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Optimizing subpixel rendering using a perceptual metric
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Abstract — ClearType is a subpixel-rendering method designed to improve the perceived quality of
text. The method renders text at subpixel resolution and then applies a one-dimensional symmetric
mean-preserving filter to reduce color artifacts. This paper describes a computational method and
experimental tests to assess user preferences for different filter parameters. The computational method
uses a physical display simulation and a perceptual metric that includes a model of human spatial
and chromatic sensitivity. The method predicts experimentally measured preferences for filters for a
range of characters, fonts, and displays.
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1 Introduction
Recent advances in display technology take advantage of the
arrangement of the display primaries within a pixel (subpixels)
to enhance the spatial resolution of the rendered image. Novel
display architectures have been proposed that vary the
number of subpixel colors and their spatial arrangements.1

Because there are many design options, evaluation is an im-
portant and challenging task.2 The ability to evaluate display
architectures and corresponding subpixel-rendering
algorithms using a computational method would simplify
the design process and enable exploration of many more
architectures. This paper reports the results of computa-
tional and behavioral experiments that evaluate the use of a
spatio-chromatic perceptual metric (S-CIELAB) to opti-
mize a subpixel text-rendering method (ClearType).

ClearType is a subpixel-rendering method designed to
increase the horizontal resolution of rendered text on cer-
tain displays. Specifically, pixels in many color displays are
composed of three horizontally adjacent subpixels that emit
the red, green, and blue (RGB) primary lights. Conven-
tional display algorithms treat the subpixels as spatially
coincident and forfeit the potential resolution enhancement
in the horizontal dimension. ClearType uses the subpixel
elements to triple the horizontal spatial resolution during
the font rasterization process.

The subpixels are colored, so without further process-
ing ClearType fonts would have color artifacts. A second ele-
ment of rendering a ClearType character, then, is to reduce
the visibility of the color artifact by spatially averaging in the
horizontal dimension. This averaging slightly reduces the
horizontal resolution. Platt3 used principles from vision sci-
ence to quantify the perceptual tradeoff between spatial
resolution and color errors. Specifically, he used the S-CIELAB
spatial filters4–6 as an approach for selecting spatio-chro-
matic filters to minimize the visibility of color artifacts. The

initial work suggested applying a total of nine spatial filters
corresponding to each of the three input and output chan-
nels. For example, the filters applied to create the red color
channel output are denoted by R → R, G → R, and B → R.
The outputs of these three filters are summed to create a
filter that is centered on the red pixel. Similarly, there are
three color filters for the green and blue channels.

Subsequently, Betrisey et al.7 found that the cross-
channel filters (R → G, R → B, G → B, etc.) have relatively
little power, and the three within-channel filters (R → R,
G → G, and B → B) are nearly identical but centered at
different subpixels. Hence, Betrisey et al. replaced the nine
filters with one filter and referred to this approximation as
RGB decimation with displaced filters. These simplifica-
tions are used in the real-time implementation of Clear-
Type.

There are significant differences between the Clear-
Type rendering and conventional anti-aliasing. Anti-aliasing
refers to the process of removing high-resolution informa-
tion from a signal prior to sampling at a lower resolution in
order to remove the possibility that the high-resolution infor-
mation becomes “aliased” into a lower-frequency signal.
ClearType does not remove high-resolution information
prior to sampling.

The ClearType process begins with a very high – essen-
tially continuous – representation of the desired font that is
sampled by the lower-resolution pixel grid. Unlike anti-alias-
ing, the ClearType filtering does not prevent the artifacts
caused by sampling the high-resolution image onto the low-
resolution chromatic display grid. Rather, it blurs the signal
after sampling to reduce the visibility of the sampling arti-
facts. The visibility of blur and color artifacts generated by
different ClearType rendering depend on the physical char-
acteristics of the display, the ClearType filters, and the view-
ing conditions (e.g., viewing distance).
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The sampling theorem guides the design of anti-alias-
ing filters, but says nothing about visibility. Because there is
no theorem to guide the design of ClearType filters, we
created a simulation of the display8 and evaluated the visi-
bility of blur and color artifacts using S-CIELAB.5 To check
the simulation, we measured subjects’ preferences between
high-contrast text (black/white) rendered on different dis-
plays with a range of filter parameters. We compared the
measured subject preferences with the size of the artifacts
predicted by S-CIELAB.

2 General methods

2.1 Display measurement and modeling
The display simulation toolbox (DST) provides a framework
that guides the estimation and simulation of the spatial-
spectral radiance emitted from a display by any image.8

Calculating the spectral radiance image is essential for pre-
dicting the visibility of blurring and color artifacts; unlike
the digital image values (RGB) usually used for image-qual-
ity predictions, the spectral radiance image is the stimulus
that actually reaches the eye.

The DST uses three functions to predict the spatial-
spectral radiance emitted by a display. First, the DST con-
verts digital values into a measure of the linear intensity
(display gamma). Second, the DST models the spatial
spread of light using a point-spread function for each color
component (subpixel point spread function). Third, the
DST uses the spectral power distributions of the display
color primaries to calculate the spectral composition of the
displayed image. These three functions – the display
gamma, the subpixel point-spread functions, and the spec-
tral power distributions – are sufficient to characterize the
performance of displays with independent pixels.9

Figure 1 shows the subpixel arrangements for two
LCD monitors. These calibrated measurements were used
to generate point-spread functions for the red, green, and
blue subpixel components of the two different displays. Fig-
ure 2 shows the display gamma and spectral power distribu-
tions that were, in this case, matched for the two different

displays. Elsewhere, we demonstrate that a model with inde-
pendent pixels accurately characterizes the properties of
these displays.8

In the simulation, the displayed letter is represented
as a spatial array of spectral radiance functions (pho-
tons/sec/nm/sr/m2), sometimes called a hyperspectral data
cube. Figure 3 shows a magnified view of a character ren-
dered on one of the displays (Dell LCD 1907FPc). Two
graphs represent quantities that can be calculated from the
hyperspectral data. The top graph shows the luminance pro-
file along a horizontal line. The bottom graph plots the spec-
tral power distribution of the white background.

2.2 Subpixel rendering
ClearType renders text at subpixel resolution and then applies
a symmetric one-dimensional mean-preserving filter to
reduce color artifacts. We investigate the effects of varying
the parameters of a five-tap filter (a, b, c, b, a). To preserve
the mean, the filter parameters sum to one (2a + 2b + c =

FIGURE 1 — Images of white pixels for the two different LCD monitors,
the Dell 1905FP (left) and the Dell 1907FPc (right).

FIGURE 2 — Display gamma (left) and spectral power distributions
(right) for the two calibrated displays used in this study.

FIGURE 3 — Magnified view of a character rendered on one of the
displays (Dell LCD 1907FPc) with luminance profile along a horizontal
graph (top graph) and spectral power distribution of the white
background (bottom graph).
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1). Consequently, the filters can be described by a two-
dimensional parameterization (a, b).

The variation in the filters in the (a, b) space is illus-
trated in Fig. 4. The filter parameters (0, 0) and thus c = 1
represent the impulse function; this filter produces the
highest spatial resolution rendering. Subjects often prefer
(a, b) filter parameters different from (0,0) because some
spatial blurring can reduce the visibility of chromatic arti-
facts.

The computational and experimental methods assessed
artifacts and preferences for filter values in a restricted
range, –0.6 < a, b < 0.6, and subject to the constraint that
filter values with c > 1 are not allowed because they produce
many out-of-range display values.

2.3 Predicting artifact visibility
The visibility of spatio-chromatic artifacts is evaluated by
comparing the test character rendered on a real display to
an ideal reference. We define the ideal reference as a
black/white test character rendered on a monochrome dis-
play matched in resolution to the subpixel resolution of the
RGB display. It is possible to use other reference images,
such as a character rendered on a higher-resolution display,
but we chose not to do this because ClearType fonts adjust
the letter shape given the available resolution. Using the
matched monochrome reference image, S-CIELAB quanti-
fies the visibility of differences in contrast and color without
confounding differences in font outline.

To compute the visible error, we model the display and
then apply the S-CIELAB metric (Fig. 5). The first step is
to calculate the displayed spatial-spectral radiances of a let-
ter rendered on a color display and the corresponding ideal

reference. Then, the point-by-point S-CIELAB difference
(∆E) between the two radiance images is calculated and an
error map is generated. We use the mean S-CIELAB differ-
ence (∆E) (averaged across the error map) as an estimate of
the visible difference between the ClearType rendering and
the ideal reference. A ∆E value of 1 is designed to be near
perceptual threshold. Hence, when the ∆E value for two filters
is near 1, the effects of the filters should be quite similar.

3 Computational experiments
In the computational experiments described below and in
the perceptual experiments described later, we analyzed the
letters g, s, and v in a serif (Georgia) and sans-serif (Arial)
font and rendered on the two different displays (Fig. 1). The
difference between the ideal reference and the rendered
image has a mean ∆E of 2 or more. Hence, the metric pre-
dicts that the ideal reference will appear different from the
rendered image.

3.1 Filter parameters for different letters,
fonts, and displays

The iso-∆E contours in the filter parameter space, (a, b) are
shown in Fig. 6. The six plots show the visible errors for g,
s, and v, in Georgia and Arial fonts, rendered on an LCD
(Dell 1907FPc). Each contour encloses the (a, b) filters that
produce a visible error less than or equal to a specific S-
CIELAB ∆E level; the contours are separated by a ∆E = 0.5.
Simulations show that there are regions within the (a, b)
plane that differ by less than one ∆E value.

Across all conditions iso-∆E contours have similar ori-
entation. The (a, b) coefficients that generate the smallest
S-CIELAB ∆E values fall along a negative diagonal (con-
stant a + b values). This negative diagonal that minimizes
the ∆E value differs from the c = 1 negative diagonal.

FIGURE 4 — Illustration of ClearType five-tap filters with varying (a, b)
parameters. Filters along the negative diagonal have c = 1. The insets
show the filters along with color images that illustrate the effect of
blurring the character with these different filters.

FIGURE 5 — Calculation of  the  S-CIELAB  difference between  the
displayed radiance of a letter rendered on a color display (A) and the
displayed radiance of the same letter rendered on a monochrome display
matched in resolution (B). The error map is the S-CIELAB difference (∆E)
between the two radiance images. The mean ∆E (averaged across the
error map) is used as a summary statistic.
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Hence, S-CIELAB predicts that blurring will reduce the
visibility of the color artifacts.

Across conditions the smallest visible errors occur
when the value of the a filter coefficient is small. Hence, the
filters with smallest color artifacts have small values of a and
large values of c. This region in the a, b parameter space,
near (–0.1, 0.2) and c ~ 0.8 represents a perceptual compro-
mise between preserving resolution and reducing chromatic
artifacts. Note that when a = 0, the ClearType filter is a
simple three-tap filter.

Figure 7 shows the iso-∆E contours for the same letter
rendered on two different displays. There are small differ-
ences in the absolute ∆E levels across the conditions but
again the ClearType filters that minimize the visibility of
artifacts are near (–0.1, 0.2).

3.2 PSNR

The peak signal-to-noise (PSNR) metric is widely used to
evaluate image quality. The PSNR is calculated from the
digital RGB values that represent an image. In this application
any calculation of error based on RGB values is inappropri-
ate for several reasons. First, the ClearType representation
is based on the spatial array of single primary subpixels. The
RGB representation does not account for the spatial posi-
tion of the subpixels that are at the heart of the subpixel-
rendering architecture.

Further, the values of the ideal reference are always
R = G = B = (255 or 0), while the ClearType representation
always has at least two of the R, G, and B values equal to 0.
Consequently, the PSNR value will inescapably be very low
and without real meaning.

Finally, the PSNR calculation has no room for critical
variables, such as viewing distance, subpixel structure, and
visual resolution. All of these factors matter in the calcula-
tion, and none of these factors are accounted for by the
PSNR metric. In this application, it is essential to use a visibil-
ity metric that incorporates features of human color-pattern
visibility.

4 Perceptual experiments

A series of visual psychophysical experiments were con-
ducted in which subjects chose a preferred rendering from
a set of alternatives.

FIGURE 6 — Predicted iso-∆E contours for the letters g, s, and v from the Arial-font family, rendered on the Dell 1907FPc display
(see Fig. 1) and viewed from a distance of 15 in.

FIGURE  7 — Predicted iso-∆E contours for the letter s from the
Georgia-font family, rendered on the Dell 1907FPc (left) and Dell 1507FP
(right) displays and viewed from a distance of 15 in.
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4.1 Experimental procedures

4.1.1 Subjects
Three subjects (two males and one female) participated in
this experiment. All subjects had normal or corrected to
normal vision.

4.1.2 Stimuli
Stimuli were the letters g, v, and s in Georgia 12-point font
and Arial 11-point font. They were rendered on two differ-
ent displays that have different pixel structures, as shown in
Fig. 1. Subjects viewed the stimuli using a chin rest placed
0.38 m (15 in.) from the display.

Different versions of the letter were created by sys-
tematically varying the (a, b) parameters of a one-dimen-
sional symmetric mean-preserving five-tap filter (a, b, c, b,
a). The parameter values (a, b), were constrained such that
c would never be greater than 1.0. We used a GAST proce-
dure, described next, to find the preferred (a, b) parameters.

4.1.3 The GAST procedure
Even for a single display, and a letter with fixed font size and
family, the number of different versions of the same letters
(created with different filter parameter values) is quite
large. For example, 88 different filters represent the possi-
ble ClearType versions when –0.6 ≤ a, b ≤ 0.6 and |c| ≤ 1, and
a, b are sampled at a rate of 0.1. There are (88 × 87)/2 or
3828 possible pairwise comparisons of these different ver-
sions. Each pairwise comparison should be presented at
least 10 times, yielding 38,280 trials for one letter. Clearly, a
full pairwise comparison task is not feasible, even for one
letter.

In this experiment, the number of pairwise compari-
sons was reduced by using the GAST (Gradient Ascending
Subjective Testing) method introduced by Voran and Catel-
lier.10 The GAST procedure combines pairwise stimulus
comparisons with gradient ascent optimization algorithms
to search efficiently for stimuli that optimize perceived image
quality. In this experiment, the GAST procedure was used
to find the (a, b) parameter values that subjects prefer the
most.

In each trial, subjects were presented with pairs of fil-
tered versions of the same character. They were asked to
select one of five possible responses: the left version is much
better than the right version, the left version is slightly
better than right version, the two versions look the same, the
right version is slightly better than the left version, or the
right version is much better than left version.

Each block of trials began by randomly selecting a
point in the (a, b) filter parameter space, referred to hereafter
as the starting point. This point defined the filter parameter
values that were used to generate one of the ClearType ver-
sions presented to subjects in the first pairwise comparison

task. The other ClearType version was created by increasing
or decreasing the a parameter value. After recording the
subjects preference judgment, the next trial presented the
Cleartype version defined by the starting point with a ver-
sion created by increasing or decreasing the b parameter
value. The GAST algorithm used the subjects’ responses in
these two trials to estimate the direction in the two-dimen-
sional a, b filter space in which preference increases. This
direction defined a line or vector of filter values beginning
with the original a, b starting point and ending at the bound-
ary of the defined parameter space. The GAST procedure
then presented a series of pairwise ClearType renderings
that had (a, b) points along this line until it found the
parameters that maximized preference. This became a new
starting point and the two adjacent and perpendicular filter
values were selected for the following trials. The algorithm
iterated between finding directions in the a, b filter space
and finding maximum preference along a direction in filter
space until there was no change in direction or location that
increased preference. The endpoint defined the optimal fil-
ter coefficients (a, b) for this series of trials.

In each block of trial, subjects completed 10 series of
trials for each letter. The 10 series were interleaved
throughout the block of trials. Each block of trials generated
10 ending points. In each experimental session, subjects
completed six blocks of trials, one for each of the letters g,
v, and s in Georgia 12-point font and Arial 11-point font,
respectively, generating a total of 60 GAST series for each
session. Each GAST run started from a random starting
point in the (a, b) parameter space and “ascended,” based
on subject’s responses, until it reached an (a, b) endpoint.
Over the course of several weeks, each of the three subjects
completed six experimental sessions during which the stim-
uli were presented on one of two displays – three sessions
for a Dell LCD 1905P display and three sessions for a Dell
LCD 1907FPc. Subjects completed 30 GAST runs for each
of the three letters shown in two different fonts and on each
display, yielding a total of 360 GAST runs.

5 Results
Figure 8 shows the 1080 GAST endpoints (three letters ×
two fonts × 2 displays × three subjects × 30 GAST runs). The
data points in each panel are colored coded so that the data
can be seen as grouped by fonts (A), letters (B), displays (C),
and subjects (D). Comparing the data across panels, it is
apparent that the variability between subjects is larger than
the variability due to letters, fonts, and displays.

The variability in subject preference judgments can be
quantified by calculating the bootstrap distribution of mean
c parameters for each condition of subject, letter, font and
display.11 In 59 of the 72 comparisons (82%), the mean c
parameter for one subject was more than two standard
deviations from the bootstrap distribution of mean c values
for another subject. The variability in c values was greater
across subjects than across letters, fonts, or displays. Within
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subjects, 50% of the comparisons between different letters
were significant, 50% of the comparisons between different
fonts were significant, and 11% of the comparisons between
displays were significant (p < 0.05).

The value of the GAST procedure is that it generates
preference estimates from a large set of comparisons; but
the method also has limitations. Specifically, subjects can
become stuck in a local preference maximum rather than
ascending to a global preference maximum. Some of the
variability across subject preference judgments may be due
to this GAST limitation.

Figure 8 plots all 1080 GAST end points in the (a, b)
parameter space (three letters × two fonts × two displays ×
three subjects × 30 GAST runs). Despite the variability both
within and between subjects, the data share important simi-
larities with one another and with the region identified by
S-CIELAB as having the smallest color artifacts. The GAST
endpoints fall in a region that covers a negative diagonal and
is near (–0.1, 0.2). Subjects chose filters that produce some
blurring; less than 4% of the endpoints fall within the high-
est resolution region in which c > 0.95.

6 Discussion
The main purpose of this investigation was to build and
evaluate a computational method to predict subject prefer-
ences for simple colored patterns. We created a model of
the display stimuli (Figs. 1–3), and we adapted a color dif-
ference metric for the task of making visible artifact predic-
tions (Figs. 5–7) for individual characters on specific
displays. For each of these cases, the S-CIELAB measure

identifies a region in the (a, b) plane that minimizes the
visibility of the difference between an ideal and rendered
font. The region within ∆E = 1 of the minimum tends to fall
along a negative diagonal centered near (–0.1, 0.2); subjects
preferences generally align with this region. Next, we con-
sider how the computational methods can be used to opti-
mize filter parameters across a larger set of characters and
displays.

6.1 Optimizing over a larger character set
We can use simulations to find preferred filter parameters
for a larger collection of letters by searching for the filter

parameters that minimize the total error where

the sum is across all 26 letters. The set of acceptable filters
will be those with a sum within µ + θ, where θ is a threshold
constant. For example, across all 26 letters in the Georgia
12-point font rendered on the Dell LCD 1905FP display,
the set of filters with a total error less than µ + 1 fall near
the line defined by c = 0.4 with a ≤ 0.1. Hence, this method
predicts that the three-tap filter (0.3, 0.4, 0.3) will be close
to the filter with the smallest total error. The data in Fig. 8
show that both filters fall within the preference range in the
test conditions used here.

Selecting the best three-tap filter across the larger set
is a compromise whose cost can be quantified. Specifically,
each letter has a filter that minimizes ∆E. We can measure
the difference between the best ∆E for this letter-specific
optimal filter and the ∆E value for the three-tap filter opti-
mized across the entire set. Using this measure for the
three-tap filter (0.3, 0.4, 0.3), the largest ∆E difference is
0.84∆E (for the letter h).

The same analysis can be used to optimize a three-tap
filter for a collection of letters, fonts, and two displays. For
example, the three-tap filter for the 26 letters in the two
fonts rendered on the two displays is (0.2, 0.6, 0.2), and the
largest difference is 2∆E.

6.2 Application to the design and evaluation
of novel displays

Silverstein et al.2 used physical simulations to evaluate the
quality of color lines and curves rendered on displays with
different color subpixel arrays. Using physical simulations
and subjective evaluation, they quantified the effects that
subpixel rendering had on perceived image quality.

The results of our study suggest that computational
methods can potentially replace physical simulations and
subjective ratings. Substituting computational methods for
experimental methods in the design and evaluation process
can greatly increase efficiency. Computational methods can
be used to understand the effects of display systems with
novel pixel structures, such as the RGBG pixel arrays evalu-
ated by Silverstein et al.,2 the RGBW pixel arrays used in the

m =
=
Â DEi
i 1

26
,

FIGURE 8 — 1080 GAST endpoints (3 letters * 2 fonts × 2 displays × 3
subjects × 30 GAST runs). The data points in each panel are colored
coded so that the data can be seen as grouped by fonts (A), letters (B),
displays (C), and subjects (D).
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Kodak AMOLED displays,12 and the many different PenTile™
pixel arrays.1 Furthermore, these methods also can be used
to optimize subpixel-rendering algorithms needed for implementing
these novel displays.

Finally, because the method uses the S-CIELAB met-
ric, the computation takes into account the viewing condi-
tions and specific features of the human visual system. This
method can be used to adjust parameters that account for
viewers with vision impairments including common ail-
ments of an aging population, such as presbyopia.
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