf ∀𝛼^ . 𝜎 : ∗

[wf-forall]

⊢wf ev ℓ[ : ∗
[wf-total]

⊢wf ℓ[ : lab
[wf-total]

⊢wf ⟨⟩ : eff
[wf-total]

⊢wf ℓ[ : lab ⊢wf 𝜖 : eff

⊢wf ⟨ℓ[ | 𝜖⟩ : eff
[wf-row]

Fig. 10. Well-kindedness for System F𝜖+sn.

APPENDIX
A WELL-KINDEDNESS IN SYSTEM F𝜖+sn

To distinguish between value types, effect labels, effect rows, and scopes, we define a set of kinding

rules for each system. In Figure 10, we present the kinding rules for System F𝜖+sn. We define similar

rules for other systems as well.

B PLAIN NAMED EFFECT HANDLER CALCULUS
This section introduces System F𝜖+n, which has plain named handlers without scoping, as outlined

in Section 2.3.

B.1 Typing Rules
The typing rules of System F𝜖+n are given in Figure 11a. As can be seen from rule perform, per-

forming an operation with label ℓ requires an evidence of effect ℓ . Dually, n-handler creates the

initial evidence and passes it to its action.

Figure 11b gives the equivalence of row-types in System F𝜖+n.
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op : ∀𝛼^ . 𝜎1→ ℓ 𝜎2 ∈ Σ(ℓ) ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (ev ℓ → ⟨ℓ | 𝜖⟩ 𝜎1→ ⟨ℓ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[perform]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖
Γ ⊢val handler𝜖 hℓ : (ev ℓ → ⟨ℓ | 𝜖⟩ 𝜎) → 𝜖 𝜎

[handler]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | ⟨ℓ | 𝜖⟩
Γ ⊢ handle𝜖m hℓ e : 𝜎 | 𝜖

[handle]

(a) Typing

𝜖 ≡ 𝜖
𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3
𝜖1 ≡ 𝜖2

⟨ℓ1 | ℓ2 | 𝜖1⟩ ≡ ⟨ℓ2 | ℓ1 | 𝜖2⟩
𝜖1 ≡ 𝜖2

⟨ℓ | 𝜖1⟩ ≡ ⟨ℓ | 𝜖2⟩
(b) Equivalence of row-types

(handler) (handler𝜖 hℓ ) v −→ handle𝜖m hℓ · v (m, hℓ ) where m fresh
(return) handle𝜖m hℓ · v −→ v
(perform) handle𝜖m hℓ · E · perform op 𝜎 (m, hℓ ) v −→ f [𝜎] v k iff (op ↦→ f ) ∈ h

where op : ∀𝛼. 𝜎1→ ℓ 𝜎2 ∈ Σ(l)
k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x

(c) Operational Semantics

Fig. 11. System F𝜖+n: Named handlers.

B.2 Operational Semantics
The operational semantics in Figure 11c shows how names are generated and used in System

F𝜖+n. A handler (rule (handler)) creates a unique marker m, and passes an evidence (m, hℓ ) (i.e.,
the name) to the action v. The evidence is used by perform (rule (perform)) to find the matching

handler handle𝜖m in the evaluation context.

B.3 Preservation and Uniqueness
Let us now discuss the meta theory of System F𝜖+n. System F𝜖+n enjoys the preservation property.

Theorem B.1. (Preservation)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.
However, F𝜖+n does not have the progress property. That is, a well-typed expression may get stuck

during evaluation. Recall the example shown in the beginning of Section 2.4:

reader 1 (_x . (reader 2 (_y. (_z. perform ask y () ))) ())
↦−→∗ handlex { ask ↦→ _y. _k. k 1 }

(handley { ask ↦→ _y. _k. k 2 } (_z. perform ask y ()) ())
↦−→∗ handlex { ask ↦→ _y. _k. k 1 } ((_z. perform ask y ()) ())
↦−→∗ handlex { ask ↦→ _y. _k. k 1 } (perform ask y ())
̸↦−→
On the other hand, for handle-safe expressions, we can prove that names can never be duplicated

in evaluation contexts.
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op : ∀𝛼^ . 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ) [ ∈ 𝛼^ ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (𝜎1→ ⟨ℓ[ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[perform]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 [ ̸∈ fv(𝜖, 𝜎)
Γ ⊢val handler𝜖 hℓ : (∀[. () → ⟨ℓ[ | 𝜖⟩ 𝜎) → 𝜖 𝜎

[handler]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | ⟨ℓ[ | 𝜖⟩
Γ ⊢ handle𝜖 hℓ

[

e : 𝜎 | 𝜖
[handle]

(a) Typing

𝜖 ≡ 𝜖
𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3
ℓ1 ≠ l2 𝜖1 ≡ 𝜖2

⟨ℓ[1
1
| ℓ[2

2
| 𝜖1⟩ ≡ ⟨ℓ[2

2
| ℓ[1

1
| 𝜖2⟩

𝜖1 ≡ 𝜖2
⟨ℓ[ | 𝜖1⟩ ≡ ⟨ℓ[ | 𝜖2⟩

(b) Equivalence of row-types

(handler) (handler𝜖 hℓ ) v −→ handle𝜖 hℓ
[ · v [[] () where [ fresh

(return) handle𝜖 hℓ
[ · v −→ v

(perform) handle𝜖 hℓ
[ · E · perform op 𝜎 v −→ f [𝜎] v k iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h

where op : ∀𝛼. 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ)
k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖 hℓ[ · E · x

(c) Operational Semantics

Fig. 12. F𝜖+s: scoped effects

Theorem B.2. (Uniqueness of Handlers for Handle-safe System F𝜖+n)
For any handle-safe expression E1 [handle𝜖1m1

hℓ1 (E2 [handle𝜖2m2
hℓ2 e0])], in System F𝜖+n, we have

m1 ≠ m2.

C PLAIN SCOPED EFFECT CALCULUS
This section introduces System F𝜖+s, which has plain scoped effect without named handlers, as

outlined in Section 2.4.

C.1 Typing Rules
Figure 12a shows the typing rules. Rule handler is the key to ensuring well-scopedness of effects.

It derives the type 𝜎 | ℓ | 𝜖 of the handler h, and concludes with a rank-2 polymorphic type with

[ ̸∈ ftv(𝜖, 𝜎), i.e., such that [ cannot escape through either 𝜖 or 𝜎 .

Scoped effects also require some modifications to the row equivalence rules, which we present

in Figure 12b. In particular, row commutativity only swaps distinct labels; it does not swap same

labels with distinct scope variables. The design is crucial to maintaining the dynamic untyped

semantics of effect handlers: after erasing all types, we can still evaluate the program and obtain

the same result. This may not hold if row equivalence would depend on scope variables, e.g.:

handler𝜖 hℓ
1
(Λ[1. _ ⟨ℓ

[
1

1
|𝜖⟩

_.

(handler⟨ℓ[1 |𝜖⟩ hℓ
2
(Λ[2. _ ⟨ℓ

[
2 |ℓ[1 |𝜖⟩

_. perform op [1 ())))
This program is rejected by the type system: the inner action performs an effect with scope [1,

while being surrounded by an intervening handler with scope [2. This leads to a mismatch between

the actual effect (⟨ℓ[1 | ℓ[2 | 𝜖⟩) and the expected effect (⟨ℓ[2 | ℓ[1 | 𝜖⟩) of the action, to which the
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commutativity rule is not applicable. If row commutativity would take scoped variables into account

and allow the swap, then static typing would conclude that the operation is handled by the first

handler ([1), but under the scope-erasure semantics the innermost handler ([2) would actually

handle the operation! Note however that we can still use [1 to handle the operation under the

current rules, by using mask explicitly:

handler𝜖 hℓ
1
(Λ[1. _ ⟨ℓ

[
1

1
|𝜖⟩

_.

(handler⟨ℓ[1 |𝜖⟩ hℓ
2
(Λ[2. _ ⟨ℓ

[
2 |ℓ[1 |𝜖⟩

_.

maskℓ
[
2 (perform op [1 ()))))

C.2 Operational Semantics
Scopes play an essential role during typing, but not during evaluation – they are computationally

irrelevant. Thus, if we erase all scope variables, abstractions and applications, we can treat handlers
as normal unscoped handlers. In this work, we take a different approach: we give direct operational

rules for scoped effects.

We define the direct operational semantics of System F𝜖+s in Figure 12c. The key rule is (handler).
As we saw in the typing rule of handler, the handled action v requires a scope variable. Hence, we

create a fresh scope variable [, pass it to v, and continue with handle. Another important rule is

(perform).
One thing to note here is that, while scopes cannot escape into the return type or effect of

handler, they may still appear free in the return value.

handler𝜖 {op ↦→ Λ[. __. (_x . (Λ[1. 1) [) }ℓ
(Λ[. _ ⟨ℓ[ |𝜖⟩ _. perform op [ ())

↦−→∗ (_x . (Λ[1. 1) [) where [ fresh

Nevertheless, the scope variable [ cannot be used, that is, no expression can return values parame-

terized by [, or perform operations in [, since it is impossible to perform an operation without

leaking its scope into the effect type. The above example type-checks as it eliminates the scope

variable via an unused type application.

C.3 Type Soundness
We can establish the type soundness of System F𝜖+s by proving preservation and progress.

Theorem C.1. (Preservation of System F𝜖+s)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

Theorem C.2. (Progress of System F𝜖+s)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ then either e1 is a value, or e1 ↦−→ e2.

D MASKING EFFECTS
Masking is a natural extension of our system. It is also called inject [Leijen 2016] or lift [Biernacki
et al. 2017] in the literature, but we prefer mask [Convent et al. 2020] as it conveys an operational

meaning that one makes a specific handler invisible to an operation. In contrast, inject and lift take
a type-theoretic view, reflecting the fact that the effect type is extended in the conclusion of the

typing rule.

Since named handlers provide an elegant alternative to masking, here we consider masking

mainly for unnamed handlers (Section 2.1), including scoped effects with unnamed handlers (System

F𝜖+s and umbrella effects in System F𝜖+u).
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Expression e ::= . . . | maskl e (effect masking)

Evaluation Context E ::= . . . | maskl E

Γ ⊢ e : 𝜎 | 𝜖
Γ ⊢ maskl e : 𝜎 | ⟨l | 𝜖⟩

[mask]

(mask) maskl v −→ v
(perform) handle𝜖 hl · E · perform op 𝜎 v −→ f [𝜎] v k

iff 0-freel (E) ∧ (op ↦→ f ) ∈ h

0-freel (□)
n-freel (E)
n-freel (v E)

n-freel (E)
n-freel (E e)

(n+1)-free(E)
n-freel (handlel · E)

n-free(E) iff l ≠ l′

n-freel (handlel′ · E)

n-freel (E)
(n+1)-freel (maskl · E)

n-freel (E) l ≠ l′

n-freel (maskl
′ · E)

Fig. 13. Effect Masking

Figure 13 defines the type and operational rules for mask (which can be extended straightfor-

wardly to scoped effects). The extension is fairly standard. The (mask) rule is an identity, but the

rules for (perform) searches for the innermost hanlder frame for the corresponding effect using the

notion of n-free contexts [Biernacki et al. 2017], instead of bop. The notation n-freel (E) means that

an operation of label l would only be handled by n + 1-th handle frame of label l outside E. Note
that mask causes its innermost handler to be ignored. So in rule perform, we require 0-freel (E),
which says that an operation of label l would be handled by the first handle frame of label l outside
E.

E TYPE-THEORETICALLY SOUND UMBRELLA EFFECTS
This section introduces restricted System F𝜖+u (Section 4.3), which statically ensures that names

scoped under umbrella effects cannot escape for general umbrella effects.

E.1 Typing Rules
Figure 14a shows the rules of the scoped umbrella effects. Rules u-perform, u-handler and u-handle

are basically the same as the corresponding rules in System F𝜖+u, but indirectly uses a new judgment

⊢lops in rule u-ops. This judgment relies on two new concepts: the resume effect r[ , and the umbrella
witness umb [ ⟨r[ | 𝜖⟩ 𝜎 , highlighted in gray.

The resume effect r[ is assigned to the resumption argument k. As it is polymorphic in [, it

effectively prevents k from escaping the scope of the operation clause through either 𝜖 or 𝜎 ; it must

be used directly in the operation clause. This guarantee is needed for type soundness.

The umbrella witness umb [ ⟨r[ | 𝜖⟩ 𝜎 is introduced as an alternative to scoped effects. Since we

are using a specific [ of the umbrella effect, we cannot prevent name escaping by abstracting over

[ as in System F𝜖+s and System F𝜖+sn. With the umbrella witness, we can guarantee [ ̸∈ ftv(𝜖, 𝜎),
and rule out programs such as (handler hℓ umb[ (_ev. ev)).
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op : ∀𝛼^ . 𝜎1→ l[ 𝜎2 ∈ Σ(l) [ ∈ 𝛼^ ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (𝜎1→ ⟨l[ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[u-perform]

Γ ⊢lops h : 𝜎 | l | 𝜖
Γ ⊢val handler𝜖 hl : (∀[. () → ⟨l[ | 𝜖⟩ 𝜎) → 𝜖 𝜎

[u-handler]

Γ ⊢lops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l[ | 𝜖⟩
Γ ⊢ handle𝜖 hl

[

e : 𝜎 | 𝜖
[u-handle]

opi : ∀𝛼 i . 𝜎1→ l[ 𝜎2 ∈ Σ(l)
Γ ⊢val fi : ∀𝛼 i . umb [ ⟨r[ | 𝜖⟩ 𝜎 → 𝜎1→ ⟨r[ | 𝜖⟩ (𝜎2→ ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎

Γ ⊢lops { op1→ f1, . . ., opn→ fn } : 𝜎 | l | 𝜖
[u-ops]

(a) Typing: scoped effects with static scoped resumptions

op : ∀𝛼^ . 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ) [ ∈ 𝛼^ ⊢wf 𝜎 : ^

Γ ⊢val perform𝜖 op 𝜎 : (ev ℓ[ → 𝜎1→ ⟨l[ | 𝜖⟩ 𝜎2) [𝛼 :=𝜎]
[n-perform]

Γ ⊢ℓops h : 𝜎 | ℓ | 𝜖
Γ ⊢val handler𝜖 hℓ : umb [ 𝜖 𝜎 → (ev ℓ[ → 𝜖 𝜎) → 𝜖 𝜎

[n-handler]

Γ ⊢ℓops h : 𝜎 | ℓ | 𝜖 Γ ⊢ e : 𝜎 | 𝜖
Γ ⊢ handle𝜖m hℓ

[

e : 𝜎 | 𝜖
[n-handle]

opi : ∀𝛼 i . 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ)
Γ ⊢val fi : ∀𝛼 i . ⟨r[ | 𝜖⟩ (𝜎2→ ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎

Γ ⊢ℓops { op1→ f1, . . ., opn→ fn } : 𝜎 | ℓ | 𝜖
[n-ops]

(b) Typing: named handlers under scoped effects

Fig. 14. System F𝜖+u

Figure 14b defines the typing rules for named handlers. The rules are the similar to the cor-

responding rules in System F𝜖+u except for rule n-handler, where handler requires an umbrella

witness. Again we must prevent any resumption of a named handler from escaping, as it may

unwind through other named handlers above it. We use the judgment⊢ℓops, which is similar to⊢lops
with the resume effect, but without the umbrella witness.

E.2 Operational Semantics
Now we turn to the operational semantics (Figure 15). Note that the gray parts are specific to

restricted System F𝜖+u.
Rule (u-perform) and rule (n-perform) define the behavior of the resume effect. Given the original

resumption k, the new resumption k′ uses maskr
[

(Section D) to add the resume effect. Evaluation

of f then has r[ in its return effect. Therefore, we enclose it by handle with an empty handler to

eliminate the resume effect. Moreover, rule (u-perform) generates an umbrella witness umb[ , and
passes it as the first argument to the operation implementation f . This witness is used by rule
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(u-handler) (handler𝜖 hl) v −→ handle𝜖 hl
[ · v [[] () where [ fresh

(u-return) handle𝜖 hl
[ · v −→ v

(u-perform) handle𝜖 hl
[ · E · perform op 𝜎 v

−→ handle𝜖 { }r[ (f [𝜎] umb[ v k′) iff 0-freel (E) ∧ (op ↦→ f ) ∈ h
where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(l)

k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x
k′ = _ ⟨r

[ |𝜖⟩x :𝜎2 [𝛼 :=𝜎] . maskr
[

k x

(a) Scoped effects with static scoped resumptions

(n-handler) (handler𝜖 hℓ ) umb[ v −→ handle𝜖m hℓ
[ · v (m, hℓ

[ ) where m fresh
(n-nreturn) handle𝜖m hℓ

[ · v −→ v
(n-perform) handle𝜖m hℓ

[ · E · perform op 𝜎 (m, h) v
−→ handle𝜖 { }r[ (f [𝜎] v k) iff (op ↦→ f ) ∈ h

where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ)
k = _𝜖x :𝜎2 [𝛼 :=𝜎] . handle𝜖m h · E · x
k′ = _ ⟨r

[ |𝜖⟩x :𝜎2 [𝛼 :=𝜎] . maskr
[

k x

(b) Named handlers under scoped effects

Fig. 15. System F𝜖+u: operational semantics

(n-handler), which associates the label ℓ of the handler with the scope [ of the witness. Note that,

just like scopes, all umbrella witnesses can be replaced by an arbitrary value (e.g., unit) after type

checking.

E.3 Type Soundness
Preservation of restricted System F𝜖+u is similar to that of System F𝜖+u.

Theorem E.1. (Preservation of Restricted System F𝜖+u)
If ∅ ⊢ e1 : 𝜎 | ⟨⟩ and e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.
Proving progress is much more challenging. We have seen that System F𝜖+u is more than simply

putting System F𝜖+s and F𝜖+n together. In particular, the rules in this system incorporate umbrella

witnesses and resume effects. The reason why we have these two features is that they provide one
way to ensure well-scopedness of dynamically created names. Specifically, for dynamically created

names to be well-scoped, we must ensure that evidence cannot leak into the handler’s return

type, and umbrella handlers cannot let evidence escape (e.g., bad operation). We have found that

these two features are sufficient to prove progress for handle-safe System F𝜖+u; any other possible

formalizations must include features of similar forms. We give a detailed proof in Section F.7.

The statement of progress of handle-safe restricted System F𝜖+u has been stated as Theorem 4.2

in the paper.

F PROOFS
The proofs of all calculi are based on the proofs for System F𝜖 in [Xie et al. 2020b, Section C.1], as

many syntactic constructs such as variables and applications are the same as that system. Thus,

for extensions we often only discuss the new cases, i.e., cases related to the new algebraic effect

constructs.
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Γ ⊢ec E : 𝜎 → 𝜎 ′ | 𝜖

Γ ⊢ec □ : 𝜎 → 𝜎 | 𝜖
[cempty]

Γ ⊢ e : 𝜎2 | 𝜖
Γ ⊢ec E : 𝜎1→ (𝜎2→𝜖 𝜎3) | 𝜖

Γ ⊢ec E e : 𝜎1→ 𝜎3 | 𝜖
[capp1]

Γ ⊢val v : 𝜎2→𝜖 𝜎3
Γ ⊢ec E : 𝜎1→ 𝜎2 | 𝜖
Γ ⊢ec v E : 𝜎1→ 𝜎3 | 𝜖

[capp2]

Γ ⊢ec E : 𝜎1→∀𝛼. 𝜎2 | 𝜖
Γ ⊢ec E [𝜎] : 𝜎1→ 𝜎2 [𝛼 :=𝜎] | 𝜖

[ctapp]

Γ ⊢ops hℓ : 𝜎 | ℓ | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨ℓ | 𝜖⟩

Γ ⊢ec handle𝜖 hℓ E : 𝜎1→ 𝜎 | 𝜖
[chandle]

Fig. 16. Evaluation context typing in System F𝜖

F.1 Evaluation Context Typing
In this section, we discuss the typing rules for evaluation contexts in System F𝜖 , while the typing
rules for evaluation contexts in other systems are straightforward extensions. Lemmas from F𝜖

regarding evaluation context typing [Xie et al. 2020b, Section C.1.2] can be easily generalized to all

extensions, since all evaluation contexts share similar definitions.

F.1.1 Evaluation Context Typing. Figure 16 presents the evaluation context typing in System F𝜖 .
The corresponding rules for all other systems are straightforward extensions of this system, with

slightly different chandle.

In System F𝜖+n

Γ ⊢ops h : 𝜎 | ℓ | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨ℓ | 𝜖⟩

Γ ⊢ec handle𝜖m hℓ E : 𝜎1→ 𝜎 | 𝜖
[chandle]

In System F𝜖+s

Γ ⊢ops h : 𝜎 | ℓ | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨ℓ[ | 𝜖⟩

Γ ⊢ec handle𝜖 hℓ
[

E : 𝜎1→ 𝜎 | 𝜖
[chandle]

In System F𝜖+sn

Γ ⊢ops h : 𝜎 | ℓ | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨ℓ[ | 𝜖⟩

Γ ⊢ec handle𝜖m hℓ
[

E : 𝜎1→ 𝜎 | 𝜖
[chandle]

In System F𝜖+u
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Γ ⊢ops h : 𝜎 | l | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | ⟨l[ | 𝜖⟩

Γ ⊢ec handle𝜖 hl
[

E : 𝜎1→ 𝜎 | 𝜖
[chandle-scoped]

Γ ⊢ops h : 𝜎 | ℓ | 𝜖
Γ ⊢ec E : 𝜎1→ 𝜎 | 𝜖

Γ ⊢ec handle𝜖m hℓ
[

E : 𝜎1→ 𝜎 | 𝜖
[chandle-named]

F.1.2 Notations.
Definition F.1. (Extraction of Labels)
We define the extraction of labels as ⌈E⌉ℓ (𝜖). When given a context Ewhose effect is 𝜖 , the extraction
extends 𝜖 with labels handled by the handlers in E. Note that the ℓ in the notation does not represent

any specific label.

⌈□⌉ℓ (𝜖) = 𝜖

⌈E e⌉ℓ (𝜖) = ⌈E⌉ℓ (𝜖)
⌈v E⌉ℓ (𝜖) = ⌈E⌉ℓ (𝜖)
⌈handle𝜖 hℓ E⌉ℓ (𝜖)= ⌈E⌉ℓ (⟨ℓ | 𝜖⟩)

In System F𝜖+s

⌈handle𝜖 hℓ[ E⌉ℓ (𝜖)= ⌈E⌉ℓ (⟨ℓ[ | 𝜖⟩)
In System F𝜖+n

⌈handle𝜖 hℓ E⌉ℓ (𝜖)= ⌈E⌉ℓ (⟨ℓ | 𝜖⟩)
In System F𝜖+sn

⌈handle𝜖 hℓ[ E⌉ℓ (𝜖)= ⌈E⌉ℓ (⟨ℓ[ | 𝜖⟩)
In System F𝜖+u

⌈handle𝜖 hℓ[ E⌉ℓ (𝜖)= ⌈E⌉ℓ (⟨ℓ[ | 𝜖⟩)
⌈handle𝜖 hℓ E⌉ℓ (𝜖) = ⌈E⌉ℓ (𝜖)

Definition F.2. (Dot Notation)
For conciseness, we often use the dot notation to compose and decompose evaluation contexts.

E · e ≜ E[e]
□ e · E ≜ E e
v □ · E ≜ v · E ≜ v E
handle h □ · E ≜ handle h · E ≜ handle h E

F.1.3 Lemmas.
Lemma F.3. (Evaluation context typing)
If ∅⊢ec E : 𝜎1→ 𝜎2 | 𝜖 and ∅ ⊢ e : 𝜎1 | ⟨⌈E⌉ℓ (𝜖)⟩,
then ∅ ⊢ E[e] : 𝜎2 | 𝜖 .

Lemma F.4. (Effect corresponds to the evaluation context)
If ∅ ⊢ E[e] : 𝜎 | 𝜖 , then there exists 𝜎1 such that

∅ ⊢ec E : 𝜎1→ 𝜎 | 𝜖 , and ∅ ⊢ e : 𝜎1 | ⟨⌈E⌉ℓ | 𝜖⟩.

F.2 Values are Effect-free
The following lemma holds for all systems:
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Lemma F.5. (Values can have any effect)
If Γ ⊢ v : 𝜎 | 𝜖1, then Γ ⊢ v : 𝜎 | 𝜖2.

Proof. (of Lemma F.5) Follows directly by val. □
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F.3 Proofs for System F𝜖+n

F.3.1 Preservation.
Lemma F.6. (Small Step Preservation)
If ∅ ⊢ e1 : 𝜎 | 𝜖 and e1 −→ e2, then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (of Lemma F.6) By induction on reduction. Here we show the cases involving reduction of

named handlers.

case (handler𝜖 hℓ ) v −→ handle𝜖 hℓ (v (m, hℓ )) with [ fresh.
∅ ⊢ (handler𝜖 h) v : 𝜎 | 𝜖 given

∅ ⊢ handler𝜖 h : (ev ℓ → ⟨ℓ | 𝜖⟩ 𝜎) → 𝜖 𝜎 | 𝜖 app

∅ ⊢ v : ev ℓ → ⟨ℓ | 𝜖⟩ 𝜎 | 𝜖 above

∅ ⊢val handler𝜖 hℓ : (ev ℓ → ⟨ℓ | 𝜖⟩ 𝜎) → 𝜖 𝜎 val

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 handler

∅ ⊢ v : ev ℓ → ⟨ℓ | 𝜖⟩ 𝜎 | ⟨ℓ | 𝜖⟩ Lemma F.5

∅ ⊢ v (m, hℓ ) : 𝜎 | ⟨ℓ | 𝜖⟩ app

∅ ⊢ handle𝜖m hℓ (v (m, hℓ )) : 𝜎 | 𝜖 handle

case handle𝜖m h · E · perform op 𝜎 (m, h) v −→ f [𝜎] v k.
op ↦→ f ∈ h given

op : ∀𝛼. 𝜎1→ ℓ 𝜎2 ∈ Σ(ℓ) given

k = _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x given

∅ ⊢ handle𝜖 h · E · perform op 𝜎 (m, h) v : 𝜎 | 𝜖 given

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 rule handle

∅ ⊢val f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 ops

∅ ⊢ f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 val

∅ ⊢ f [𝜎] : 𝜎1 [𝛼 :=𝜎] → 𝜖 (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 tapp

∅ ⊢ perform op 𝜎 (m, h) v : 𝜎2 [𝛼 :=𝜎] | ⌈handle𝜖 h E⌉ℓ (𝜖) Lemma F.4

∅ ⊢ec handle𝜖 h · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 above

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | ⌈handle𝜖 h E⌉ℓ (𝜖) app and tapp

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | 𝜖 Lemma F.5

∅ ⊢ f [𝜎] v : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 app

x :𝜎2 [𝛼 :=𝜎] ⊢val x : 𝜎2 [𝛼 :=𝜎] var

x :𝜎2 [𝛼 :=𝜎] ⊢ x : 𝜎2 [𝛼 :=𝜎] | 𝜖 val

x :𝜎2 [𝛼 :=𝜎] ⊢ec handle𝜖 · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 weakening

x :𝜎2 [𝛼 :=𝜎] ⊢ handle𝜖 h · E · x : 𝜎 | 𝜖 Lemma F.3

∅ ⊢val _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 abs

∅ ⊢ _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 | 𝜖
∅ ⊢ f [𝜎] v k : 𝜎 | 𝜖 app

□

Proof. (Of Theorem B.1)
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e1 = E[e′
1
] (step)

e′
1
−→ e′

2
above

e2 = E[e′
2
] above

∅ ⊢ E[e′
1
] : 𝜎 | ⟨⟩ given

∅ ⊢ e1 : 𝜎1 | ⌈E⌉ℓ (⟨⟩) Lemma F.4

∅ ⊢ E : 𝜎1→ 𝜎 | ⟨⟩ above

∅ ⊢ e2 : 𝜎1 | ⌈E⌉ℓ (⟨⟩) Lemma F.6

∅ ⊢ E[e2] : 𝜎 | ⟨⟩ Lemma F.3

□

F.3.2 Uniqueness of Names.
Proof. (of Theorem B.2) First, we observe that for handle-safe expressions, if

e = E1 · handle𝜖1m1
hℓ1 · E2 · handle𝜖2m2

hℓ2 · e0
then we have 𝜖1 = 𝜖2.

We proceed by proving the goal by contradiction. Suppose we have m1 = m2. That means

e = E1 · handle𝜖1m1
hℓ1 · E2 · handle𝜖1m1

hℓ2 · e0.
By Lemma F.4, we have

∅ ⊢ handle𝜖1m1
hℓ2 · e0 : ⌈E1 · handle𝜖1m1

hℓ1 · E2⌉ℓ (𝜖1)
By typing rule handle, we have

𝜖1 = ⌈E1 · handle𝜖1m1
hℓ1 · E2⌉ℓ (𝜖1)

However, according to Definition F.1,

⌈E1 · handle𝜖1m1
hℓ1 · E2⌉ℓ (𝜖1)

has at least one more ℓ1 than 𝜖1. Thus the contradiction. □
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F.4 Proofs for System F𝜖+s

F.4.1 Preservation.
Lemma F.7. (Small Step Preservation)
If ∅ ⊢ e1 : 𝜎 | 𝜖 and e1 −→ e2, then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (of Lemma F.7) By induction on reduction. Again, we discuss the reduction of handlers.

case (handler𝜖 hℓ ) v −→ handle𝜖 hℓ
[ (v [[] ()) with [ fresh.

∅ ⊢ (handler𝜖 h) v : 𝜎 | 𝜖 given

∅ ⊢ handler𝜖 h : (∀[. () → ⟨ℓ[ | 𝜖⟩ 𝜎) → 𝜖 𝜎 | 𝜖 app

∅ ⊢ v : ∀[. () → ⟨ℓ[ | 𝜖⟩ 𝜎 | 𝜖 above

∅ ⊢val handler𝜖 hℓ : (∀[. () → ⟨ℓ[ | 𝜖⟩ 𝜎) → 𝜖 𝜎 val

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 handler

∅ ⊢ v : ∀[. () → ⟨ℓ[ | 𝜖⟩ 𝜎 | ⟨ℓ | 𝜖⟩ Lemma F.5

∅ ⊢ v [[] () : 𝜎 | ⟨ℓ[ | 𝜖⟩ tapp and app

∅ ⊢ handle𝜖 hℓ
[ (v [[] ()) : 𝜎 | ⟨𝜖⟩ handle

□

Proof. (of Theorem C.1) Same as Theorem B.1 with Lemma F.7. □

F.4.2 Progress.
Lemma F.8. (Progress with effects)
If∅ ⊢ e1 : 𝜎 | 𝜖 then either e1 is a value, or e1 ↦−→ e2, or e1 = E[perform op 𝜎 v], where op : ∀𝛼. 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ),
and op ̸∈ bop(E).

Proof. (of Lemma F.8) By induction on typing. The proof structure is the same as the progress

lemma for F𝜖 . Here we discuss cases specific to System F𝜖+s.
case e1 = e3 e4 where both e3 and e4 are values. We do case analysis on the form of e3.
subcase e3 = handler𝜖 h. Then by (handler) and (step)wehave handler𝜖 h e4 −→ handle𝜖 h (e4 [[] ())

with [ fresh.
case e1 = e3 [𝜎1] where e3 is a value. We do case analysis on the form of e3.
∅ ⊢ e3 [𝜎1] : 𝜎2 [𝛼 :=𝜎1] | 𝜖 given

∅ ⊢ e3 : ∀𝛼. 𝜎2 | 𝜖 app

subcase e3 = handler𝜖 h. This is impossible because it does not have a polymorphic type. □

Proof. (of Theorem C.2) By applying Lemma F.8, we know that either e1 is a value, or e1 ↦−→ e2, or
e1 = E[perform op 𝜎 v], where op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(ℓ) and op ̸∈ bop(E). For the first two cases,
we have proved the goal. For the last case, we prove the goal by contradiction.

∅ ⊢ E[perform op 𝜎 v] : 𝜎 | ⟨⟩ given

∅ ⊢ perform op 𝜎 v : 𝜎1 | ⌈E⌉ℓ (⟨⟩) Lemma F.4

l ∈ ⌈E⌉ℓ (⟨⟩) perform

op ̸∈ bop(E)) given

l ̸∈ ⌈E⌉ℓ (⟨⟩) Follows

Contradiction

□
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F.5 Proofs for System F𝜖+sn

F.5.1 Preservation.
Lemma F.9. (Small Step Preservation)
If ∅ ⊢ e1 : 𝜎 | 𝜖 and e1 −→ e2, then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (of Lemma F.9) By induction on reduction. We detail the interesting cases.

case (handler𝜖 hℓ ) v −→ handle𝜖m hℓ
[ (v [[] (m, hℓ

[ )) with [, m fresh.
∅ ⊢ (handler𝜖 h) v : 𝜎 | 𝜖 given

∅ ⊢ handler𝜖 h : (∀[. ev ℓ[ → ⟨ℓ[ | 𝜖⟩ 𝜎) → 𝜖 𝜎 | 𝜖 app

∅ ⊢ v : ∀[. ev ℓ[ → ⟨ℓ[ | 𝜖⟩ 𝜎 | 𝜖 above

∅ ⊢val handler𝜖 hℓ : (∀[. ev ℓ[ → ⟨ℓ[ | 𝜖⟩ 𝜎) → 𝜖 𝜎 val

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 handler

∅ ⊢ v : ∀[. ev ℓ[ → ⟨ℓ[ | 𝜖⟩ 𝜎 | ⟨ℓ[ | 𝜖⟩ Lemma F.5

∅ ⊢ v [[] (m, h) : 𝜎 | ⟨ℓ[ | 𝜖⟩ tapp and app

∅ ⊢ handle𝜖m hℓ
[ (v [[] (m, h)) : 𝜎 | ⟨𝜖⟩ handle

case handle𝜖m h · E · perform op 𝜎 (m, h) v −→ f [𝜎] v k.
op ↦→ f ∈ h given

op : ∀𝛼. 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ) given

k = _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 hℓ[ · E · x given

∅ ⊢ handle𝜖 h · E · perform op 𝜎 (m, h) v : 𝜎 | 𝜖 given

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 handle

∅ ⊢val f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 ops

∅ ⊢ f : ∀𝛼. 𝜎1→ 𝜖 (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 val

∅ ⊢ f [𝜎] : 𝜎1 [𝛼 :=𝜎] → 𝜖 (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 tapp

∅ ⊢ perform op 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⌈handle𝜖 h E⌉ℓ (𝜖) Lemma F.4

∅ ⊢ec handle𝜖 h · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 above

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | ⌈handle𝜖 h E⌉ℓ (𝜖) app and tapp

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | 𝜖 Lemma F.5

∅ ⊢ f [𝜎] v : (𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 app

x :𝜎2 [𝛼 :=𝜎] ⊢val x : 𝜎2 [𝛼 :=𝜎] var

x :𝜎2 [𝛼 :=𝜎] ⊢ x : 𝜎2 [𝛼 :=𝜎] | 𝜖 val

x :𝜎2 [𝛼 :=𝜎] ⊢ec handle𝜖 · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 weakening

x :𝜎2 [𝛼 :=𝜎] ⊢ handle𝜖 h · E · x : 𝜎 | 𝜖 Lemma F.3

∅ ⊢val _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 abs

∅ ⊢ _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 | 𝜖 val

∅ ⊢ f [𝜎] v k : 𝜎 | 𝜖 app

□

Proof. (of Theorem 3.1) Same as Theorem B.1 with Lemma F.9. □

F.5.2 Progress.
Lemma F.10. (Progress with effects)
If ∅ ⊢ e1 : 𝜎 | 𝜖 then either e1 is a value, or e1 ↦−→ e2, or e1 = E[perform op 𝜎 (m, hℓ

[ ) v],
where op : ∀𝛼. 𝜎1→ ℓ[ 𝜎2 ∈ Σ(ℓ), and E has no handlem hℓ

[

.

Proof. (of Lemma F.10) By induction on typing. The proof structure is the same as the progress

lemma for F𝜖 . Here we discuss cases specific to System F𝜖+sn.
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case e1 = e3 e4 where both e3 and e4 are values. We do case analysis on the form of e3.
subcase e3 = handler𝜖 h. Then by (handler) and (step) we have

handler𝜖 h e4 −→ handle𝜖 h (e4 [[] (m, h)) with [, m fresh.
case e1 = e3 [𝜎1] where e3 is a value. We do case analysis on the form of e3.
∅ ⊢ e3 [𝜎1] : 𝜎2 [𝛼 :=𝜎1] | 𝜖 given

∅ ⊢ e3 : ∀𝛼. 𝜎2 | 𝜖 app

subcase e3 = handler𝜖 h. This is impossible because it does not have a polymorphic type.

case e1 = handle𝜖m hℓ
[

e.
∅ ⊢ handle𝜖 hℓ

[

e : 𝜎 | 𝜖 given

∅ ⊢ e : 𝜎 | ⟨ℓ[ | 𝜖⟩ handle

By I.H., we know that either e is a value, or e ↦−→e3, or e = E0 [perform op 𝜎 (m1, hℓ1
[
1

1
) v].

• e ↦−→ e3. Then we know handle𝜖 h e ↦−→ handle𝜖 h e3 by step and the goal holds.

• e = E0 [perform op 𝜎 (m1, hℓ
[

1
) v], and E0 has no handlem1

hℓ
[

1
. We discuss whether handlem hℓ

[

handles this perform.

– Handle. Then by (perform) and (step) we have
handle𝜖m h · E0 · perform op 𝜎 (m, h) v ↦−→ f 𝜎 v k.

– Not handle. Let E = handle𝜖m h E0, then we have

e1 = E[perform op 𝜎 (m1, hℓ1
[
1

1
) v].

• e is a value. Then by (return) and (step) we have handle𝜖 h e ↦−→ e.
□

Proof. (of Theorem 3.3) We first observe that for handle-safe expressions, when (handler) generates
m, each m is specific to some scope [ and some label ℓ .

By applying Lemma F.10, we know that either e1 is a value, or e1 ↦−→ e2, or
e1 = E[perform op 𝜎 (m, hℓ

[ ) v], where op : ∀𝛼. 𝜎1→ℓ[ 𝜎2 ∈ Σ(ℓ), and E has no handlem hℓ
[

.

For the first two cases, we have proved the goal. For the last case, we prove the goal by contradiction.

∅ ⊢ E[perform op 𝜎 (m, hℓ
[ ) v] : 𝜎 | ⟨⟩ given

∅ ⊢ perform op 𝜎 (m, hℓ
[ ) v : 𝜎1 | ⌈E⌉ℓ (⟨⟩) Lemma F.4

ℓ[ ∈ ⌈E⌉ℓ (⟨⟩) perform

E has no handlem hℓ
[

Given

From rule (handler), we know that every [ has a one-to-one correspondence. Therefore, E cannot

have handlem1
hℓ

[

for some other m1.

Now given E has no handlem hℓ
[

, then ℓ[ ∈ ⌈E⌉ℓ (⟨⟩) is impossible. Thus we have a contradic-

tion.

□

F.5.3 Uniqueness of Names.
Proof. (of Theorem 3.4) The same as Theorem B.2. □
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F.6 Proofs for System F𝜖+u

F.6.1 Preservation.
Lemma F.11. (Small Step Preservation)
If ∅ ⊢ e1 : 𝜎 | 𝜖 and e1 −→ e2, then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (of Lemma F.11) By induction on reduction. As before, we focus on the cases involving

handlers.

case handle𝜖 hl[ · E · perform op [𝜎] v −→ handle𝜖 (f [𝜎] v k)
op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h given

op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(l) given

k = _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x given

∅ ⊢ handle𝜖 h · E · perform op 𝜎 v : 𝜎 | 𝜖 given

∅ ⊢ops h : 𝜎 | l | 𝜖 u-handle

∅ ⊢val f : ∀𝛼 i .→ 𝜎1→ ⟨r[ | 𝜖⟩ (𝜎2→ ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎 u-ops

∅ ⊢val f : ∀𝛼 i .→ 𝜎1→ ⟨r[ | 𝜖⟩ (𝜎2→ ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎 | ⟨r[ | 𝜖⟩ val

∅ ⊢ f [𝜎] : 𝜎1 [𝛼 :=𝜎] → ⟨r[ | 𝜖⟩ (𝜎2 [𝛼 :=𝜎] → ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎 | ⟨r[ | 𝜖⟩ tapp, app

∅ ⊢ perform op 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⌈handle𝜖 h E⌉ℓ (𝜖) Lemma F.4

∅ ⊢ec handle𝜖 h · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 above

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | ⟨⌈handle𝜖 h E⌉ℓ | 𝜖⟩ app and tapp

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | ⟨r[ | 𝜖⟩ Lemma F.5

x :𝜎2 [𝛼 :=𝜎] ⊢val x : 𝜎2 [𝛼 :=𝜎] var

x :𝜎2 [𝛼 :=𝜎] ⊢ x : 𝜎2 [𝛼 :=𝜎] | 𝜖 val

x :𝜎2 [𝛼 :=𝜎] ⊢ec handle𝜖 · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 weakening

x :𝜎2 [𝛼 :=𝜎] ⊢ handle𝜖 h · E · x : 𝜎 | 𝜖 Lemma F.3

∅ ⊢val _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 abs

∅ ⊢ _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 | 𝜖 val

∅ ⊢ f [𝜎] v k : 𝜎 | ⟨r[ | 𝜖⟩ a app

∅ ⊢ handle𝜖 { }r[ · f [𝜎] v k : 𝜎 | 𝜖 u-handle

case (handler𝜖 hℓ ) v −→ handle𝜖m hℓ
[ · v (m, hℓ

[ ) .
∅ ⊢ (handler𝜖 h) v : 𝜎 | 𝜖 given

∅ ⊢ handler𝜖 h : (ev ℓ[ → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 app

∅ ⊢ v : ev ℓ[ → 𝜖 𝜎 | 𝜖 above

∅ ⊢val handler𝜖 h : (ev ℓ[ → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 val

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 n-handler

∅ ⊢ v (m, hℓ
[ ) : 𝜎 | 𝜖 app

∅ ⊢ handle𝜖 h (v ()) : 𝜎 | ⟨𝜖⟩ n-handle

□

Proof. (of Theorem 4.1) Same as Theorem B.1 with Lemma F.11. □

F.6.2 Uniqueness of Names.
Proof. (of Theorem 4.3) The same as Theorem B.2. □
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F.7 Proofs for Restricted System F𝜖+u

F.7.1 Preservation.
Lemma F.12. (Small Step Preservation)
If ∅ ⊢ e1 : 𝜎 | 𝜖 and e1 −→ e2, then ∅ ⊢ e2 : 𝜎 | 𝜖 .

Proof. (of Lemma F.12) By induction on reduction. We discuss the new cases.

case handle𝜖 hl[ · E · perform op [𝜎] v −→ handle𝜖 { }r[ (f [𝜎] umb[ v k′)
op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h given

op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(l) given

k = _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x given

k′ = _ ⟨r
[ |𝜖⟩x :𝜎2 [𝛼 :=𝜎] . maskr

[

k x given

∅ ⊢ handle𝜖 h · E · perform op 𝜎 v : 𝜎 | 𝜖 given

∅ ⊢ops h : 𝜎 | l | 𝜖 u-handle

∅ ⊢val f : ∀𝛼 i . umb [ ⟨r[ | 𝜖⟩ 𝜎 → 𝜎1→ ⟨r[ | 𝜖⟩ (𝜎2→ ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎 u-ops

∅ ⊢val f : ∀𝛼 i . umb [ ⟨r[ | 𝜖⟩ 𝜎 → 𝜎1→ ⟨r[ | 𝜖⟩ (𝜎2→ ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎 | ⟨r[ | 𝜖⟩ val

∅ ⊢ f [𝜎] umb[ : 𝜎1 [𝛼 :=𝜎] → ⟨r[ | 𝜖⟩ (𝜎2 [𝛼 :=𝜎] → ⟨r[ | 𝜖⟩ 𝜎) → ⟨r[ | 𝜖⟩ 𝜎 | ⟨r[ | 𝜖⟩ tapp, app

∅ ⊢ perform op 𝜎 v : 𝜎2 [𝛼 :=𝜎] | ⌈handle𝜖 h E⌉ℓ (𝜖) Lemma F.4

∅ ⊢ec handle𝜖 h · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 above

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | ⟨⌈handle𝜖 h E⌉ℓ | 𝜖⟩ app and tapp

∅ ⊢ v : 𝜎1 [𝛼 := 𝜎] | ⟨r[ | 𝜖⟩ Lemma F.5

x :𝜎2 [𝛼 :=𝜎] ⊢val x : 𝜎2 [𝛼 :=𝜎] var

x :𝜎2 [𝛼 :=𝜎] ⊢ x : 𝜎2 [𝛼 :=𝜎] | 𝜖 val

x :𝜎2 [𝛼 :=𝜎] ⊢ec handle𝜖 · E : 𝜎2 [𝛼 :=𝜎] → 𝜎 | 𝜖 weakening

x :𝜎2 [𝛼 :=𝜎] ⊢ handle𝜖 h · E · x : 𝜎 | 𝜖 Lemma F.3

∅ ⊢val _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 abs

∅ ⊢ _𝜖 x : 𝜎2 [𝛼 :=𝜎] . handle𝜖 h · E · x : 𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎 | 𝜖 val

∅ ⊢ _ ⟨r
[ |𝜖⟩x :𝜎2 [𝛼 :=𝜎] . maskr

[

k x : 𝜎2 [𝛼 :=𝜎] → ⟨r[ | 𝜖⟩ 𝜎 | ⟨r[ | 𝜖⟩ val

∅ ⊢ f [𝜎] umb[ v k′ : 𝜎 | ⟨r[ | 𝜖⟩ a app

∅ ⊢ handle𝜖 { }r[ · f [𝜎] umb[ v k : 𝜎 | 𝜖 u-handle

case (handler𝜖 hℓ ) umb[ v −→ handle𝜖m hℓ
[ · v (m, hℓ

[ ) .
∅ ⊢ (handler𝜖 h) v : 𝜎 | 𝜖 given

∅ ⊢ handler𝜖 h : umb [ 𝜖 𝜎 → (ev ℓ[ → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 app

∅ ⊢ v : ev ℓ[ → 𝜖 𝜎 | 𝜖 above

∅ ⊢val handler𝜖 h : umb [ 𝜖 𝜎 → (ev ℓ[ → 𝜖 𝜎) → 𝜖 𝜎 | 𝜖 val

∅ ⊢ops h : 𝜎 | ℓ | 𝜖 n-handler

∅ ⊢ v (m, hℓ
[ ) : 𝜎 | 𝜖 app

∅ ⊢ handle𝜖 h (v ()) : 𝜎 | ⟨𝜖⟩ n-handle

case maskr
[

v −→ v. Follows directly by val. □

Proof. (of Theorem E.1) Same as Theorem B.1 with Lemma F.12. □

F.7.2 Progress.
Lemma F.13. (Progress with effects)
If ∅ ⊢ e1 : 𝜎 | 𝜖 , then either

(1) e1 is a value; or
(2) e1 ↦−→ e2; or
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(3) e1 = E[perform op 𝜎 v], where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(l), and op ̸∈ bop(E).
(4) e1 = E[perform op 𝜎 (m, hℓ

[ ) v], where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ), and E has no handlem hℓ
[

.

Proof. (of Lemma F.13) By induction on typing. The proof structure is similar to Lemma F.8 and

Lemma F.10, but with two cases where e1 does not take a step. □

Lemma F.14. (Evidence does not Escape)
If ∅ ⊢ e : 𝜎 | 𝜖 , where e is a handle-safe System F𝜖+u expression, and e = handlem hℓ

[ · v, then
according to rule (n-return) we have e −→ v, and v does not contain evidence (m, hℓ

[ ) that can
later be used.

Proof. (of Lemma F.14) We case analyze the shape of v.

• v is x, handler hl , perform𝜖 op 𝜎 , or handler hℓ . In this case, the goal holds trivially.

• v = perform𝜖 op 𝜎 v. In this case, we care about whether v is (m, hℓ
[ ). If it is not, then the

goal holds. If it is, that means the return type of handle contains [. However, as a handle-safe
expression, this handle must have been reduced from handler. With the umbrella witness, we

know that its return type cannot contain [. So contradiction.

• v is an evidence. Using similar reasoning as above, we know that v cannot be (m, hℓ
[ ).

• v is a term abstraction or type abstraction. Then there are two cases to be discussed in the body.

– As reasoned before, the body of v cannot directly contain evidence (m, hℓ
[ ) that can later be

used. Otherwise, the scope [ would appear in the return type, which is not allowed.

– There is a special case where v may contain an evidence, and does not expose the scope in

the return type. That is, the body of v contains handle hl · perform𝜖 op 𝜎 (m, hℓ
[ ). Here, we

perform on the evidence, but use the umbrella handler handle hl to eliminate the effect in the

result row, and thus pretend that the evidence does not escape. An important observation

is that, for handle-safe expressions, resumptions are the only expressions that can contain

handle and potentially cause the problem. Recall also that, with the resume effect, we can

never return the resumption inside an abstraction, because the resume effect r[ will then

appear in the return type, which is not allowed by the umbrella witness. Thus this case is also

impossible.

□

Proof. (of Theorem 4.2) By applying Lemma F.13, we know that either e1 is a value, or e1 ↦−→ e2, or
e1 = E[perform op 𝜎 v], where op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l), and op ̸∈ bop(E), or e1 = E[perform op 𝜎 (m, hℓ

[ ) v],
where op : ∀𝛼. 𝜎1→ l[ 𝜎2 ∈ Σ(ℓ), and E has no handlem hℓ

[

.

For the first two cases, we have proved the goal. For the third case, we prove the goal by

contradiction.

∅ ⊢ E[perform op 𝜎 v] : 𝜎 | ⟨⟩ given

l ∈ ⌈E⌉ℓ (⟨⟩) Lemma F.4

op ̸∈ bop(E) given

l ̸∈ ⌈E⌉ℓ (⟨⟩) follows

Contradiction

The fourth case means that the evidence (m, hℓ
[ ) escapes its handler handlem hℓ

[

, which is impos-

sible by Lemma F.14. □
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